
HAL Id: hal-00720348
https://hal.inria.fr/hal-00720348

Submitted on 24 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DynamicSchema: a lightweight persistency framework
for context-oriented data management

Sergio Castro, Sebastián González, Kim Mens, Marcus Denker

To cite this version:
Sergio Castro, Sebastián González, Kim Mens, Marcus Denker. DynamicSchema: a lightweight per-
sistency framework for context-oriented data management. COP ’12, ACM, Jun 2012, Beijing, China.
pp.5:1–5:6, �10.1145/2307436.2307441�. �hal-00720348�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49875868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00720348
https://hal.archives-ouvertes.fr

DynamicSchema: A Lightweight Persistency Framework
for Context-Oriented Data Management

Sergio Castro, Sebastián González, Kim Mens
ICTEAM Institute

Université catholique de Louvain
Belgium

{sergio.castro, s.gonzalez, kim.mens}
@uclouvain.be

Marcus Denker
INRIA Lille

France
marcus.denker@inria.fr

ABSTRACT
While context-oriented programming technology so far has
focused mostly on behavioral adaptation, context-oriented
data management has received much less attention. In this
paper we make a case for the problem of context-oriented
data management, using a concrete example of a mobile
application. We illustrate some of the issues involved and
propose a lightweight persistency framework, called Dynam-

icSchema, that resolves some of these issues. The solution
consists in a flexible reification of the database schema, as
a convenient dynamic data structure that can be adapted
at execution time, according to sensed context changes. Im-
plementing our mobile application using this framework en-
abled us to reduce the complexity of the domain modeling
layer, to facilitate the production of code with low mem-
ory footprint, and to simplify the implementation of certain
scenarios related to context-dependent security concerns.

Categories and Subject Descriptors
H.2.1 [Information Systems]: Logical Design—data mod-

els; H.2.4 [Information Systems]: Systems

General Terms
Design

Keywords
Context-Oriented Data Management, Data Access Layer,
Dynamic Adaptability, Persistency

1. INTRODUCTION
This paper presents DynamicSchema, a lightweight persis-
tency framework that aims at facilitating the implementa-
tion of context-dependent business rules governing the ac-
cess to application data. In our framework, the data access
layer is represented by a conveniently reified data structure.
This reified model evolves according to detected context
changes.

Although we do not claim that the proposed framework
is necessarily the most adequate solution for any possible
context-oriented data management scenario, we present a
concrete example of the implementation of a mobile appli-
cation in which the framework successfully helped us to

• decrease the complexity required to implement the do-
main modeling layer,

• facilitate the production of code with low memory re-
quirements and other resources, and

• facilitate the implementation of certain security con-
cerns, in the presence of dynamic adaptability.

The concrete case study of the context-aware mobile ap-
plication is presented in Section 2. The case study serves
as a basis to illustrate and discuss the merits of the pro-
posed framework. Using some concrete examples from the
case study, Section 3 illustrates some typical problems in
context-aware applications when interacting with the data
access layer. Section 4 then introduces the DynamicSchema

framework. It explains the core ideas and illustrates how it
can be used to solve the aforementioned problems encoun-
tered in the case study. Section 5 presents relevant related
work and finally Section 6 presents our conclusions.

2. CASE STUDY: A MOBILE CITY GUIDE
The MobileCity guide is a touristic application implemented
on the Android platform. The objective of this application
is to help and inform tourists when visiting an unknown city.

2.1 The Data Model
Among others, the MobileCity application offers tourist in-
formation on various points of interest (POIs) in a city. Each
POI has a (textual) description, an image, as well as some
other attributes. As for a POI, each image has a textual de-
scription associated with it as well. Furthermore, POIs are
organized hierarchically according to their location. For ex-
ample, the POI Brussels is a child of the POI Belgium. The
latter, being a root POI of the application does not have a
parent POI.

Each user of the application has its own user profile, which
contains among others the preferred language of the user
and his age group. The age group can have only two possible
values for now: adult and child. This profile influences the
actual description that should be shown when browsing the

PREPRINT. Published at COP '12,
Workshop, ECOOP 2012.
DOI: 10.1145/2307436.2307441

1..*

1

poi

poi_description

image110..1

*

has children/

has parent

user_profile

language age_group

*

image_description

*

11

**

1

1

1*
created by

prefers belongs to

described by described by

appropriate for

appropriate for

1..*

1

*

1

in in

has

_id: INT <<PK>>
restricted: INT
id_user_profile: INT <<FK>>
id_parent: INT <<FK>>

_id: INT <<PK>>
id_poi: INT <<FK>>
file_name: VARCHAR_id: INT <<PK>>

name: VARCHAR
id_poi: INT <<FK>>

_id: INT <<PK>>
name: VARCHAR

_id: INT <<PK>>
name: VARCHAR

_id: INT <<PK>>
id_poi: INT <<FK>>
id_language: INT <<FK>>
id_age_group: INT <<FK>>
description: VARCHAR

_id: INT <<PK>>
id_poi: INT <<FK>>
id_language: INT <<FK>>
id_age_group: INT <<FK>>
description: VARCHAR

<<Physical Data Model>>

1 1

Figure 1: The MobileCity Physical Data Model.

information on POIs and images, so that the language and
age group of the description match with those in the user
profile. For example, if the user speaks French and is of
the age group child, the application will use child-friendly
descriptions in French for the POIs and images being shown.

All users have access to a list of predefined POIs (for ex-
ample, encoded by the tourist office), but they can also
add their own new POIs to the database. Newly defined
POIs are accessible only to the user profiles under which
they were created, since probably they are not of interest
to other users of the application. Already existing POIs, on
the other hand, are accessible to all users of the application
and belong to a Default user profile.

Finally, there is an important security concern. Certain
POIs can be marked as restricted (e.g. bars serving alcohol),
which means that they should never appear when browsed
by a user whose profile belongs to the child age group.

Figure 1 shows a partial physical data model [1] of our ap-
plication. Please note that not all entities and attributes
present in our actual implementation have been included,
but only those needed to support the discussion in this pa-
per.

2.2 The Object Model
Figure 2 shows a class diagram representing the object model
of the application, corresponding to the data model of Fig-
ure 1.

Although a common rule of thumb when mapping a phys-
ical data model to an object model is trying to keep rela-
tion multiplicities the same [1], we have explicitly decided
not to follow this convention for certain context-dependent
relations present in our model. For example, in the class
diagram of Figure 2, we have not considered the relation
between a POI and its description to be a one-to-many, but
rather a one-to-one relation. There are many reasons sup-
porting this design decision. First, at any given time in our
application, the only description that matters is the one cor-
responding to the current context or, to be more specific, to

Poi Image110..1

*

has children/

has parent

1

UserProfile

Language AgeGroup

1

**

1*
created by

prefers belongs to

-restricted: boolean
-description: String

-description: String
-fileName: String

has

-name: String

-name: String -name: String

<<Class Diagram>>

+isAdult: boolean

+getParent: Poi
+getChildren: List
...

Figure 2: The MobileCity Class Diagram.

the profile of the currently active user (i.e. to the current
user’s language and age group). Modeling a POI as having
only one description has the advantage that objects inter-
acting with it do not have to be aware that in fact there are
multiple descriptions, simplifying in this way the implemen-
tation. Second, this also contributes to keep the memory
footprint low (which is an important requirement in mobile
applications), given that a POI or image loaded in mem-
ory will contain only one description, instead of a list of all
possible descriptions.

Given that we have decided to consider a POI description
just as a piece of text, we added this description immedi-
ately as an attribute to the POI entity, instead of creating a
separate entity as was necessary in the physical data model.
The same remark applies to images and their description.

3. ISSUES WITH DATA MANAGEMENT IN

CONTEXT-ORIENTED APPLICATIONS
In this section we take a look at some of the typical problems
related to data management that arise in context-oriented
applications similar to the one of our case study.

3.1 A simple scenario
Suppose we are interested in gathering all image entities
from our database. According to the object model described
above, we should get only one description per image, deter-
mined by the actual context. Also, for efficiency reasons, we
would like to fetch the image descriptions from the database
at the same time as when the image entities themselves are
queried.

To implement these requirements, we implemented a vari-
ation of the Table Gateway pattern [2]. In our implemen-
tation of this pattern, dedicated objects encapsulate certain
table-level operations such as queries.

1 public c lass ImageTableGateway extends TableGateway {
2 . . .
3 public List<Image> ge tA l l (Us e rP ro f i l e user) {
4 St r ing idLanguage = user . getLanguage () . get Id () ;
5 St r ing idAgeGroup = user . getAgeGroup () . get Id () ;
6 St r ing query = ”SELECT img . id , img . i d po i ,

img . f i l e name , imgd . d e s c r i p t i on ”
7 +”FROM image img ”
8 +”LEFT JOIN image de s c r i p t i on imgd ON img . i d =

imgd . i d po i image ”
9 +”AND imgd . id l anguage=? AND imgd . i d age g roup=?” ;

10 Cursor cur sor = db () . rawQuery (query ,
11 new Str ing [] { idLanguage , idAgeGroup}) ;
12 return adaptCursorToList (cursor , 0) ;
13 }
14 }

Listing 1: Querying all images entities, for a given

user profile

Listing 1 shows a partial implementation of the ImageTable-

Gateway class. This class implements a method getAll (lines
3–13) that returns all images in the database. To do so, it
first builds an SQL query (lines 6–9). This query collects
the relevant data from the image and image description ta-
bles (line 6). Note that this is a parameterized query, since
the join condition of the image description table depends on
two parameters that will be bound later to the language and
age group of the user profile entity sent as parameter (line
9).

Once the query has been built, it is evaluated to obtain
a database cursor with its results (line 10) and transforms
these results in a list of images. This final step is accom-
plished by invoking the auxiliary method adaptCursorToList

(line 12) of which the implementation is not shown for brevity.

Although in general this can be regarded as an acceptable
solution, there are certain issues with this implementation.
For example, objects invoking this method must always send
context information as a parameter. There are many possi-
ble patterns that can be applied to alleviate this issue, but
before looking for a solution of this relatively simple prob-
lem, let us first consider a slightly more complex scenario.

3.2 Dealing with multiple context-dependant

concerns
Let us now focus on the POI entities. As in the previous
example, we require that whenever a POI entity is retrieved
from the database, its description is also retrieved. In addi-
tion, in our MobileCity application, when retrieving a POI
we should also retrieve its related image and that image’s
description.

Let us suppose that we are interested in finding all root
POIs.

1 public c lass PoiTableGateway extends TableGateway {
2 . . .
3 public List<Poi> getRootPois (Us e rP ro f i l e user) {
4 St r ing idLanguage = user . getLanguage () . get Id () ;
5 St r ing idAgeGroup = user . getAgeGroup () . get Id () ;
6 St r ing query = ”SELECT p . id , p . parent ,

p . i d u s e r p r o f i l e , p . r e s t r i c t e d , pd . de s c r ip t i on ,
”

7 +”img . id , img . f i l e name , img . i d po i ,
imgd . de s c r ip t i on , ”

8 +”FROM poi p ”
9 +”LEFT JOIN po i d e s c r i p t i o n pd ON p . i d = pd . i d p o i

”
10 +”AND pd . id l anguage = ? AND pd . i d age g roup = ? ”
11 +”LEFT JOIN image img ON p . i d = img . i d p o i ”
12 +”LEFT JOIN image de s c r i p t i on imgd ON img . i d =

imgd . i d po i image ”
13 +”AND imgd . id l anguage = ? AND imgd . i d age g roup =

? ”
14 +”JOIN u s e r p r o f i l e up ON p . i d u s e r p r o f i l e =

up . i d ”
15 +”WHERE p . i d pa r en t IS NULL ”
16 +”AND (p . i d u s e r p r o f i l e = ? OR up . name=’Default ’)

” ;
17 i f (! user . i sAdult ())
18 query += ” AND p . r e s t r i c t e d = 0” ;
19 Cursor cur sor = db () . rawQuery (query ,
20 new Str ing [] { idLanguage , idAgeGroup ,
21 idLanguage , idAgeGroup , user . get Id () }) ;
22 return adaptCursorToList (cursor , 0) ;
23 }
24 }

Listing 2: Querying all root POI entities, for a given

user profile

As in the previous example, we provide a PoiTableGateway

class (listing 2) that implements some methods to query the
POI table. In this class, the method getRootPois returns
a list with all the root POIs in the database. The struc-
ture of this method is very similar to the getAll method in
the ImageTableGateway class. First a query is built (lines
6–18). The relevant data is retrieved from the tables poi,
poi description, image and image description (lines 6–7).
We then specify that the join condition with the poi description

table depends on two query parameters. These parameters
will be bound later to the language and age group of the cur-
rent user (line 10). Until here the example is very similar to
the previous one.

But we also need to add an additional join condition to re-
trieve the right image description, for the image correspond-
ing to the retrieved POI and according to the language and
age group of the current user profile (lines 12–13). To filter
the results we add a WHERE clause to include only POIs
that do not have a parent (line 15). In addition, according
to our requirements we should also filter the POIs them-
selves according to the active user profile (we need to collect
all POIs in the Default user profile plus all the POIs stored
in the current user’s own profile). We do so by adding to
the WHERE clause a condition filtering the POIs according
to their user creator (line 16) and to the age group of the
current user (lines 17–18).

3.3 Discussion
As in the previous example, callers of the getRootPois method
should pass context-specific data as a parameter to the method
(i.e., the currently active user profile). In addition to that
issue, this example has shown an increasing complexity with
respect to the first one. Part of the reason for this is the need
to be aware of how context changes influence not only the
direct relations of a table being queried, but also all tran-
sitive relations that participate in the query. If many such
relations are present, this produces data access code that
quickly becomes difficult to maintain and evolve.

In addition to the complexity of context-dependent relations,
we also need to be aware of invariant constraints (e.g., se-
curity concerns) that should remain respected in any kind
of access to an entity. To illustrate this additional problem,
let us recall that in our last example we were querying POI
entities and that we explicitly added filters for limiting the
access to certain POIs (for children). These filters should be
present not only in all direct queries to the POI table, but
also whenever querying an entity with a direct or transitive
relation with a POI entity.

These additional constraints that need to be added every-
where, quickly lead to heavy code duplication and again
to data access code that becomes very difficult to maintain
and evolve. To overcome these issues, in the next section we
present a solution to some of the problems discussed in this
section.

4. THE DYNAMICSCHEMA FRAMEWORK
Part of the problems shown in section 3 are related to the dif-
ficulty in modularizing the application data structure, their
data constraints, and their context depending rules. Al-
though some frameworks can help to alleviate some of these

Figure 3: DynamicSchema Class Diagram.

problems (see section 5), they do not provide facilities to
deal with complex context depending rules.

DynamicSchema alleviates this problem. A database schema
is modeled as a dynamic structure that can mutate accord-
ing to changes in a context. Using some prepackaged rou-
tines, applications use this structure to generate required
SQL code, so changes on this structure will immediate af-
fect the way data is accessed and manipulated.

4.1 The framework architecture
Before showing how DynamicSchema can be used to repre-
sent schema objects, we introduce its core classes. Figure 3
shows its class diagram. The Schema class is a repository of
database schema objects (limited to table objects only for
now). Table objects, in addition to a name, have a column
model and a relation model. A column model models the
columns in a table. The relation model defines a set of re-
lations with other tables. We refer to the table defining the
relation model as the base table, to distinguish it from other
tables participating in relations with it. Each relation has: a
name, the list of tables participating in the relation, a default
fetching mode and a relation (join) condition. The fetching
mode can take two possible values: EAGER or LAZY. EA-

GER fetching means that the relation has to be taken into
account when generating a query on the base table. LAZY

fetching means that the relation should be ignored when
querying the base table, since entities in the relation tables
will be brought lazily later when needed.

The relation condition describes how to match entities in
the base table with entities in the relation tables (i.e., a join
condition). When a relation condition is specified in the
base relation, it will work as a filter that will be applied to
all the results of a query involving this table (translated to
SQL as a WHERE condition).

4.2 Modeling a database schema
Listing 3 shows how the poi table can be modeled using our
framework. On lines 4–7 we define singleton objects that
help us to refer to the table name, its column and relation
model. The PoiColumns class (lines 9–18) defines the col-
umn model of the table.

1 import stat ic android . prov ider . BaseColumns . ID ;
2 . . .
3 public c lass PoiTable extends Table<PoiColumns ,

PoiRelat ions> {
4 public stat ic f ina l Str ing NAME = ”poi ” ;
5 public stat ic PoiTable tab l e = new PoiTable () ;
6 public stat ic PoiColumns columns () {return

tab l e . getColumnModel () ; } ;
7 public stat ic PoiRe lat ions r e l a t i o n s () {return

tab l e . getRelat ionModel () ;}
8
9 public stat ic c lass PoiColumns extends ColumnModel {

10 public Column ID = new Column(ID) ;
11 public Column ID PARENT POI = new Column(”parent ”) ;
12 public Column ID USER PROFILE = new

Column(” i d u s e r p r o f i l e ”) ;
13 public Column RESTRICTED = new Column(” r e s t r i c t e d ”) ;
14 . . .
15 public PoiColumns () {
16 setColumns (ID , ID PARENT POI , ID USER PROFILE ,

RESTRICTED, . . .) ;
17 }
18 }
19 . . .
20 public stat ic c lass PoiRe lat ions extends RelationModel {
21 public Relat ion ch i ld r enPo i ;
22 public UserDependingRelation po iDesc r ip t i on ;
23 public Relat ion poiImage ;
24 public Relat ion u s e rP r o f i l e ;
25 . . .
26 public PoiRe lat ions () {
27 ch i ld r enPo i = new Relat ion (this ,

CHILDREN POI RELATION NAME, Fetching .LAZY,
PoiTable . t ab l e) ;

28 ch i ld r enPo i . se tCondit ion (new Relat ionCondit ion () {
29 @Override public SqlCondit ion

eva l (IRelat ionalContextManager ctx) {
30 return new

SqlCondit ion () . eq (baseRe lat ion . c o l (ctx ,
PoiTable . columns () . ID) ,
ch i ld r enPo i . c o l (ctx ,
PoiTable . columns () . ID PARENT POI)) ;

31 }
32 }) ;
33 po iDesc r ip t i on = new UserDependingRelation (this ,

POI DESCRIPTION RELATION NAME,
PoiDescr ipt ionTable . t ab l e) ;

34 po iDesc r ip t i on . se tCondit ion (new Relat ionCondit ion ()
{

35 @Override public SqlCondit ion
eva l (IRelat ionalContextManager ctx) {

36 In t ege r languageId =
po iDesc r ip t i on . g e tUs e rP ro f i l e () . getIdLanguage () ;

37 In t ege r ageGroupId =
po iDesc r ip t i on . g e tUs e rP ro f i l e () . getIdAgeGroup () ;

38 SqlCondit ion cond i t i on = new

SqlCondit ion () . eq (baseRe lat ion . c o l (ctx ,
PoiTable . columns () . ID) ,
po iDesc r ip t i on . c o l (ctx ,
PoiDescr ipt ionTable . columns () . ID POI))

39 . and () . eq (po iDesc r ip t i on . c o l (ctx ,
PoiDescr ipt ionTable . columns () . ID LANGUAGE) ,
languageId)

40 . and () . eq (po iDesc r ip t i on . c o l (ctx ,
PoiDescr ipt ionTable . columns () . ID AGE GROUP) ,
ageGroupId) ;

41
42 return cond i t i on ;
43 }
44 }) ;
45 poiImage = . . .
46 u s e rP r o f i l e = . . .
47 . . .
48 s e t Jo inRe l a t i on s (ch i ldrenPoi , po iDescr ipt ion ,

poiImage , u s e rP r o f i l e) ;
49 }
50 }
51 }

Listing 3: Modeling the poi table

The relation model is given by the class PoiRelations (lines
20–50). The 4 relations of the poi table are defined in this
model: childrenPoi (lines 27–32), poiDescription (lines 33–
44), poiImage (line 45) and userProfile (line 46). From
these relations, only childrenPoi is a lazy relation (note the
LAZY constant in the initialization of the relation on line
27). Then, entities from the other tables participating in
the other three relations will be brought from the database
each time a poi entity is queried (if not specified otherwise,
relations are eager in our framework). Those related enti-
ties are defined by the relation conditions. For example, the
childrenPoi recursive relation indicates that a POI can have
a list of children POI. In plain SQL, the query consulting all
the children of a POI with a certain id is shown below:

SELECT p2 .∗ FROM poi p1 JOIN poi p2 ON p1 . i d =
p2 . parent WHERE p1 . i d = ?

In this query, the poi table appears twice since the relation
is recursive. Then, we need a mechanism to specify which
role of the relation the poi table is playing. In SQL this is
accomplished with the use of distinct aliases (e.g., p1 and
p2).

The same join condition shown in the previous SQL example
is specified in our framework at line 30 of listing 3. In this
line, the expression:

baseRe lat ion . c o l (ctx , PoiTable . columns () . ID)

can be read as: The ID column at the poi table in the
context of the base relation.

In a similar way, the expression:

ch i l d r enPo i . c o l (ctx ,
PoiTable . columns () . ID PARENT POI)

can be read as: The PARENT POI column at the poi table
in the context of the childrenPoi relation.

Now let’s focus on the poiDescription relation (lines 33 to
44). Note that this relation is not an instance of the Re-

lation class as all the other relations in the relation model.
Instead, it is an instance of UserDependingRelation, which
extends Relation with the addition of a UserProfile instance
variable. This class is not part of our framework, but has
been added as part of the MobileCity application to model
relations which join conditions depend on certain values of
the current user profile. In the poiDescription relation, we
can see that the join condition depends on the preferred user
profile language (line 39) and its age group (line 40).

4.3 SQL generative routines
This section provides an intuition of how SQL code is gen-
erated from our database model.

In general, our framework navigates and manipulates schema
objects through the use of visitors. There are two differ-
ent kind of visitors pre-packaged in the framework: The
TableRelationsVisitor and the SchemaVisitor.

The TableRelationsVisitor visits all the relations, and tables
in those relations, of a given base table. The SchemaVisitor

visits all the tables and their relations in a given schema.

Extending these generic visitors, we can easily accomplish
operations such as generating SQL statements, or modifying
certain objects in the schema according to sensed context
changes.

The SelectBuilderEagerRelationsVisitor class is an example
of how extending TableRelationsVisitor is possible to gener-
ate SQL statements. A fragment of this class is shown in list
4. The relation context object passed by at the constructor
(line 2) has the knowledge of how tables and column names
should be resolved. It basically acts as a SQL alias manager.

Without entering into technical details, the two doVisit meth-
ods (lines 7–13 and 15–18) create a query manipulating a
query builder object.

1 public c lass Se l e c tBu i l d e rEage rRe l a t i on sV i s i t o r extends

Tab l eRe la t i on sV i s i t o r {
2 protected IRelat ionalContextManager ctx ;
3 private ContextedQueryBuilder queryBui lder ;
4
5 public

Se l e c tBu i l d e rEage rRe l a t i on sV i s i t o r (IRelat ionalContextManager
ctx) { . . . }

6 . . .
7 @Override public boolean doVis i t (Re lat ion r e l a t i o n) {
8 . . .
9 // a d d i n g r e l a t i o n j o i n c o n d i t i o n s t o t h e q u e r y

10 Le f tJo in j o i n = new

Le f tJo in (r e l a t i o n . jo inCond i t ion (ctx) ,
ge tTab leAl i a se s (r e l a t i o n)) ;

11 queryBui lder . addJoin (j o i n) ;
12 . . .
13 }
14
15 @Override public boolean doVis i t (Re lat ion r e l a t i on ,

Table tab l e) {
16 // a d d i n g c o l umn s t o t h e q u e r y and t a b l e s p e c i f i c

f i l t e r c o n d i t i o n s
17 . . .
18 }
19 }

Listing 4: Generating a query

4.4 DynamicSchema in action
4.4.1 Adapting the schema to context changes
In DinamicSchema, the structures reifying a database schema
are not static, but can vary according to changes in the con-
text.

When the context changes, these schema modifications can
be easily implemented with a class extending the SchemaV-

isitor visitor described in section 4.3.

A visitor updating the schema of the MobileCity application
is shown in listing 5. This class overrides the doVisit method
(lines 6 to 29) inherited from the SchemaVisitor class. For
each visited relation it checks if the relation is an instance
of UserDependingRelation (line 9). If that is the case it will
set a new user profile (line 10).

If the currently visited relation is in fact the PoiTable base
relation (line 11), it modifies the relation filtering conditions.
For example, a condition filtering restricted POIs (line 21)
is only added after verifying that the current user profile is
not the one of an adult (line 20).

1 public c lass ContextChangedVisitor extends SchemaVisitor {
2 private PropertyChangeEvent changeEvent ;
3 private Use rPro f i l e d e f au l tU s e rP r o f i l e ;
4 public ContextChangedVisitor (PropertyChangeEvent

changeEvent , AbstractDataSource dataSource) { . . . }
5
6 @Override public boolean doVis i t (f ina l Relat ion

r e l a t i o n) {
7 i f (changeEvent . getPropertyName () . equa l s (USER PROFILE CONTEXT CHANG

{
8 f ina l Use rP ro f i l e newUserProf i l e =

(Use rP ro f i l e) changeEvent . getNewValue () ;
9 i f (r e l a t i o n instanceof UserDependingRelation)

10 ((UserDependingRelation) r e l a t i o n) . s e tU s e rP r o f i l e (newUserProf i
11 i f (r e l a t i o n . equa l s (PoiTable . r e l a t i o n s () . getBaseRelat ion ()))

{
12 f ina l int r e s t r i c t e d =

newUserProf i l e . i sAdult () ? 0 : 1 ;
13 Relat ionCondit ion cond i t i on = new

Relat ionCondit ion () {
14 @Override public SqlCondit ion

eva l (IRelat ionalContextManager ctx) {
15 SqlCondit ion sq lCondi t ion = new

SqlCondit ion () ;
16 sq lCondi t ion . group (// p a r e n t h e s e d e x p r e s s i o n
17 new SqlCondit ion () . eq (r e l a t i o n . c o l (ctx ,

PoiTable . columns () . ID USER PROFILE) ,
newUserProf i l e . get Id ())

18 . or () . eq (r e l a t i o n . c o l (ctx ,
PoiTable . columns () . ID USER PROFILE) ,
d e f a u l tU s e rP r o f i l e . get Id ())

19) ;
20 i f (! newUserProf i l e . i sAdult ())
21 sq lCondi t ion . and () . not () . eq (r e l a t i o n . c o l (ctx ,

PoiTable . columns () .RESTRICTED) ,
r e s t r i c t e d) ;

22 return sq lCondi t ion ;
23 }
24 } ;
25 r e l a t i o n . se tCondit ion (cond i t i on) ;
26 }
27 }
28 return true ;
29 }
30 }

Listing 5: Adapting the schema to context changes

4.4.2 Querying the schema
The framework provides convenient methods to generate
queries. These methods are implemented by the Table class.

Listing 6 shows an example of one of them: the select method
(lines 3 to 8). This method answers an object represent-
ing a SQL query. This query is generated with the Se-

lectBuilderEagerRelationsVisitor visitor (line 6) described
in section 4.3. As mentioned before, this visitor generates
a query that will bring, when executed, all the entities per-
sisted on the table. In addition, entities in other tables par-
ticipating in eager relations with the queried table, are also
included in the query.

In the generated query, join conditions and other filters are
resolved depending on the current state of the relation mod-
els of all the Table objects involved.

1 public abstract c lass Table<ColumnModelType extends

ColumnModel , RelationModelType extends

RelationModel> {
2 . . .
3 public ContextedQueryBuilder s e l e c t () {
4 IRelat ionalContextManager r e l a t i ona lCont ex t =

getRe lat iona lContext () ;
5 S e l e c tBu i l d e rEage rRe l a t i on sV i s i t o r

s e l e c tBu i l d e rV i s i t o r = new

Se l e c tBu i l d e rEage rRe l a t i on sV i s i t o r (r e l a t i ona lCont ext) ;
6 s e l e c tBu i l d e rV i s i t o r . v i s i t (this) ;
7 return s e l e c tBu i l d e rV i s i t o r . getQueryBui lder () ;
8 }
9 // o t h e r q u e r y me t h o d s . . .

10 }

Listing 6: The Table class

In addition to the filter conditions generated by the select

method, it is possible to include new filters if necessary.

As an example, listing 7 shows an alternative version of
the getRootPois method shown in listing 2. If we com-
pare it with the previous implementation, we observe that
this method is not parameterized with context information.
Also, a query bringing all the POIs from the database is
generated with only one line (line 4). We just add a filter
condition checking that only POIs with no parents are in-
cluded (line 6) and all the work for building the query has
been done. The rest of the method is similar to the previous
version.

1 public c lass PoiTableGateway extends TableGateway {
2 . . .
3 public List<IPoi> getRootPois () {
4 ContextedQueryBuilder queryBui lder =

PoiTable . t ab l e . s e l e c t () ;
5 IRelat ionalContextManager ctx =

queryBui lder . getRe lat iona lContext () ;
6 queryBui lder . addWhere (PoiTable . t ab l e . getBaseRelat ion () . c o l (ctx ,

PoiTable . columns () . ID PARENT POI) + ” IS NULL”) ;
7 Cursor cur sor = rawQuery (queryBui lder) ;
8 return adaptCursorToList (cursor , 0 , ctx) ;

9 }
10 }

Listing 7: An improved implementation of the

PoiTableGateway class

This example has shown how, with our framework, we can
avoid to write boilerplate code related to data access, reduce
the need to parameterize persistency methods with context
information, and centralize data access rules such as context
depending security concerns.

5. RELATED WORK
Most popular persistency frameworks cannot be easily used
in mobile programming. In the Java world (then in the
Android world), this is both for the relatively big amount of
resources they require, or other technical problems such as
a dependency on JDBC (e.g., Hibernate [4]).

There are lightweight persistency frameworks that can work
in mobile devices (e.g., OrmLite [6]) , or are specifically
designed for them (e.g., greenDAO [3], ActiveAndroid [5]).
However, these frameworks are based on the use of annota-
tions or configuration files to map model classes to database
tables (e.g., OrmLite, ActiveAndroid), or in code generation
techniques to produce once the code that will interact with
the database (e.g., greenDAO). Therefore, they consider the
database as a static structure where relations are fixed and
do not depend on a context.

6. CONCLUSIONS
In this paper we have illustrated some of the complexity
related to context-oriented data management.

As discussed in section 1, part of this complexity is intro-
duced by the presence of context depending mappings be-
tween the physical model and the class model. In our case
study, the need to use these context depending relations is a
direct consequence of the desire of keeping the model simple,
minimizing its memory requirements and consistent all the
time with the security concerns of the application.

We have shown how with a dynamic structure reifying a
database schema, we could simplify the programming of the
data access layer implementing these requirements. Fur-
thermore, we show how easily we can update our database
schema representation in the case of context changes.

7. REFERENCES
[1] S. W. Ambler. Agile Database Techniques. Wiley

Publishing, third edition edition, 2003.

[2] M. Fowler. Patterns of Enterprise Application

Architecture. Pearson Education, 2003.

[3] greenrobot. greendao. http://greendao-orm.com/.

[4] G. King. Hibernate. http://www.hibernate.org/.

[5] M. Pardo. Activeandroid.
https://www.activeandroid.com/.

[6] G. Watson. Ormlite. http://ormlite.com/.

	Introduction
	Case Study: A Mobile City Guide
	The Data Model
	The Object Model

	Issues with data management in context-oriented applications
	A simple scenario
	Dealing with multiple context-dependant concerns
	Discussion

	The DynamicSchema framework
	The framework architecture
	Modeling a database schema
	SQL generative routines
	DynamicSchema in action
	Adapting the schema to context changes
	Querying the schema

	Related work
	Conclusions
	References

