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Abstract—The present article is a position paper reviewing
the main requirements and existing achievements of co-design
approaches for real-time control and computing. This problem
arises with the increasing complexity of modern computers which
require more integrated methodologies, specifically suited to
critical embedded systems. The general problem to be solved
is the achievement of multi-objective goals (i.e. mixing stability,
performance and dependability requirements) under constraints
of limited execution resources (combining hardware and software
components in CPUs and networks). It is expected that co-design
approaches, handling the constraints arising from the control and
real-time computing domains at early design time, can improve
the overall effectiveness of distributed real-time controllers.

I. F  

The design and implementation of real-time control sys-
tems, including embedded control components distributed over
execution resources, combines the domains of control systems,
communication networks and real-time computing [1], [2], [3],
[4], [5].
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Figure 1. Control under execution resources constraints

From a control point of view, the problem to be solved
is the achievement of a control objective, mixing stability,
performance and reliability requirements. The controlled plant
is most often a physical device which evolves in continuous
time, for example whose dynamics can be described by a state
space model :

x = f (ẋ, u, t) y = g(x, u, t) (1)

where x, y and u are vectors of continuous variables which
respectively represent the state, the output and the control
inputs of the plant.

In a computer-controlled system, the control objective is
achieved by a feedback controller K which cyclically com-
putes at some instants tk the control inputs uk from the error
signal e(k) = yd(k)−y(k) between the desired and the sampled

outputs of the plant (Figure1). Sampling and delays introduce
distortions w.r.t. to the original continuous time framework,
especially when limited computing resources induce long
calculations and sampling intervals as shown in Figure 2.
Anyway the control objectives must be achieved despite
the disturbances induced by the distribution of the control
system over execution resources with limited bandwidth and
computing power.

tk+1 + hktk
tk + hk

Figure 2. Deterioration of a continuous-time signal with delay and sampling

Historically, tools for the design and analysis of systems
related to these disciplines have been designed and used
with limited interaction. Feedback control is usually designed
in continuous time, or in a basic sampled-data framework
with equidistant sampling and constant delays, where the
imperfections of real-life implementation constraints are not
taken into account. On the other hand, real-time scheduling
focus on purely computational aspects, e.g. schedulability of a
task set knowing worst-case conditions, but fail to capture the
properties and requirements of feedback controllers. It happens
that a solution which is optimal in one domain is not well
suited for the other, e.g. in [6] where the blind implementation
of a control system under an optimal (Rate Monotonic)
scheduling policy provides a poor control performance, while
an ad-hoc implementation taking care of control-specific needs
provides far better results. The poor interaction of control
and computing at design time results both in poor control
performance and in wasting execution resources.

Indeed, the increasing complexity of modern computer
systems and the rapidly evolving technology of computer
networks require more integrated methodologies, specifically
suited to distributed control systems. Control is playing an
increasing role in the design and run-time management of



large interconnected systems to enhance high performance
in nominal modes and safe reconfiguration processes in the
occurrence of faults and failures. In fact, it appears that
the achievement of system-level requirements exceeds by far
the achievable reliability of individual components [2]. The
deep intrication of components and sub-systems from different
technologies, and that are subject to various constraints, calls
for a joint design to solve conflicting constraints early on.

Hence, a control/computing co-design approach is a promis-
ing direction for achieving the control of a real-time control
system under execution resources constraints. This approach
more or less tightly combines :
Computing-aware control where the control algorithms are

specifically made robust and/or adaptive w.r.t. the execution
induced constraints and disturbances;

Control-aware computing where the scheduling scheme and
parameters are designed to adaptively capture the control
system requirements and to improve the overall efficiency
of a feedback controller;

Control of numerical objects is an appealing way to imple-
ment flexible and adaptive scheduling policies, where soft-
ware objects are dynamically governed by feedback control
loops.

This position papers reviews requirements to be solved in
order to efficiently design and implement distributed control
systems, and presents some achievements already done in this
framework. The next section provides guidelines for control
and computation co-design, from the analysis of requirements.
Section III browses some computing-aware control designs
and section IV examines how the real-time implementation
can be made aware of control needs. Some perspectives are
given in the conclusion.

II. F   

Control and real-time computing have been associated for
a long time, for the control of industrial plants and in em-
bedded systems, e.g. automotive and robotics. However both
parts, control and computing, are often designed with poor
interaction and mutual understanding. From the control design
point of view, a constant and unique sampling period is usually
assumed. Delays are supposed negligible or constant, and jitter
is ignored. The implementation design then follows, trying to
meet these assumptions.

Except in the case of failures due to hardware or software
components, most processes usually run with nominal behav-
ior : however, even in the nominal modes, neither the plant
nor the execution resource parameters are perfectly known or
modeled. A very conservative viewpoint consists in allocating
system resources to satisfy the worst-case, which results in
over-provisioned, and thus wasted, execution resources. From
the control viewpoint, specific time-related deficiencies to be
considered include poorly predictable jitter, delays and data-
loss.

Real-time scheduling has mainly focused on how to dimen-
sion computing resources to meet deadlines, or equivalently,
on the schedulability analysis for a given resource. Indeed

the real-time community has usually considered that control
tasks have fixed periods, hard deadlines and known worst-case
execution times. This assumption has served the separation of
control and scheduling designs, but has led to under utilization
of CPU resources and inflexible design.

The hard and costly way consists in building a highly
deterministic system, from the hardware, operating system
and communication protocols sides, so that the actual timing
parameters meet the ideal ones. However trying to nullify
(even virtually) latencies and jitter generally leads to worst-
case based resources proportioning and tends to needlessly
over-constraint the system’s design and implementation. Thus
it deserves to carefully re-examine the real hardness of the
real-time constraints related with feedback control systems.

Guidelines for co-design

A new co-design domain, more or less tightly combining
control and real-time computing features, has been opened by
both computer scientists [7] and control scientists [8]. New
research directions and potential applications have arisen from
this co-design paradigm :

• Computing devices can be controlled by feedback loops,
thus they can take benefit of feedback properties such as
adaptivity and robustness. In particular real-time systems
can be controlled by flexible policies implemented through
feedback schedulers;

• Feedback loops are not hard real-time : indeed, as they are
robust w.r.t. the plant’s parameter uncertainties, they also are
robust w.r.t. some amount of jitter, deadlines misses and data
loss. Therefore new degrees of freedom based on slackened
real-time constraints can be exploited to implement feedback
loops.

III. C   

A. Delays and data-loss in real-time control systems

Control systems are often cited as examples of "hard
real-time systems" where jitter and deadline violations are
strictly forbidden, e.g. [9]. In fact experiments show that this
assumption may be false for closed-loop control. Any practical
feedback system is designed to obtain some stability margin
and robustness w.r.t. the plant parameters uncertainty. This also
provides robustness w.r.t. timing uncertainties : closed-loop
systems are able to tolerate some amount of sampling period
and computing delays deviations, jitter and occasional data
loss without loss of stability or integrity. For example in [6] the
loss of control performance has been checked experimentally
using an ope-loop unstable inverted pendulum, for which a
Linear Quadratic (LQ) controller has been designed according
to a nominal sampling period and null delay and jitter. It was
checked that the control system keeps stable with moderate
loss of performance even for quite large jitter, delays and
period drift.

Delays appear naturally in the modeling of several physical
processes, where delays often come from the transportation
of materials or information. Stability analysis of time-delay



systems is thus an important topic in many disciplines of sci-
ence and engineering [10], [11], [12]. Motivating applications
are found in diverse areas such as biology, chemistry, tele-
communication control engineering, economics, and popula-
tion dynamics [13]. There has been an increased interest in the
area of time-delay systems over the last two decades due to
the emerging area of networked control systems (NCS), which
are systems where sensor and actuator devices communicate
with control nodes over a communication network [3]. In
such systems, processing time and preemption in the network
nodes, together with propagation delays in the inter-node
communication, necessarily leads to time delays affecting the
overall closed-loop control system. Various phenomena related
to delays in networked controlled systems have recently been
considered, e.g., packet losses [5], [14], stabilization w.r.t.
varying delays [15] and robust sampling [16].

B. Robustness against delays and data loss

The problem of ensuring stability under delays and sam-
pling has been widely addressed in the literature, [4], [5], and
is often referred as a problem of networked control systems.
There are mainly four approaches to solve this problem. The
first one consists in the analysis of the discretized model
of the system (1) using the discrete-time version of the
Lyapunov Theorem [17], [18], [19]. The main advantages of
this approach are that the resulting conditions are tight and
less conservative than other methods. However, it suffers from
the complexity of the conditions and the difficulty to include
uncertainties in the original system. The second approach is
generally referred as the input delay approach introduced in
[16] and employed for instance in [20] among many others.
This method allows for using the continuous-time Lyapunov-
Krasovskii framework in order to take into account the the
sampling as a particular type of delay. The main advantages
of the method is the possibility to take into account time-
varying uncertainties both in the sampling period and in
the systems parameters. However the resulting conditions are
generally more conservative than the previous method. [14]
introduced an impulsive system approach which refines the
previous input delay one. It was further refined in [21]. A
last approach was introduced in [22], [23] which proposed an
equivalence theorem between the discrete-time approach and
the input delay or the impulsive systems approaches using a
new class of functionals referred as "looped functionals". The
main advantage of this last method comes from the relaxation
of the constraints on the functionals in comparison to the two
previous approaches.

C. Variable scheduling parameters

Managing the computing cost of a control task can be done
in several ways:

• Increasing the sampling control interval h can be easily done
in real-time, providing that the control interval remains high
enough to preserve the system stability and that interval
switching is also handled from the stability viewpoint;

• Reducing its execution time c, e.g. by using a simplified
version of the control algorithm : this requires a control tasks

switching, which may be complex to be safely performed in
real-time;

• The Dynamic Voltage and Frequency Scaling (DVFS) ca-
pabilities of modern computing chips can be exploited to
dynamically adapt the CPU computing speed and minimize
the energy cost of computing.

Anyway, a key actuator to be used for CPU utilization or
network bandwidth control is the control interval. Concerning
co-design for on-line implementation, recent results deal with
varying sampling rates in control loops, in the framework of
linear systems. Unfortunately, most real-life systems are non-
linear and the extrapolation of timing assignment through lin-
earization often gives rough estimations of allowable periods
and latencies or they can even be meaningless. In fact, the
knowledge of the plant behavior is necessary to get an efficient
control/scheduling co-design.

As mentioned before the key actuator to be used for CPU
utilization or network bandwidth control is the control interval.
A first idea is to design a bank of controllers, each of them
being designed and tuned for a specific sampling frequency,
and to switch between them according to the decisions of
the feedback scheduler. However, it has been observed that
switching without caution between such controllers may lead
to instability although each controller in isolation is stable
[24]. Let us cite some possible solutions to guarantee control
stability during sampling rate variations :

1) Control under (m,k)-firm scheduling constraints: This
sampling period adjustment approach is based on selective
sampling data dropping according to the (m, k)-firm model,
where it is ensured that at least m out of k consecutive
instances of tasks (or messages) are executed ([25]). The
interest of this method is an easy implementation since only
the multiples of the basic sampling period are exploited
(which is well suited for non-preemptive scheduling as in
communication networks). Upon overload detection, the basic
idea is to selectively drop some samples according to the
(m, k)-firm model to avoid long consecutive data drops. The
consequence is that the shared network or processor will
be less loaded. However, the control stability and perfor-
mance must still be maintained to an acceptable level. A
scheduling architecture for handling such configurations has
been proposed to both design and tune a stable feedback
controller, and to find optimal scheduling patterns compliant
with the (m, k)-firm scheduling constraint. By doing so, the
global performance of the application is fixed at an optimized
level and the schedulability under (m, k)-firm constraints is
guaranteed. Extensive presentations of this approach, i.e. co-
design of control loops and computing resources management
subject to (m, k)-firm scheduling, can be found, e.g. in [26].
The application of co-design between LQ control and (m,k)-
firm scheduling for a quadrotor drone control and diagnosis
under networked induced data loss has been done, e.g. in [27].

2) LPV modeling and variable sampling: Fine grain varia-
tions of the sampling intervals can be implemented, e.g. using
the features of preemptive operating systems. To ensure the
system stability for a measured variable input delay, [28] pro-



poses for example a gain scheduled approach based on time-
varying observers and state feedback controllers, synthesized
using linear matrix inequalities (LMI) and quadratic Lyapunov
functions. Indeed, gain scheduling is a popular approach to
control non-linear plants, allowing to some extent to re-use
the well-known linear control theory and tools [29].

LPV (Linear Parameter Varying) approaches have been then
developed to enforce the overall control system stability during
switching. An important feature of LPV based design is that
the stability of the control system is ensured whatever the
variations of the parameters, provided that they stay inside
the predefined bounds. In ([30]) the LPV polytopic approach
is used to design a control law with adaptation of the sampling
period to account for the available computing resources for an
inverted pendulum. As the sampling interval can be changed
arbitrarily fast between its allowed values, such a control law
can be easily used as a building block of a feedback-scheduler
in charge of the computing resource management.

However the main drawback of the polytopic method could
be the large number of LMIs to solve as the number of
varying parameters increases. This is not the case in the Linear
Fractional Transform (LFT) method and, as emphasized in
([31]), it leads to a LMI problem whose solution can directly
be implemented. Moreover, this approach allows to consider in
the same structure varying parameters, uncertainties and some
non-linearities.This latter approach merging varying sampling
with plant non-linearities modeled as varying parameters has
been successfully applied to the case of bottom-referenced
control of an Autonomous Underwater Vehicle (AUV), where
the acoustic altitude sensors are subject to asynchronous
sampling ([32]).

IV. C- 

A. Flexible real-time scheduling

To implement a controller, the basic idea consists in running
the whole set of control equations in a unique periodic real-
time task, whose clock gives the controller sampling rate.
In fact, all parts of the control algorithm do not have an
equal weight and urgency w.r.t. the control performance. To
minimize the I/O (sensor-to-actuator) latency, a control law
can be basically implemented as two real-time blocks, the
urgent one sends the control signal directly computed from
the sampled measures, while updating the state estimation
or parameters can be delayed or even more computed less
frequently [33].

In fact, a complex system involves sub-systems with differ-
ent dynamics which must be further coordinated [1]. Assigning
different periods and priorities to different blocks according to
their relative weight allows for a better control of critical la-
tencies and for a more efficient use of the computing resource.
However in such cases finding adequate periods for each block
is out of the scope of current control theory and must be done
through case studies, simulation and experiments, e.g. [34].

Latencies have several sources : the first one comes from
the computation duration itself, whose values are distributed
between best-case and worst-case bounds (Figure 3, even
in dedicated embedded CPUs. In multi-tasking systems they

come from preemption due to concurrent tasks with higher pri-
ority, from precedence constraints and from synchronization.
Another source of delays is the communication medium and
protocols when the control system is distributed on a network
of inter-connected devices. In particular it has been observed
that in synchronous multi-rate systems the value of sampling-
induced delays show complex patterns and can be surprisingly
long, e.g. [35].

Figure 3. Typical execution time distribution

Besides feedback control considerations, flexible and con-
trol aware solutions have been also provided by the com-
puter science side, e.g. through a Quality of Service (QoS)
formalism. For example the “Elastic Tasks” paradigm [36]
considers the sensitivity of the QoS relative to the execution
period for every task (modeled by a “stiffness”), and takes
account bounds in the allowed execution period. To make the
tasks set schedulable, the tasks stack is “compressed” until
the accumulated execution load fit with the allocated CPU
capacity. Although this implementation is in open loop w.r.t.
the actual QoS it allows for an improved adaptation against
transient overloads.

As sharing the computing resource between controllers is a
central issue, some variants of the CBS (Control Bandwidth
Server) approach have been used to enforce protection be-
tween competing control activities, for example the Control-
Server ([37]) where a fraction of the total CPU power is
statically reserved to each control thread. Then the system
behaves as if each controller was isolated using its own
computation resource, in particular an overloaded controller
does not disturb its neighbors. Inside each computing segment
the individual controllers are organized to minimize their I/O
latency and jitter. In case of transient overload the missing
computing budget for one controller is postponed to its next
reserved slice, with no impact on the others.

B. Weakened scheduling schemes

Robustness in control usually deals with the plant’s param-
eter uncertainties, but the insensitivity or adaptability w.r.t.
timing deviations from the theoretical pattern, such as jitter or
deadlines misses can be exploited. For SISO linear systems ro-
bustness can be quantified using phase margins, delay margins
and module margins. It appears that a phase margin implies
a delay margin (i.e. the maximum unmodeled constant extra
delay that can be suffered before instability) and certainly a
jitter margin, which is more difficult to quantify ([38]) but
which can be experimentally shown ([6]). A feedback control
system can be even robust enough to tolerate missed samples,
e.g. as in the (m,k)-firm scheduling approach cited in section



III-C1. The interesting point is that a feedback control system
which is robust w.r.t. the plants parameters uncertainties is
also robust, to some extent, w.r.t. timing deviations. Hence a
feedback control system is not as hard as it is often considered
in the literature, but should be better considered as weakly

hard, i.e. able to tolerate specified timing deviations without
leaving its requested performance [39].

As already observed and reported in aforementioned refer-
ences, it is likely that a robust feedback control systems can
keep stability despite occasional data loss, at the price of some
degradation in performance and robustness. To improve the
average efficiency of embedded computers while preserving
the control stability and performance, and relying on the
robustness of feedback control laws, it has been proposed (e.g.
[40]) to slacken the usual hard real-time constraints and worst-
case based implementations.

Considering a typical distribution of execution times for a
real-time time task on a given CPU (Figure 3), the time slot
Tslot allocated to a periodic control task is chosen smaller than
its worst case execution time (WCET). Hence, the deadline
of the task can be occasionally missed, in that case the
running task can be for example aborted (and the last control
signal frozen for an extra period), or allowed to continue until
completion and the next execution is skipped. But most of
the time the task can be fully executed within the allocated
time slot. From the control point of view, the result is a
reduction of the average control latencies and periods, keeping
control stability despite several successive sample loss, and
even inducing an improvement of its robustness as formally
proved in [41]. From the computation point of view, the
needed computing power is reduced compared with a worst-
case based implementation, thus saving weight and energy
which are precious in embedded systems. Finally, such a
co-design approach enlighten a new viewpoint about real-
time control systems fault-tolerance, where jitter and deadline
misses should be processed as specified disturbances rather
than fatal failures.

C. Feedback scheduling

Robust and/or varying sampling control loops provide build-
ing blocks to be used in more complex control structures
where outer loops, e.g. based on Quality of Service consid-
erations, govern end-users level control objectives. In fact the
underlying idea is that digital objects, e.g. real-time sched-
ulers, can be also objects that can be controlled by feedback
loops. This approach has been initiated both from the real-
time computing side [42], [7] and from the control side [8],
[43]. The idea consists in adding to the process controllers
an outer sampled feedback loop ("scheduling controller") to
control the scheduling parameters as a function of a QoC
(Quality of Control) measure. For example such loops can
be used to control a trade-off between conflicting objectives,
like the control performance (e.g., measured by the rise-time
and bandwidth) and the CPU or sensors’ cost used to imple-
ment the controller. It is expected that an on-line adaption
of the scheduling parameters of the controller may increase
its overall efficiency w.r.t. timing uncertainties coming from

the unknown controlled environment. Also it is known from
control theory that closing the loop may increase performance
and robustness against disturbances when properly designed
and tuned (otherwise it may lead to instability).

In its basic form a feedback scheduler cyclically computes
updated values of the execution parameters, e.g. tasks control
intervals or CPU clock frequency, from measures taken on the
execution resources, e.g. CPU or network’s load. In that case,
the dynamics of the controlled system, e.g. a stack of real-
time tasks ready for execution, is quite simple. For example,
fluid modeling provides an adequate level of abstraction for
control purpose, where a digital system can be viewed as
flows of incoming requests and executed services [44]. Tasks
and message queues behave as integrators, and often the
main source of dynamics to be considered for control design
is the bandwidth of the measuring filters. Hence, feedback
schedulers can be easily implemented, e.g. as an additional
real-time task, using off-the-shelf hardware and software com-
ponents as shown for example in [34] for a multirate robot
controller or in [45] for an adaptive video decoder. Note that
in that case, transient computing overloads are automatically
recovered within a few samples.

More elaborated scheduling control loops are expected to
govern the control tasks execution parameters as a function of
the controlled plant performance itself. The design problem
can be stated as control performance optimization under
constraint of available computing resources. Early results
come from [8] where a problem of optimal control under
computation load constraints is theoretically solved by a
feedback scheduler, but leads to a solution too complex to
be implemented in real-time. Formalizing the problem is not
obvious, as constraints from one domain (e.g. scheduling)
must be translated into the other (e.g. feedback), and most
often results in non-linear and hybrid models. The design of
feedback controllers to solve such problems in real-time (with
resources of moderate size) does not lead to both general and
effective solutions, and control solving relies on case studies
[46].

V. S  

Co-design approaches have already shown that they can
provide both safe and cost-effective real-time control systems.
In particular, the robustness provided by feedback allows for
slackening the real-time scheduling constraints and for saving
computing power and networking bandwidth. On the other
hand, numerical objects can be controlled using feedback
loops, therefore improving their adaptivity and robustness
w.r.t. uncertain and variable operating conditions.

A better understanding and integration of control and
computing is becoming necessary in systems of increasing
complexity. For example, out-coming tiny-scale CMOS chips
are subject to unavoidable characteristics dispersion, and in-
tegrating feedback control in the hardware is now essential.
Also, in modern processors the execution time dispersion
(Figure 3) is spreading over very large worst−case

best−case
ratios, and

relying on robust control and weakly-hard real-time is a key
to avoid unacceptable wastes in computing power and energy.
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It is expected that cost-effective solutions will emerge from
trade-offs modeling and multi-criteria optimization between
conflicting features of the different domains involved, as
sketched in Figure 4.
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