
HAL Id: hal-00721569
https://hal.archives-ouvertes.fr/hal-00721569v2

Submitted on 9 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random Active Shield
Sébastien Briais, Jean-Michel Cioranesco, Jean-Luc Danger, Sylvain Guilley,

David Naccache, Thibault Porteboeuf

To cite this version:
Sébastien Briais, Jean-Michel Cioranesco, Jean-Luc Danger, Sylvain Guilley, David Naccache, et al..
Random Active Shield. Fault Diagnosis and Tolerance in Cryptography, Sep 2012, Leuven, Belgium.
11 p., �10.1109/FDTC.2012.11�. �hal-00721569v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49873086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00721569v2
https://hal.archives-ouvertes.fr

Random Active Shield

Sébastien BRIAIS1, Jean-Michel CIORANESCO2,3, Jean-Luc DANGER1,4,

Sylvain GUILLEY1,4, David NACCACHE3,5 and Thibault PORTEBOEUF1

1Secure-IC S.A.S., 37/39 rue Dareau, 75 014 Paris, France and 80 avenue des Buttes de Coësmes, 35 700 Rennes, France.

{sebastien.briais, sylvain.guilley, jean-luc.danger, thibault.porteboeuf}@secure-ic.com

2Altis Semiconductor, 224 Boulevard John Kennedy, 91 100 Corbeil-Essonnes, France.

jean-michel.cioranesco@altissemiconductor.com

3Sorbonne Universités – Université Paris II, 12 place du Panthéon, 75 231, Paris Cedex 05, France.

jean-michel.cioranesco@etudiants.u-paris2.fr

4Institut MINES-TELECOM, TELECOM-ParisTech, CNRS LTCI (UMR 5141),

46 rue Barrault, 75 634 Paris Cedex 13, France and 37/39 rue Dareau, 75 014 Paris, France.

{jean-luc.danger, sylvain.guilley}@telecom-paristech.fr

5École normale supérieure, Département d’informatique, 45, rue d’Ulm, 75 230, Paris Cedex 05, France.

david.naccache@ens.fr

Abstract—Recently, some active shielding techniques

have been broken (e.g. by FlyLogic). The caveat is that

their geometry is easy to guess, and thus they can

be bypassed with an affordable price. This paper has

two contributions. First of all, it provides a definition

of the objectives of shielding, which is seldom found

in publicly available sources. Notably, we precise the

expected functionality, but also the constraints it must

meet to be both manufacturable and secure. Second,

we propose an innovative solution based on random

shielding. The goal of this shielding is to make the

geometry of the shield difficult to recognize, thereby

making the “identification” phase of the attack harder

than in previous schemes. Also, a proof of the shielding

existence for two layers of metal is provided, which

guarantees that the generation of the layout will succeed.

Finally, we provide real tests of the shield generation

algorithm, that show it is computationally tractable even

for large areas to protect.

Keywords-Active shield, spaghetti routing, harder

identification phase, traveling salesman problem (TSP),

genetic algorithms.

I. Introduction

Cryptographic circuits must be protected against

attacks that aim at extracting the information they

conceal. Probing is a popular way to read or write data

using a port (the probe tip) normally unavailable to the

attacker. Thus, shielding protections were devised and

implemented on top of most secure chips.

At the early ages of smartcards, the chips’ integrated

nature was already a good protection. It was believed

that it is a priori hard for average hackers to access

the contents of integrated circuits. Progressively, test

tools such as probing stations, normally used to debug

live circuits, became increasingly available. Naturally,

these also turned to be relevant attack tools. In the

meantime, more advanced CMOS technologies were

being deployed, feature size decreased and the number

of interconnect layers increased. This deterred probing,

and was indeed taken advantage of by designers to

further obfuscate circuit using random placement and

routing of sensitive gates. Thanks to recent technolog-

ical advances, a revived interest in probing attacks is

witnessed since 2010. Especially, these have been aided

by the increased popularity of the possibility to draw

artificial pads that conduct directly into the inner parts

of the circuit, thanks to focused ion beam (FIB) tools.

Consequently, circuits shielding is thus still mandatory,

and especially relevant nowadays.

This article is structured as follows. Active shield

techniques and attacks are briefly surveyed in Sec. II.

The specification of feasible and secure shielding ge-

ometries is given in Sec. III. Stemming from this

formalization, a new solution, aimed at avoiding trivial

shield reconstruction, is explained in Sec. IV, and

conclusions and perspectives are drawn in Sec. V.

Probe
tip

Sensitive lines

Figure 1. Probing of a circuit thanks to prober tip, to read or

force sensitive variables (courtesy of [4], Fig. 4.1 of §4.2. at page

31).

II. Overview of Shielding

The goal of shielding is to prevent attacks that

consist in:

• either placing a probe on a resource (wire, gate,

memory cell), for a subsequent probing (read

and/or inject data into the device) during execu-

tion;

• or modifying a chip (using a FIB), and then

running it.

The first attack typically allows to spy data on a bus,

change access rights during memory writing, or alter

opcodes read from program memory (Fig. 1). The

second attack can be used to unlock resources (Fig. 2).

Conversely, shielding does not protect against

reverse-engineering using methods such as layout

recognition algorithms [11], [8]. While optical imag-

ing allows to identify interconnect lines and gates

functions, it usually fails to read non-volatile memory

(NVM) contents (e.g. EEPROM cells). So, it is a safe

practice to store keys in NVM memory.

Thus, the general principle of shielding is to cover a

sensitive area by metal lines, meant to detect intrusions.

Secure logic is thus sandwiched between the shield

Added
connection

Opened
connection

Figure 2. Edition of a circuit thanks to a FIB, in a view to unlock

the access to a memory (courtesy of [4], Fig. 4.2 of §4.2. at page

31).

(top) and the substrate (bottom)1. Backside attacks are

more chancy, since the layout does not clearly stand

out. Furthermore, some encapsulation techniques in the

module do not allow an accurate backside probing.

Also, technologies such as SOI (Silicon on Insulator)

are expected to forbid backside attacks. as well as other

means of shield, like 3D canaries [3]. The kind of

protection we thus consider is sketched in Fig. 3. The

sensitive circuit is covered by metal line segments that

guarantee the circuit is not functional if the shield is

tampered with.

Passive shielding uses an analogue shield integrity

measurement. For instance, the capacitive load of a line

can serve as a signature. Passive shielding can however

be defeated because it must tolerate some variations on

the quantity being monitored. Thus, digital shielding

(called active shielding) can be preferred. This consists

in injecting random sequences of bits in a topmost

metal circuit and checking that they arrive unaltered

after their journey.

Nowadays threats are the attack of the active shield

with the FIB. This protection can be defeated if the

1The optical PUFs [12] make use of the same strategy; they

consist of a transparent material containing randomly distributed

scattering particles allowing to deviate the laser light. Nonetheless,

this optical PUF technology requires light sources and detectors,

and the depositions of specific materials. It is thus not compatible

with mainstream CMOS processes.

M1
M2

M4
M3

M5
M6

Area to protect

Shield lines

Bulk silicon (i.e. substrate)

Figure 3. General structure of a shield (sagittal view).

Source

Sink

equality
check

Protected / unprotected area

Source

Sink

equality
check

Protected area

Figure 4. Area protected by a snake active shield (left), and shrunk

protected area (right) by shield extension reduction (with cuts //

and connections • introduced by FIB), at constant functionality

(view of the top of the shield).

meaning of the lines is disclosed, since their geometry

can be changed while keeping the functionality invari-

ant (Fig. 4). We refer to this kind of alteration by the

term shield rerouting attack.

In practice, the identification of the identical lines is

more complex than in the case of the single serpentine

of Fig. 4. But, it is often possible to recognize the

equipotential lines with well structured shields (Fig. 5).

III. Requirements of Shielding

Little information is generally available publicly

about shielding specifications. The main reason is that

this topic is usually disregarded by the scientific com-

munity. As a matter of fact, researchers preferably look

for other “secure by design” protections, or consider

that if an adversary has the power to probe lines, then

most efforts to attempt to hamper him will only delay

(but not prevent) a successful attack. The industry

usually keeps the countermeasures secret, since, from

a regulation point of view, it improves the attacks

quotations (in terms of Common Criteria – CC [1]),

and actually decreases the chance of a real-world

attack once the product is on the field. Nonetheless,

some companies patent shielding ideas, e.g. analog

passive [7] or digital active [2] shield structures. Or

we can also come across commercial brochures about

This area
is unprotected!

This area is unprotected!

Figure 5. Zoom at 15,000 magnification of shield structures

by Infineon (left) and STMicroelectronics (right). On the bottom

annotated picture, equipotential lines are underlined with the same

color. [Source: [10]]. The rerouting attack principle is illustrated

in cyan superimposed comments.

active shielding [6], that explain some performance

figures but not the protection rationale. Eventually, pi-

rates sometimes disclose attacks, e.g. Tarnovsky (from

FlyLogic [9]) on the Infineon SLE66 [10].

From this limited state-of-the-art, we nevertheless

see that shielding is an industrial requirement and a

target of attacks. Here, we intend to explain the spec-

ification of shielding and provide a rigorous ground

for design practices. The two main challenges when

devising a shield are manufacturability and security.

Cost and power consumption efficiencies are other

constraints, but it appears in practice that shielding

uses only scarce resources (compared to the principal

factors for area and power, that are memory and their

accesses, and the IO for power). We detail both aspects

in the following subsections.

A. Manufacturability Requirements for the Shielding

The shield must comply with some design rules

checks (DRCs), that are described in the following

subsections. For the sake of illustration, we consider

a 0.13 µm technology from STMicroelectronics, with

6 levels of metal. They are called M1 to M6, and

can be connected respectively by the vias V12, V23,

. . . , V56. We recall that modern routing practices [13]

consist in aligning the metal wires on a grid, that

coincides with the possible positions for the vias. Thus

the connectivity in the horizontal 2D plane is achieved

by metal segments, whereas vertically, between Mi and

M j (where j = i ± 1), it is achieved by a via Vi j.

1) Metal extension beyond a via at end of lines: The

metal lines cannot stop dead after a via: an extension

is required by the design rules. Therefore, either one

routing site is skipped after each via, or the width of

the wire is increased to absorb the extension. These

two strategies are illustrated in Fig. 6. Here is a more

accurate description of it:

(a) The extension after a via is a mandatory design

rule, that makes up for possible masks misalign-

ments during the fabrication process.

(b) The extension forbids to use all the possible slots

available for vias.

(c) One solution, for instance used by automatic

routers, is to forbid the use of the via next to the

extension.

(d) Another solution is to make an abstraction of

this extension by incorporating it into a new site

placement grid (depicted in dotted fat gray lines

in the figure).

2) Metal maximal parallel run length: Another

design rule to consider is the maximum parallel run

length. This rule aims at preventing two adjacent lines

from being merged during fabrication. Thus the lines

must be constrained to a given length. To respect this

rule, some sites for M6 can be removed.

3) Density considerations: Lastly, the density rules

must be verified. They state that the density must be

neither too low nor too high, otherwise the chemical-

mechanical planarization process will not manage to

flatten the layer just deposited. However, by design,

we are not concerned by this rule. Indeed, by using

minimally (or near minimally) sized metal lines, we

cannot reach the upper bound, due to the space between

the wires. And as we wish to have most sites populated,

we do not fall into the minimal density rule either.

4) Antennae rules check: During fabrication, the

wires collect ions (charged particles) from plasmas

used in chemical vapor depositions fabrication stages.

These charges can accumulate at the CMOS transistor

gates and irreversibly damage them by perforating the

oxide. Therefore, it is required that a maximal area of

metal is exposed on transistor gates while not being

Minimal M6-M6 space

DRC

OK

error

DRC

(a) Mandatory extension after a via

(b) One via site is lost at every via

(c) Solution #1: skip a via

(d) Solution #2: fatten the wire and space the vias

V56

Minimal V56-V56 space Minimal M6-M6 space

M6

Minimal V56-V56 space Minimal M6-M6 space

OK

DRC

Figure 6. Management of metal line extension beyond via end of

line (extension).

connected to a drain. This situation is, by design,

avoided, as the shield makes many zigzags (which co-

incides with the silicon founder recommended advice

to reduce the antenna effect) between levels of met-

als, thus preventing large area wires to be connected

directly on a few transistor gates.

B. Security Requirements for the Shielding

The shield feature size must be as small as possi-

ble, since FIBs have an edition capability of greater

accuracy than the fabrication technology. Indeed, FIBs

are intended to repair circuits, and must thus be able

to alter them with a precision at least equal to that of

the layout. This is normal because FIBs use a naively

finer process: ions accelerated by FIBs have a smaller

wavelength than the light used in lithographic fabrica-

tion processes. Thus, minimally-spaced M6 lines are

employed for the chip protection.

Two other properties that an active shield must enjoy

are:

1) it must cover the circuit uniformly, and

2) it must resist against alteration. From Fig. 5, it

is clear that the greatest the number the equipo-

tentials, the more difficult “rerouting attacks”

(that were sketched in Fig. 4). Also, altering

the geometry without modifying the connectivity

will be all the harder as the shield seems more

entropic.

IV. Solution: Dense Random Spaghetti Active Shield

A. Rationale

The idea of dense random spaghetti active shield

consists in:

• defining a set of vertices and edges, that cor-

respond to a set of M6 and M5 sites that are

encapsulated in the area over the module(s) to

protect;

• such that whatever subgraph (provided the small-

est non-convex components are not singletons) is

DRC compliant.

Then, for the compactness property of the shield

(absence of holes), it must be ensured that all the

vertices are visited once (and at most once, so as to

avoid short circuits), hence a Hamiltonian path. The

complete algorithm is detailed in Alg. 1.

Algorithm 1 Dense Random Spaghetti Routing.

Input: N: number of different interleaved equipoten-

tials.

Output: A random shield made up of N equipoten-

tials.

1: Build a graph whose vertices consist in free via

slots and edges in the free routing slots.

2: Label each edge by a random number.

3: Solve the Traveling Salesman Problem (TSP) to

get one Hamiltonian circuit.

4: Cut the Hamiltonian circuit into N subpaths, and

return those.

B. Comments on the Approach

At step 1, the graph typically uses the available top-

most layers, like M5 and M6. At step 3, The TSP

can be run until an exact solution is found, or it can

be used to yield only an approximation. Indeed, our

requirement is to end up with a Hamiltonian circuit, but

not necessarily optimal in terms of length. At the end

of step 3, the shield consists in a single equipotential,

that can thus easily be cut and shunted at will by an

attacker. Thus the need for step 4, that consists in

Attacker’s viewDesigner’s view

area to
open

Figure 7. The figure on the left illustrates the N segments making

up an active random shield. The connectivity of these segments

(indicated with N = 8 different colors) is unknown to the attacker;

the figure on the right shows the vision of an attacker who discovers

the shield.

segmenting the found Hamiltonian circuit into many

(N) subpaths, that are interleaved, because the graph

is randomly annotated.

The number N of segments must be defined in

accordance with the expected number of tries an at-

tacker is willing to make in order to successfully edit

the routing (of course without changing the connec-

tivity!). Random shielding thus does not deter better

than regular shielding (such as that displayed on the

right side of Fig. 5) against an attacker that knows

its layout. But random shielding is deterrent if its

layout is unknown (for instance because its random

routing makes it painful to unravel, as illustrated on

Fig. 7). Indeed, an attacker needs to recognize all the

N equipotentials as a preliminary phase to start with

a rerouting attack. Said differently, random shielding

makes the identification phase hard. But once the shield

topology is exposed, its exploitation is easy. It can

be argued that this protection belongs to “security by

obscurity” techniques. It is indeed; but in the light

of CC, it is valid: the identification phase is also

quoted, and difficult identification improves the overall

score of an evaluation. So, having admitted that the

goal is merely to make the identification hard, we can

assert that the spaghetti routing generated our Alg. 1

is efficient.

We focus in the sequel on special types of graphs,

that we call cuboids. They consist in a juxtaposition of

Nx,Ny,Nz cubes in the three dimensions. We consider

the case where at least two dimensions exist (i.e.

at least two sizes in Nx,Ny,Nz are greater or equal

to two – otherwise no Hamiltonian circuit can exist

because one vertex has degree one). For a cuboid to

be Hamiltonian, Nx × Ny × Nz must be even, that is

to say that at least one amongst (Nx,Ny,Nz) must be

even. Indeed, the value of x + y + z and x′ + y′ + z′

of two adjacent vertices have different parity. Thus,

any cycle must have a length of even parity; such

cycle cannot pass through all the vertices of the graph

if the total number of vertices (Nx × Ny × Nz in our

case) is odd. The reciprocal assertion is also true: if

Nx × Ny × Nz is even, then the graph is Hamiltonian.

Without loss of generality, we assume that Nx is even.

Then, Fig. 8(a) shows one solution in the case of

Nz = 1. When Nz > 1, a Hamiltonian circuit can be

derived from a Nx,Nz × Ny, 1 cycle built as previously

(see Fig. 8(b)), by folding the structure Nz times (see

Fig. 8(c)). Obviously, the algorithm 1 will find better

randomized Hamiltonian circuits.

Lastly, we underline that in Alg. 1, it is important

that a Hamiltonian path is found first and cut after-

wards. Proceeding the other way around, no guarantee

on the existence of solutions would exist. For instance,

a subcycle (that passes only through some vertices)

could be found; but when removing it, the remain graph

might be separated in two unconnected parts, which

is not wanted security-wise. Indeed, it creates isolated

areas of shield, while the goal is to try and spread the

wires around the whole graph (not locally).

C. A Small Example

The result of an execution of Alg. 1 is shown in

Fig. 9. The plot (a) illustrates the non-planar graph. It is

made up of a 4×6 sites area for the topmost metal (say

M6), represented as squares, and the equivalent 4 × 6

sites area in M5, represented as dots. In this example,

the vias are possible everywhere. To summarize, this

graph has 48 vertices (24 drawn as squares and as

many drawn as dots) and 100 edges. In plot (b), one

Hamiltonian path, obtained by step 3 of Alg. 1, is

drawn in purple. Eventually, the final results is shown

in plot (c). The previous Hamiltonian path is cut in

N = 3 paths (drawn in red, green and blue) at positions

indicated by arrows (always in the lower level, i.e.M5).

Here, it can be seen that the three equipotentials are

well interleaved.

The generated layout is shown in Fig. 10, where

metal M6 is orange (resp. cyan), M5 yellow, and

via V56 cyan (resp. gray) for Cadence Virtuosos

M6 plane
V56 interconnect

M5 plane

cut

cut
cut

(a)

(b)

(c)

Figure 9. Compact shielding, obtained by the execution of Alg. 1.

In the final shield layout (c), the N = 3 segments are fed with

unrelated random bit sequences.

(resp. GNU/Electric). These layouts are drawn in HC-

MOS9GP 130 nm technology (STMicroelectronics).

Given the DRC rules to be obeyed (see Sec. III-A), the

shield drawing pitch is 97 nm, which is one order of

magnitude smaller than the typical probe tip diameter

(≃ 1 µm being the minimum achievable).

This kind of spaghetti routing fosters long lines,

and is thus very difficult to unravel for 10+ different

signals. Indeed, even if two equipotential wires are

found, the overall cost to drill through a 10 × 10

pitch area requires nearly a complete shield reverse-

engineering. Thus, we can assume this is not the

primary attack path from an prospective attacker.

Incidentally, we notice that the shield lines can be

Ny > 1

N
x
(even

)

zigzag zone

(a) (b)

fold

Nz ×Ny (here: 2×Ny) (c)
NyNz

Nx

Figure 8. Constructive Hamiltonian paths when Nx is even.

Figure 10. Shield design under the Cadence virtuoso and

GNU/Electric layout editors.

heavily loaded. Indeed, at every via, that are mas-

sively instantiated (about for half of the connections

in the shield), a resistance of about 1 Ω is added.

However, the active shield does not require a speedy

test. A functioning at 10 times the nominal frequency

is still enough in most cases to ensure its usefulness.

Additionally, as the capacitive load is high, this shield

could also benefit from a passive integrity check. In this

article, we leave this consideration as further research.

D. Performance on Larger-Scale Circuits

High performance of the shield circuit generation

is of utmost importance. Namely, step 3 of Alg. 1 is

known to be NP-complete. Nonetheless, we actually

do not need the shortest Hamiltonian path, but only

one. In this case, some heuristic algorithms exist. For

instance, the LKH software (based on [5]) allows to

find a Hamiltonian path, but the graphs cannot be

weighted. Said differently, it solves the TSP where

edges are weighted only by 0 or 1. This method is quite

fast, and allows to find Hamiltonian circuits for up to

several thousands vertices. Nonetheless, we observed

that the result was not intricate enough.

Two key points for a scalable solution are thus to

quantify the quality of a shield, and to find Hamiltonian

circuits generation algorithms faster than those derived

from the TSP.

1) Shield Quality: One feature to distinguish a

random shield from a non-random one is the average

isotropy of the routing. According to this criterion, the

shield is all the better as the lines go almost equally in

all directions. For this reason we propose the entropy

of the directions as a metric. It is estimated as:

H(C) =
∑

d∈{x,y,z}

−P(d) · log2 P(d) , (1)

where P(d) is the probability for the circuit to take this

direction, evaluated as the ratio between the number

of edges in that direction on the total number of edges

(that is equal to the total number of vertices). When the

shield is only 2D, P(z) = 0, thence we employ the limit

−P(z) · log2 P(z) = limǫ−→0+ −ǫ · log2 ǫ = 0. As along

one direction, there are as many edges going forward

and backward, we intentionally neglect the notion of

orientation for d. The optimal values are 1.000 bit for a

2D shield and approximately 1.585 bit for a 3D shield.

To the authors’ best knowledge, the question whether

those bounds are tight for Hamiltonian circuits is open.

We also underline that for a finite shield, the Eqn. (1) is

approximate, since vertices on the borders cannot have

edges in all directions. However, in practical cases (see

Tab. II), this metric is usable.

2) Genetic Algorithms: Genetic algorithms are ran-

dom algorithms meant to approach an optimization

problem by hybridizing solutions. In our case, they

constitute a way to improve the Hamiltonian circuit’s

entropy. They are also interesting since we can start

them from an existing Hamiltonian path (e.g. the

one described in Fig. 8), and not from a hard-to-

generate one obtained by exact or approximate TSP.

Our mutation consists in randomly finding two pairs

of adjacent lines, and to switch the connections, as

illustrated in Fig. 11. This method requires a “boot-

strap” Hamiltonian circuit (step 1). Then, it breaks the

circuit into two circuits (step 2) twice. Eventually, the

circuits are merged (step 3). The last step hopefully

increases the Hamiltonian circuit’s entropy. It is re-

peated until a sufficient entropy level is reached. For

the sake of clarity, the same transformation is also

shown in Fig. 12. The Hamiltonian cycle is represented

in abstract way (there is no grid), and the pair of 4

neighbour sites are represented by squares (�) and by

diamonds (_): topologically speaking, it is possible to

jump from one square (or diamond) to its neighbor

with one hop. The original circuit uses the paths

labelled Ê, Ë, Ì & Í in this order (Ê,Ë,Ì,Í).

After transformation of the routing, the new circuit,

(Ê,Í,Ì,Ë), remains Hamiltonian. It requires that the

squares and the diamonds be pairwise interleaved.

The table I shows that the genetic algorithm indeed

Before the transformation used in the genetic algorithm:

After the transformation:

Ê Ë Ì Í

Ê Ë Ì Í

Figure 12. Diversification process of Fig. 11, seen topologically.

manages to increase the entropy. It is illustrated on 10

iterations (from left to right, and from top to bottom),

where it is also apparent that the entropy (c.f. Eqn. (1))

appears to be a suitable metric to measure the entangle-

ment of the N segments making up the active shield.

The performance of the shield generation has been

prototyped on three examples of interest for the smart-

card industry:

1) a register containing a 128 bit key,

2) a 1 kB ROM, and

3) a DES cryptoprocessor.

In all cases, a z = 2 layer shield has been considered.

The generation software is a prototype application, and

thus written in a script language, without optimizations

and all the “assertions checks” enabled. More precisely,

it is a script PERL (version 5.10.1), executed on

an Intel Xeon CPU cadenced at 2.13 GHz running

GNU/Linux 2.6.32. The results are provided with in

Tab. II. By rewriting the software with optimisations

in mind, we could expect a two order of magnitude de-

crease in the execution time. The purpose of Tab. II is

to show that with a limited memory footprint (less than

100 MB) and straightforward code, the active shield

of large sizes can be generated by genetic algorithms.

Eventually, Fig. 13 illustrates the convergence speed

to a solution of highest entropy (or its vicinity). The

progression sometimes stalls, as for instance for the

DES shield in the early minutes. The reason is that

when choosing a first transformation site (step 2 of

Fig. 11), this selection can leave few choices for the

exchange

twice

Step 2: invariant transform Step 3: apply it randomlyStep 1: build a trivial circuit

Figure 11. Diversification of Hamiltonian circuits; initial/final state is shown as (1)/(3), and the transformation (2) shall be applied twice

or an even number of times.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.585

 0 50 100 150 200

E
n
tr

o
p
y
 [
b
it
]

Time [min]

Maximal limit
128-bit register file (x=86, y=100, z=2)

1 kB ROM (x=112, y=115, z=2)
DES cryptoprocessor (x=128, y=132, z=2)

Figure 13. Convergence rate of three real-world random active

shields.

second transformation site, hence numerous trials-and-

errors. Also, it can be seen that the curves stop when a

maximal value (for our version of genetic algorithm) is

reached and no other positive mutation can be found.

It is remarkable to notice that the final value of the

entropy is very close to the maximal theoretic one,

which proves the mutation method presented in Fig. 11

is relevant. We also notice that genetic algorithms allow

for a trade-off security versus computation time. A less

entropic shield can be found faster than an optimal (or

near optimal) one, by stopping the genetic algorithm

if the entropy is considered high enough (for instance,

a threshold of 1.550 bit can be set).

Even larger circuits can be protected at a lower

computational cost by abutting several instance of

smaller active shield problem. Although less elegant,

this solution still provides with an increased secu-

rity level since the instance are a priori one from

each other, making artificial FIB rerouting connections

chancy.

V. Conclusions and Perspectives

The adequate shielding of secure integrated circuits

is of great importance, in regard with current exploits,

for instance from FlyLogic. Active shielding is a

known technique, that consists in injecting random

data through top-metal wires and checking that they

arrive uncorrupted. However, most publicly disclosed

active shields are structured, hence their topology can

be inferred by attentive attackers. In this article, we

propose a method to achieve intricate spaghetti routing

of a dense mesh of wires. The density is actually

optimal in the sense that no routing site is left empty.

This is achieved by computing a Hamiltonian circuit.

The entanglement comes from randomized constraints

given in the Hamiltonian circuit generation algorithm.

It is worthwhile to notice that we have employed

graph-agnostic algorithms (only the genetic one re-

quires an initial Hamiltonian circuit). However, most of

the time, the graphs are highly structured: for instance,

they are often “lattices”, i.e. the (finite) repetition of a

fixed pattern. Certainly the algorithms can be guided to

converge faster if they are aware of the graph’s topol-

ogy. But given that general (graph-agnostic) algorithms

finish rapidly2, this refinement is left as a perspective

for future incremental improvement on top of Alg. 1.

Eventually, we notice that the active shield presented

in this paper is statically random. An improvement

could consist in changing the division of the Hamil-

tonian circuit into several N segments, depending on a

“shield configuration” random variable. The feasibility

of this dynamically random routing is of interest for

the future generations of active shields.

Acknowledgments

The authors acknowledge the partial financial sup-

port of project TOISE, Trusted Computing for Euro-

2As compared with other CAD tools used in ASIC design.

Table II

Computation time to generate a Hamiltonian circuit that can serve as shield for several sensitive modules of a smartcard.

Circuit Area Number of vertices Time for the generation Entropy — Eqn. (1)

128-bit register file 10, 000 µm2 17, 200 1 h 45 min 1.574 bit

1 kB ROM 15, 000 µm2 25, 760 2 h 43 min 1.564 bit

DES crypto-accelerator 21, 000 µm2 33, 792 3 h 54 min 1.554 bit

pean Embedded Systems, funded under grant ENIAC-

2010-1, and of project MARSHAL+, Mechanism

Against Reverse Engineering for Secure Hardware and

Algorithm, funded under grant FUI12.

References

[1] Common Criteria for Information Technology Security

Evaluation (ISO/IEC 15408).

Website: http://www.commoncriteriaportal.org/.

[2] Andrea Beit-Grogger and Josef Riegebauer. Integrated

circuit having an active shield, November 8, 2005.

United States Patent number 6,962,294.

[3] Sébastien Briais, Stéphane Caron, Jean-Michel Cio-

ranesco, Jean-Luc Danger, Sylvain Guilley, Jacques-

Henri Jourdan, Arthur Milchior, David Naccache, and

Thibault Porteboeuf. 3D Hardware Canaries. In

CHES, Lecture Notes in Computer Science. Springer,

September 9-12 2012. Leuven, Belgium. Full version

in ePrint Archive, Report 2012/324 (http://eprint.iacr.

org/2012/324/).

[4] Christophe Giraud. Attaques de cryptosystèmes em-

barqués et contre-mesures associées. PhD thesis,

Université de Versailles Saint-Quentin-en-Yvelines,

26 octobre 2007. http://www.prism.uvsq.fr/fileadmin/

CRYPTO/TheseCG-new.pdf.

[5] Keld Helsgaun. An Effective Implementation of the

Lin-Kernighan Traveling Salesman Heuristic. Euro-

pean Journal of Operational Research, 126(1):106–

130, 2000.

[6] INVIA. Active Shield IP (digital IP and analog

IP that detects invasive attacks). http://www.invia.fr/

Active-Shield-23.html.

[7] Peter Laackmann and Hans Taddiken. Apparatus for

protecting an integrated circuit formed in a substrate

and method for protecting the circuit against reverse

engineering, February 19 2003. United States Patent

number 6,798,234.

[8] Martin Schobert. GNU software degate. Webpage:

http://www.degate.org/.

[9] Christopher Tarnovsky. How to Reverse-Engineer a

Satellite TV Smart Card, 2010. Online video: http:

//www.youtube.com/watch?v=tnY7UVyaFiQ.

[10] Christopher Tarnovsky. Infineon / ST Mesh Compari-

son, February 14th 2010. http://www.flylogic.net/blog/

?p=86.

[11] Randy Torrance and Dick James. The State-of-the-Art

in IC Reverse Engineering. In CHES’2009, volume

5747 of Lecture Notes in Computer Science, pages

363–381. Springer.

[12] Pim Tuyls, Boris Skoric, and Tom Kevenaar. Secu-

rity with Noisy Data: Private Biometrics, Secure Key

Storage and Anti-Counterfeiting. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, December 2007. 1st

Edition, ISBN 978-1-84628-983-5.

[13] Neil H.E. Weste and David Harris. CMOS VLSI

Design: A Circuits and Systems Perspective. Addison

Wesley, 2004. 3rd edition (May 11, 2004).

Table I

Evolution of a x = 16, y = 16, z = 2 shield with N = 10 segments

(printed in different colors). Indicated are the entropy H and the

time T for generation.

H = 0.550 bit, T = 37 ms. H = 0.673 bit, T = 129 ms.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0
 1

z

x

y

z

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0
 1

z

x

y

z

H = 0.783 bit, T = 213 ms. H = 0.903 bit, T = 316 ms.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0
 1

z

x

y

z

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0
 1

z

x

y

z

H = 1.014 bit, T = 438 ms. H = 1.126 bit, T = 599 ms.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0
 1

z

x

y

z

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0
 1

z

x

y

z

H = 1.240 bit, T = 940 ms. H = 1.349 bit, T = 1381 ms.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0
 1

z

x

y

z

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0
 1

z

x

y

z

H = 1.454 bit, T = 2228 ms. H = 1.556 bit, T = 4303 ms.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0
 1

z

x

y

z

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0
 1

z

x

y

z

