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ABSTRACT

We address the problem of detecting multiple audiovisual

events related to the edit structure of a video by incorporat-

ing an unsupervised cluster analysis technique into a clus-

ter selection method designed to measure coherence between

audio and visual segments. First, mutual information mea-

sure is used to select audio-visually consistent clusters from

two dendrograms representing hierarchical clustering results

respectively for the audio and visual modalities. A cluster

analysis technique is then applied to define events from the

audio-visual (AV) clusters with segments co-occurring fre-

quently. Candidate events are then characterized by groups

of AV clusters from which models are built by automatically

selecting positive and negative examples. Experiments on the

standard Canal9 data set demonstrates that our method is ca-

pable of discovering multiple audiovisual events in a totally

unsupervised manner.

Index Terms— Multiple events, Video mining, Video

structuring, Cluster selection, Mutual Information, Event dis-

covery, Structural event, Audiovisual consistency.

1. INTRODUCTION

Generally speaking, video structuring consists in extracting

semantic events—e.g., actions in sport videos, violent scenes

in movies, etc.—and/or events related to the edition of the

video—e.g., monochrome frames, dissolve, shot boundaries,

etc.—so as to segment the video into its constituents. In this

work, we define a structural element as a key content that ap-

pears frequently in a video and exhibits audio and visual con-

sistency. Typical examples of such events are jingles in news

videos, anchor persons or participants in a talk show, etc.

Existing approaches to video structure analysis fall into two

main categories: i) segmentation of the entire video (referred

as dense segmentation), where the input video is mapped to

a predefined structure, like points, games or sets in tennis

videos; ii) detection of specific events related to the video

structure, such as advertisements or goals in sport videos.

This paper presents a novel approach belonging to this last

category where events are defined from the data rather than a

priori. We focus on the detection of multiple events relevant

to the structure of a video, in a totally unsupervised fashion

without any prior knowledge about the events to be detected.

Our aim is to propose a generic method for video struc-

ture analysis, which can have applications in semi-supervised

video annotation and edition, automatic structuring of videos,

summarization, etc.

In the multimodal video mining literature, many efforts

have been focusing on supervised learning (see [1]) and

content-based analysis techniques such as speech recogni-

tion or face detection and identification. For instance, such

approaches have been employed for anchor person detec-

tion [2], or for the detection of specific events like goals in

sport videos [3]. Similarly, Li et al. [4] proposed to combine

face recognition and speaker detection to find occurrences of

characters in movies. Despite their success, the common lim-

itations of such supervised methods are the need to train a

model from manually annotated data and the lack of robust-

ness to unseen data. Moreover, some methods require a man-

ual initialization step, e.g., [4], therefore, lacking the general-

ity to cope with diverse video genres.

As an alternative, detecting repeating patterns has been

considered [5][6][7]. However, such methods focus on dis-

covering near-duplicate repetitions, and cannot deal with vari-

ations across repetitions (i.e., the repetitions are not exact),

which is a crucial issue in video structuring. The problem

of mining repeating structural elements has also been ad-

dressed using clustering techniques [8][9][10][11] to group

video shots exhibiting a strong visual similarity, which are

likely to be relevant with respect to the structure of the video.

However, clustering-based techniques cannot avoid the non-

trivial problems of choosing the optimal number of clusters,

and of dealing with outliers (as most of the data does not fit

into any cluster).

To overcome these drawbacks, we propose an unsuper-

vised approach to detect multiple events exhibiting a strong

audio and visual consistency, often related to the video edit-

ing. We elaborate on the work of Ben and Gravier [12][13]

and of Dielmann [11]. The former have proposed an unsuper-

vised method to detect a single audiovisual structural event

without any prior knowledge. From two dendrograms repre-

senting hierarchical clustering results of the audio and visual

modalities, they measure the consistency between an audio



cluster and a visual cluster using mutual information in the

temporal domain. Several heuristics are then applied to select

a unique pair, made of an audio and a visual clusters, relevant

to the video structure. As in most cases, discovery of multi-

ple events is not considered while many videos exhibit sev-

eral structural events (e.g., two anchor persons, guests in talk

shows). However, the work of Dielmann [11] was designed

to select multiple pairs of audio and visual clusters from two

independent partitions of the data. To this end, Pearson’s χ2

statistical test is adopted to analyze the co-occurrences be-

tween audio and visual labels (clusters). AV-clusters are then

identified as the ones whose labels most frequently co-occur.

However, this method entirely relies on the performance of

the partitioning algorithms used to construct two sets of la-

bels corresponding to, resp., the audio and visual modalities.

In particular, the number of clusters in each partition has to

be defined in some way.

In this paper1, we introduce a new scheme which com-

bines the use of nested clusters and mutual information cri-

terion with the χ2 statistical test to select multiple pairs of

audio-visual clusters, thus defining several structural events

from the data. Note that, this paper differs from [11] in two

major ways. First of all, we propose a method that does not

need initial partitioning of the audio and visual data. More-

over, the absence of labels attached to segments as a result

of the partioning steps requires significant adaptation of the

χ2 criterion. In particular, as opposed to the detection of

only a single event in [12], we propose a fully unsupervised

method able to detect multiple sets—clusters—gathering au-

diovisually consistent segments, selecting and grouping pairs

of audio and visual clusters from two independent hierarchi-

cal clustering trees, one for each modality. Further, automatic

selection of positive and negative samples enables to refine

the results using support vector machines in addition to the

initial discovery step.

The rest of the paper is structured as follows. Section 2

presents the general framework to discover multiple events.

In section 3, we briefly present the audio and visual clustering

step. We discuss how to select structurally consistent clusters

in section 4, and presents our adaptation of the χ2 test for rel-

evant event identification in section 5. Event characterization

and modeling is discussed in section 6. In section 7, we de-

scribe experimental results, followed by the conclusion and

future work in section 8.

2. OVERVIEW

The general idea of the algorithm, illustrated in Figure 1 is

as follows: two segmentations are built independently for

the audio and visual modalities and a set of nested clusters

is established for each modality using hierarchical bottom-

up clustering. This initial step results in two independently

1This work was partly funded by OSEO, French State agency for innova-

tion, in the framework of the Quaero research program.

constructed dendrograms, where each node represents a set

of (supposedly) coherent segments. We then explore cross-

modal relations to select pairs of audiovisual clusters—one

from each modality—which define consistent audiovisual

segments. This idea is introduced in [12] where the single

most consistent pair of clusters is selected according to some

heuristics on the pattern of occurrence of structurally relevant

events. A rather similar philosophy is used in [11] to select

pairs of segments assuming each segment is labeled. The key

difference is that in [11] a unique segmentation is used in each

modality, with cluster labels attached to segments, rather than

a nested hierarchy of clusters. Exploiting the general idea of

selecting consistent pairs of clusters, we investigate the se-

lection of multiple events, combining several criteria. First,

a list of candidate pairs is constructed from the N most con-

sistent AV-cluster pairs according to the mutual information

criterion. These candidates are then filtered using a χ2 test

and events are defined from the filtered list by grouping pairs

corresponding to the same underlying event. Finally, for each

candidate group (or event), segments are automatically se-

lected to train a SVM classifier which is used to refine event

detection. In the next sections, we discuss, in turn, each step

of the process.

3. SEGMENTATION AND HIERARCHICAL

CLUSTERING

The audio and video streams are first independently seg-

mented into audio and video segments, respectively. For each

modality, a classical bottom-up clustering technique is used

to create a set of nested clusters represented as a dendrogram.

The dendrogram encodes the various stages of the hierarchi-

cal clustering and each node in the dendrogram corresponds

to a set of segments, either in the video or in the soundtrack.

Audio segmentation implements a standard Bayesian infor-

mation criterion to detect abrupt changes in the signal. Gaus-

sian mixture models (GMM) are used to model each segment

and an approximation of the Kullback-Liebler divergence be-

tween two GMMs is used for agglomerative bottom-up clus-

tering. This approach, commonly used in speaker segmenta-

tion systems, groups segments with similar audio contents,

e.g., sharing the same type of music or the same speaker

voice. The video is segmented into shots based on color

histograms to detect changes across different frames and a

keyframe is extracted for each shot. Keyframe clustering is

also color-based, each shot being represented by its color his-

togram in the RGB space with 8 bins per color. Euclidian

distance and Ward’s linkage are used in bottom-up clustering.

4. CONSISTENT CLUSTER SELECTION

Given the audio and visual dendrograms, the next step con-

sists in selecting relevant pairs of audiovisual clusters (AV

cluster pair), where an AV cluster pair consists of one node
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Fig. 1: Schematic illustration of our approach to detecting multiple events (best viewed in color).

from the audio dendrogram and one from the video one.

Hence, an AV cluster pair is defined by the set of audio seg-

ments corresponding to the audio cluster and the set of video

segments which corresponds to the visual cluster.

Let (CA
i , CV

j ) be an AV cluster pair composed of the i-

th and the j-th clusters of the audio and video dendrograms,

respectively. Our objective is to measure the consistency be-

tween the AV cluster pair. To this end, the mutual information

(MI) is applied:

MI(CA
i , CV

j ) =
∑

(a,v)∈{(0,0),(1,1)}

p(a, v) ln(
p(a, v)

p(a)p(v)
) (1)

where a and v are binary random variables which indicate

membership in CA
i and CV

j , respectively. The probabilities

p(a, v), p(a), and p(v) are estimated from the temporal seg-

mentation. For example, the join probability p(a = 1, v = 1)
is measured as the amount of time that segments of CA

i and

segments of CV
j co-occur, normalized by the total duration of

the video. A large value of the MI therefore indicates that the

two corresponding clusters are closely consistent with each

other.

Audiovisual consistency is measured using Equation 1 for

each possible cluster pair and a list of the N best pairs is es-

tablished. It must be noted that some pairs in the N-best list

are strongly overlapping due to the fact that a dendrogram de-

fines a set of nested clusters. Moreover, some AV cluster pairs

might be irrelevant for video structure analysis. The next two

steps of the algorithm therefore consist in selecting relevant

pairs before grouping overlapping pairs which correspond to

the same underlying event in the video. We detail the first step

in the next section.

5. RELEVANT EVENT IDENTIFICATION

In [12], the selection of a single AV cluster pair was consid-

ered using heuristics to measure the relevance to the structure

of the video. However, this only allows for the selection of a

single pair and is highly application dependent. Instead, in-

spired by the work from Dielmann [11], we use a cluster anal-

ysis technique based on Pearson’s χ2 test to identify relevant

pairs in the N-best list generated using mutual information.

5.1. Cluster analysis using χ2 test

Pearson’s χ2 test can be used to verify whether two random

variables are statistically independent or not. Particularly,

Dielmann used χ2 to compare pairs of labels (clusters) re-

sulting from an independant partitions of the audio and vi-

sual modalities2. The test intends to determine whether a pair

of labels (clusters) resulting from the partitioning step, ex-

pressed in a contingency table (matrix), are independent of

each other (i.e., the null hypothesis) or not. In other words, the

test consists in determining if two labels jointly occur more

frequently than at random. Formally, let O be a U × V ma-

trix, where each entry Oij represents the number of times that

a pair (i, j) (i.e. the co-occurrence of an audio segment la-

beled i and a video segment labeled j) is observed, and U , V

are the audio and visual dictionaries, respectively. Under the

null hypothesis that the occurrence of a video cluster and an

audio cluster is statistically independent, the maximum like-

lihood estimated probability p(i, j) of the pair of labels (i, j)
is given as

p(i, j) = p(i)p(j) =

∑U

k=1 Oik

N

∑V

l=1 Olj

N
, (2)

where N is the total number of observations, i.e., the sum of

all entries in the matrix O. Under the null hypothesis, the ex-

pected (theoretical) frequency for any pair of labels is given

by Eij = N.p(i, j). The χ2 aims at identifying audiovisual

label pairs (i, j) which co-occur more frequently than the ex-

pected frequency under the null hypothesis Eij . Globally, the

value of the test statistic χ2 is given by:

X2 =

U∑

i=1

V∑

j=1

(Oij − Eij)
2

Eij

(3)

The higher the value of X2, the bigger the deviation from

the expected value under the null hypothesis and, hence, the

higher the confidence that the two partitions coincide.

2Here, a partition is a segmentation with arbitrary labels attached to seg-

ments. The audio partition is the result of a speaker diarization algorithm

while shot clustering is considered to obtain arbitrary labels for video shots.



5.2. Identification of candidate events

Our idea consists in applying the χ2 test to select AV cluster

pairs relevant to the structure of the video from the N-best list

of pairs obtained with mutual information. In other words, we

want to find cutting points in the dendrograms where the re-

sulting sets of audio and visual segments coincide more than

at random. However, contrary to Dielmann’s work, no labels

are available and clustering does not provide a partition of

the data into several classes. Therefore, applying the χ2 test

statistic as described in the previous section is not straightfor-

ward. Rather, we consider binary labels instead of an arbi-

trary number of labels obtained from a partitioning step. Let

us consider the audiovisual segmentation resulting from the

union of the audio and visual boundaries. Considering one

AV cluster pair (i.e., a node from the audio dendrogram and

one from the visual one), each audiovisual segment can be

labeled with a binary label indicating whether the segment

belongs to the AV cluster or not. More precisely, for a given

AV cluster pair, we analyze the co-occurrences between au-

dio and visual segments by the chi-squared distribution with

1 degree of freedom, i.e., O is now a 2 × 2 matrix represent-

ing the observations for two binary variables. The frequency

of each pair of labels (i ∈ {0, 1}, j ∈ {0, 1}) is computed

as the number of corresponding audiovisual segments3. For

instance, for a given AV cluster pair, 011 is the number of

audiovisual segments belonging to both the audio and visual

cluster, while 010 indicates the frequencies of audiovisual seg-

ments that belong to the audio cluster but do not belong to

the visual cluster. Since our objective is to determine whether

there is a significant relationship between an audio cluster and

a visual cluster, only the contribution of O11 to the test statis-

tic χ2 is verified. In particular, we compare a χ2 distribution

with a variable X2
11:

X2
11 =

(O11 − E11)
2

E11
(4)

A threshold on the value of X2
11 (set to 15 in our experiments)

is used to decide if a given audiovisual cluster is relevant,

i.e. jointly occur with sufficient frequency to be of interest

for structure analysis. It can be observed that the χ2 statis-

tic is not reliable if the expected frequencies (Eij) are too

small (this problem was not mentioned in [11]). In our ex-

periments, we reject pairs of labels (i.e., AV cluster pairs) for

which E11 < 1. The χ2 test is applied to all elements in the

N-best list, yielding a filtered list of highly consistent pairs.

It is interesting to note that, at first glance, the mutual

information (cf. Eq. 1) and the χ2 test (cf. Eq. 4) encodes

similar information and might therefore be redundant. How-

ever, Eq. 1 tends to select time-based consistent AV cluster

pairs which generate time-based consistent segments, regard-

less of their frequencies. This may result in partially discov-

3For practical reasons, very short segments of less than 10 ms are not

counted.

ered events, i.e., events for which only a few occurrences were

discovered, a fact that was experimentally confirmed. On the

contrary, Eq. 4 selects AV cluster pairs based on the occur-

rence frequency only, which cannot ensure that all selected

AV clusters are relevant. Therefore, both methods must be

combined to ensure that the filtered N-best list contains AV

cluster pairs consistent both in time-wise and frequency-wise.

6. EVENT CHARACTERIZATION AND MODELING

Because of the nested cluster structure of the dendrograms,

the filtered list of AV cluster pairs contains redundant entries

which correspond to the same underlying event. Typically,

considering the parent (or the descendant) of either the au-

dio cluster or the video cluster of a good AV cluster pair will

most probably result also in a good AV cluster pair as the two

(audio or visual) clusters, which differ only by one segment.

It is therefore necessary to group redundant entries to define

events for which models can be built in an unsupervised fash-

ion.

Advantage is taken of the dendrogram structure to group

AV cluster pairs which share segments. All AV cluster pairs

belonging to the same branches in the two dendrograms are

grouped together. The result is a list of non-intersecting

groups, each of which represents a potential event.

Each potential event is thus characterized as a group of

AV cluster pairs from which a model can be built by au-

tomatically selecting positive and negative examples. Let

E = {e1, e2, ..., em} be a group of AV cluster pairs, where

ei represents an AV cluster pair (CA, CV ) with the corre-

sponding temporal segments (SA, SV ). Positive and negative

samples for each pair ei ∈ E are determined as follows:

~AVsk
∈ +1l if sk ⊂ SA ∩ SV

~AVsk
∈ −1l if sk 6⊂ SA ∪ SV

where sk is an audiovisual segment as defined previously and
~AVsk

is the corresponding audiovisual feature vector (i.e., the

concatenation of the audio and visual features used for clus-

tering). To select training samples for the group E, each ele-

ment in the group cast its votes for negative and positive, and

the accumulated results are kept for all elements. Threshold-

ing is applied on the accumulated results of the votes to select

positive and negative samples for the group. In our experi-

ments, a (positive or negative) sample is selected if its votes

are greater than the mean value of the corresponding accu-

mulated voting result. In other words, we select as positive

samples of an event those audiovisual segments which appear

in most of the AV cluster pairs ei. Similarly, negative samples

correspond to audiovisual segments which appear rarely (if at

all) in the AV cluster pairs characterizing the event. From

the selected positive and negative examples, a binary SVM

classifier is trained, yielding a model of the event which is

classically used to detect the event considered in the video.



Fig. 2: Example of several typical structural events from the Canal9

data set. From left to right: a full group of participants, anchor per-

son, and multiple participants.

7. EXPERIMENTAL RESULTS

Experiments are carried out on the standard, publicly avail-

able, Canal9 political debate data set (cf. Fig. 2), provided

by Vinciarelli et al. [14] in 2009. To the best of our knowl-

edge, this is the only publicly available data set that can be

used to test audiovisual structuring tasks. This data set con-

tains a collection of 72 political debates with roughly 42 hours

of edited high quality audiovisual recordings, recorded by the

Canal 9 local TV station and broadcast in Valais, Switzerland.

Debates exhibit a strong audiovisual structure, with a limited

number of speakers and a limited number of camera view-

points. As a result, multiple audiovisually consistent events

can be found in such videos. Typically such events are a

close-up of one of the guests speaking or a global view of

the guests with the anchor speaking.

Results are reported in terms of recall (R), precision (P),

and F-measure (F1), computed on a time basis. An event dis-

covered is first mapped to the corresponding reference event

by finding the most overlapping event in the reference anno-

tation. Given this mapping, recall is measured as the amount

of time the discovery is correct divided by the total duration

of the reference event. Precision is defined in a similar way.

Recall and precision measures are averaged across files.

The output of the algorithm is a list of events discovered,

ordered from the one with the best AV consistency accord-

ing to the χ2 test to the less. Results for the five best events

discovered are reported in Table 1. For comparison purposes,

results obtained without the χ2 test (i.e., ranking of the events

is solely based on the mutual information) are also reported

(column “Baseline” in this table). Note however that, when

not using the χ2 test, we observed quite frequently candidate

events for which SVM training could not converge. This is

the case of partially discovered events, i.e., only a few oc-

currences have been detected, which lead to very few posi-

tive training samples selected in comparison with the negative

ones. Results for such events are not included in the baseline

performance which is therefore optimistic. From this table,

one can see that the proposed method gives rather balanced re-

call and precision values while for the baseline, recall values

are rather high whereas precision values are quite low. This

reveals that each detected AV cluster pair from the “Baseline”

order
“Baseline” Our method

R P F1 R P F1

1st 0.95 0.59 0.69 0.94 0.77 0.84

2nd 0.94 0.63 0.73 0.87 0.75 0.78

3rd 0.92 0.58 0.66 0.81 0.77 0.77

4th 0.79 0.64 0.63 0.75 0.77 0.71

5th 0.74 0.60 0.57 0.60 0.73 0.60

Table 1: Multiple structural event detection performances.

experiments is not well matched to any annotated AV cluster,

thus demonstrating the benefit of χ2 filtering to select multi-

ple events.

Besides this evaluation, we investigated how well typical

events of such shows are discovered. To this end, we selected

typical audiovisual events in the Canal9 data set, for example

close ups of a guest speaking (see middle image in Figure 2).

For such events, we search in the first 10 events discovered

for a match and evaluate the match using recall and preci-

sion. Results are reported in Table 2 for different types of

typical events, namely: Guest views which are individual par-

ticipants where the person shown is also speaking; Full-group

views which are specified by a whole group that appear when

only one participant is speaking; Multiple participants consist

of two or more participants which appear in different camera

angles when one participant is speaking; Credits are like jin-

gles in news videos, which appear at the beginning and the

end of each debate; Topic introduction appear at the begin-

ning of each debate, which comprise a generated-computer

screen with background music. The last column in this table

shows the most frequent rank at which the event was found in

the list of events discovered. It can be seen from this table that

our method achieves very good results on credits and topic in-

troduction which exhibit very limited variability. Full-group

views are poorly detected, primarily due to the high variations

between audio clusters, i.e., for events of this genre, while the

whole group is shown participants speaking in turns, result-

ing in strong variations between the occurrences. Finally, the

last row of Table 2 reports results for compound event types

where a group of participants is shown while several persons

are speaking simultaneously. In this case, very poor results

are obtained as grouping speech from multiple speakers is

a highly challenging task. This illustrates the limits of our

method for such challenging events.

Finally, we focus on events of type guest views, i.e., show-

ing a guest speaking. Such events are of most importance in

debates and accounts for 2/3 of the events annotated in the

reference. Given a list of 10 events discovered, we evaluate

for each rank the guest view events discovered for the rank.

Table 3 reports recall and precision for each rank, as well as

the cumulated ratio of guest view events discovered up to that

rank. More than 70 % of the 50 guest view events of the ref-

erence are found before rank 6, with a precision of 76 % and



Event type R P F1 Rank

Guest view 0.70 0.76 0.66 1

Multiple participants 0.53 0.71 0.53 8

Full-group views 0.46 0.72 0.50 7

Credits (jingles) 0.93 0.87 0.88 4

Topic introduction 0.78 0.99 0.86 6

Compound 0.64 0.16 0.21 7

Table 2: Average performances of the different genres of events for

the first 10 events discovered.

Rank R P F1 ratio

1st 0.94 0.77 0.84 34%

2nd 0.90 0.77 0.81 48%

3rd 0.87 0.77 0.80 56%

4th 0.85 0.77 0.78 68%

5th 0.80 0.76 0.75 74%

6th 0.77 0.76 0.72 76%

7th 0.74 0.76 0.70 76%

8th 0.72 0.76 0.69 76%

9th 0.70 0.76 0.66 80%

Table 3: Performance for the detection of Guest views events in the

first 10 events discovered.

a recall of 80 %. Precision decreases quite moderately at each

rank. These results demonstrate the benefit of unsupervised

mining of multiple audiovisually consistent events for video

structure analysis.

8. CONCLUSION

In this paper, we have presented a new framework that in-

corporates Pearson’s χ2 statistical test into a cluster selection

method based on mutual information for the discovery of mul-

tiple audiovisual events in a video. Through experiments, we

have shown that it is feasible to detect multiple events in a

totally unsupervised way, without any prior knowledge on the

events to be detected. We have demonstrated that the method

can be used for video structure analysis. Future work includes

the estimation of the number of events of interest and the use

of more complex features for the discovery of events in dif-

ferent domains.
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