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Abstract

Since modeling reflections in image processing is a difficult task, most com-

puter vision algorithms assume that objects are Lambertian and that no

lighting change occurs. Some photometric models can partly answer this

issue by assuming that the lighting changes are the same at each point of

a small window of interest. Through a study based on specular reflection

models, we explicit the assumptions on which these models are implicitly

based and the situations in which they could fail.

This paper proposes two photometric models, which compensate for spec-

ular highlights and lighting variations. They assume that photometric changes

vary smoothly on the window of interest. Contrary to classical models, the

characteristics of the object surface and the lighting changes can vary in the

area being observed. First, we study the validity of these models with re-

spect to the acquisition setup: relative locations between the light source,

the sensor and the object as well as the roughness of the surface. Then,
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these models are used to improve feature points tracking by simultaneously

estimating the photometric and geometric changes. The proposed methods

are compared to well-known tracking methods robust to affine photometric

changes. Experimental results on specular objects demonstrate the robust-

ness of our approaches to specular highlights and lighting changes.

Keywords: Computer vision, robust feature point tracking, local

photometric models.

1. Introduction

Computer vision has recently emerged in many fields such as mobile

robotics [1], visual inspection, in surgical, industrial, agricultural, spatial

or underwater domains [2], i.e. in various natural environments. For such

practical applications, one of the crucial problems lies in the robustness of

the low level algorithms with respect to some critical acquisition conditions:

blurred images, acquisition noise, illumination changes, reflections. High

level algorithms such as 3D reconstruction, active vision or visual servoing

can be efficiently improved by increasing the robustness of the spatial and

temporal matching process.

This paper addresses more precisely the problem of robust feature track-

ing with respect to lighting changes and specular highlights. The issue can

be tackled by extracting salient features in the image, such as edges [3, 4],

corners [5], lines [6]. It becomes far more complicated in most natural en-

vironments when only points are likely to be detectable. However, tracking

those features is not trivial since it relies on the luminance of the neigh-

bor pixels which are highly sensitive to photometric variations. The seminal
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works in the domain are due to Lucas and Kanade [7, 8] (KLT) who assume

the luminance constancy [9] in order to compute the translation motion of

each point.

This work has been extended to more comprehensive motion models:

affine [10], quadratic [11] and homographic [12, 13], and is still considered to

be powerful [14]. The tracking of planar patterns can also be implemented

by an efficient second order minimization technique (ESM) [15].

However, most methods assume that the luminance remains constant

between two successive frames, which is not true. Indeed, most surfaces are

not Lambertian and lighting conditions are mostly variable during an image

sequence. Hager and Belhumeur [16] propose to acquire an image database

of the scene under several illuminations and to use these data to improve

the tracking. Although efficient, this method requires a prior learning step,

which can be seen as too restrictive. Alternatively, one can either use a

simple local photometric normalization as in [17] or compute a photometric

model which properly fits the luminance variations in small areas of the

image as [18, 19, 20, 21] for optical flow, [22] for object recognition, or [23]

for indexing. In [24], the tracker compensates for affine illumination changes.

More recently in [25], the authors compute arbitrary illumination changes on

a large planar area by using an ESM algorithm. The main difficulty of the

illumination compensation is to balance the trade-off between complexity

and adequacy with the real illumination changes. Moreover, these models

are based on several assumptions which have not been clearly defined yet.

Our first contribution is to clearly explain the modeling of luminance

changes due to lighting and geometry, by analyzing some widely used specu-
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lar reflection models [26, 27]. We particularly focus on two local approxima-

tions: the first one is well suited for specular highlights and lighting changes

when small areas are concerned; the second one remains apropriate for larger

windows.

The second contribution of the paper consists in studying the validity

of the proposed models, which is related to the object parameters and the

acquisition setup. Note that the surfaces are considered to be differentiable,

which is a reasonable assumption for: 1) small surfaces such as points, 2)

industrial applications where manufactured objects and natural surfaces have

to be manipulated.

Finally, we propose a KLT-like tracker. Compared to most efficient KLT-

like trackers, it leads to the best results in terms of the number of points

correctly tracked, residuals and location errors.

This article is organized as follows. Section 2 focuses on the general mod-

eling of luminance changes, especially in the case of specular reflections and

lighting variations. Then, Section 3 deals with the local illumination models

used for temporal matching, and then details the two photometric models

proposed. The theoretical validity of the photometric models is studied in

Section 4 by considering several specific configurations on the viewing geome-

try and the surface properties. Section 5 details some of the existing trackers,

regarding the illumination model on which they are based, and explains the

proposed methods. The relevance of the present work is validated through

experimental results in Section 6.
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2. Modeling of luminance changes

The description of the luminance is detailed hereafter, it is based upon

simplified physical models largely used in image analysis. For image syn-

thesis, some more elaborated BRDF are considered. This study focuses on

the luminance changes occurring between two successive images of the same

scene.

A uniform lighting and a point light source are considered, which is well

suited for our targeted applications in industrial contexts or outdoor scenes

where the is considered as a point light source. More generally, each point in

the scene is assumed to be locally lighted by a dominant point light source.

First, let us introduce our notations (see Figure 1). Let P be a point of

the object being observed, and V and L the viewing and lighting directions

respectively, which form the angles θr and θi with the normal n in P . B is

the bisecting line between V and L, and forms an angle ρ with n. f and f ′

are two successive images of the same scene. P projects in image f into p of

coordinates (xp, yp) and into p′ of coordinates (x′p, y
′
p) in the image f ′ after a

relative motion between the camera, the scene and the light sources. More

generally, the prime symbol refers to the parameters in f ′.

2.1. The luminance in the CCD plane

The luminance f(p) results from the integration of the radiance LP (λ)

emitted by P w.r.t the wavelength λ. Since the radiance is the product of

the illuminant spectrum EP (λ) with the material reflectance RP (λ) then

f(p) = kc

∫ λmax

λmin

S(λ)LP (λ)dλ = kc

∫ λmax

λmin

S(λ)EP (λ)RP (λ)dλ. (1)
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P a physical point in the

scene

V viewing direction

L lighting direction

B bisecting line between V

and L

n normal vector in P

θr viewing angle (n,V)

θi incident angle (n,L)

ρ specular angle (n,B)

f initial image

f ′ image with photometric and geometric

changes

p projection of P in f

p′ projection of P in f ′

(xp, yp)coordinates of p in f

(x′p, y
′
p)coordinates of p′ in f ′

µ motion model

δ(.) motion function parameterized by µ

such that δ(p,µ) = p′

Figure 1: Notations involved in the reflection description.

where S(λ) describes the spectral sensitivity of the sensor and kc is a scalar

which does not depend on the wavelength λ but only on the optical geometry

such as the focal distance and the aperture.

The reflectance is generally assumed to be diffuse or Lambertian [28], i.e

it does not depend on θr and it is a function of the body reflection called

Rb
P (λ).

However, most surfaces reflect light in a specular manner, not only in

a diffuse way. For example, the Phong-Blinn model [26, 29] describes the
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reflectance of specular surfaces in the following heuristic way, for θi(P ) ∈[
−π

2
,
π

2

]
:

RP (λ) = kd(P )RbP (λ) cos θi(P ) + ks(P ) cos
r(ρ(P )) + ka(P ) (2)

The first term is the Lambertian contribution while the second one is

the specular component, where the scalar r is inversely proportional to the

roughness of the surface and ks, ka are the specular and ambient gains in P .

Although empirical, this model is largely used, because of its simplicity, and

its validity for various types of materials, whether they are rough or smooth.

Note that the Torrance-Sparrow model [27], is also widely used. In both

models, the specular term reaches its maximum value for ρ(P ) = 0, that is

when B coincides with n. In the remainder of the paper, this specular term

in P is noted h(P ).

2.2. The modeling of the luminance in the image

Consider MP (λ) = S(λ)EP (λ) in (1). When the sensor has a linear

response, MP (λ) can be expressed as the product of a global gain km(P )

with a spectrum curveM(λ), and (1) becomes:

f(p) = kckm(P )

∫ λmax

λmin

M(λ)RP (λ)dλ. (3)

Considering (1) and (2), the luminance f can be modeled as a sum of

three terms1:

f(p) = Kd(p)a(p) cos θi(p) + h(p) +Ka(p) (4)

1Note P has been replaced by its projection into the sensor p.
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where the term h refers to the specular reflection function (see 2.1) and

includes a gain Ks(p). Note also that Kd(p) = kckm(p)kd(p), Ks(p) and

Ka(p) are the integration values respectively of kckm(p)ks(P )M(λ) and

kckm(p)ka(P )M(λ) w.r.t the wavelengths.

The term noted a(p) =
∫ λmax

λmin
M(λ)Rb

P (λ)dλ depends on the albedo Rb
P (λ),

thus on the intrinsic property of the material.

2.3. The luminance changes between two images of a sequence

Two categories of illumination variations can occur between two successive

frames, either they are due to a sole motion of the camera w.r.t P , or they

are related to lighting changes (intensity change, or relative motion between

the source and the object).

Motion of the camera. Some specular reflections can occur due to

a simple motion of the camera with respect to the surface, leading to the

displacement of p towards p′. The incident angle θi remains constant over

time θ′i(p′) = θi(p) and if no lighting change occurs, Kd and Ka are also

constant. Similarly, a′(p′) = a(p) since it is an intrinsic property of the

material. However, the specular component h can vary since it depends on

the viewing direction through the angle ρ. Thus, the luminance f ′ becomes

f ′(p′) = Kd a(p) cos θi(p) + h′(p′) +Ka (5)

By subtracting (4) from (5), it yields:

f ′(p′) = f(p) + γ(p) with γ(p) = h′(p′)− h(p). (6)

Lighting changes. Now, some lighting changes ∆Ka, ∆Kd occur on Ka

and Kd respectively. They stem from a shift of the camera gain, a variation
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of lighting intensity or shadows. Moreover, θi changes in p according to a

function ∆θi, and so the specular term h′(p′). The luminance f ′ is then

expressed as

f ′(p′) = K
′

d(p
′) a(p) cos θi

′(p′) + h′(p′) +K
′

a (7)

with: 
K

′

d(p
′) = Kd(p) + ∆Kd(p)

θ
′
i(p
′) = θi(p) + ∆θi(p)

K
′
a = Ka + ∆Ka.

(8)

The specular term h′(p′) includes the intensity change of the specular co-

efficient Ks. Therefore, by using (4) and (7), the relationship between two

images of the same scene can be described by two different expressions:

1) First, it can be analogous to (6) by subtracting (4) from (7), where the

function γ is given by the following relationship:

γ(p) = a(p)(K ′d(p
′) cos(θi(p) + ∆θi(p))−Kd(p) cos θi(p)) +

h′(p′)− h(p) + ∆Ka (9)

Here, γ(p) depends on a(p) and thus on the albedo.

2) Second, it can be expressed by:

f ′(p′) = α(p)f(p) + β(p) (10)

where:  α(p) =
(Kd(p

′) + ∆Kd(p
′)) cos(θi(p) + ∆θi(p))

Kd(p) cos θi(p)

β(p) = −(h(p) +Ka)α(p) + h′(p′) +Ka + ∆Ka.

(11)

Note that neither α(p) nor β(p) depend on a(p), but only on the geometry.

Due to the large number of parameters, among which the material properties
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(the roughness of the surface by the means of the specular terms), α(p) and

β(p) are not easy to compute and therefore have to be approximated.

3. Local modeling of illumination changes in the image

Generally speaking, the simplified photometric models rely on the mod-

eling of luminance changes in local areas of the image. Therefore, they are

available for image matching or feature point tracking when surfaces are as-

sumed to be differentiable. Starting from (10) and (11), this section studies

the assumptions on which these models are based. Let W be a window of

interest centered in p and m a neighbor point belonging to W .

3.1. The luminance constancy

From the radiance models of Section 2.1, the luminance constancy [9] is

true only for Lambertian objects under constant lighting. In that case:

f ′(m′) = f(m) for any m ∈ W . (12)

3.2. The affine model

The affine model assumes that the photometric variations are locally con-

stant so that α(p) = α and β(p) = β in (10) leading to:

f ′(m′) = αf(m) + β. (13)

Remark 1: the affine photometric model, given by (13) and the pho-

tometric normalization ([17] for example) are similar [30]. Let be µf and

σf (respectively µf ′ and σf ′) the average and standard deviation of f (re-

spectively f ′) computed in W . The normalization assumes the following
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relationship:
f ′(m′)− µf ′

σf ′
=
f(m)− µf

σf
(14)

Therefore: 
α =

σf ′

σf

β = µf ′ −
σf ′µf
σf

(15)

Remark 2: The normalization (14) may introduce some noise for low σ

i.e for high luminance saturation or homogeneity in W .

According to (11), the affine model (13) assumes that:

1) the surface is locally planar. Indeed, the incident angles θi and ∆θi do

not vary spatially in W , i.e. when n is the same at each point of W ;

2) both objects and lighting are motionless (θi constant);

3) the surface is Lambertian. Indeed, h′ and h are constant in W . Ac-

cording to (2), this is true when both the ρ and the roughness r are constant

in W , i.e. when for all m in W , h(m) = h′(m′) = 0 (no specular term).

3.3. Some models suited for specular highlights occurrence and lighting changes

The above assumptions are incorrect for non-planar surfaces, for which

all the angles vary in W . This section proposes two models which are less

restrictive. The first one is available for small windows of interest.

3.3.1. A photometric model for small areas

As shown by Section 2, if only the camera moves, the luminance variations

between two frames are properly described by (6), otherwise by (9).

According to (2), γ is not constant in W since it depends on the angles

and therefore on the normal n at each point of W . It also depends on the γ
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can be correctly approximated at first order on W by a C2 function2, noted

γmod,

which can be expanded in Taylor series, centered at a point m with co-

ordinates (x, y), in the neighborhood of p:

γ(m) ' γmod(p) +
∂γmod
∂x

∣∣∣∣
p

(x− xp) +
∂γmod
∂y

∣∣∣∣
p

(y − yp). (16)

Let be γ1 =
∂γmod
∂x

∣∣∣∣
p

, γ2 =
∂γmod
∂y

∣∣∣∣
p

and γ3 = γmod(p), γ = (γ1, γ2, γ3) and

u = (x− xp, y − yp, 1). By injecting (16) in (6) it yields:

f ′(m′) = f(m) + γ>u (17)

This model is appropriate to model the photometric variations due to:

1) the motion of the camera, when there is no relative motion between the

light source and the object. The surface projected onto W is not mandatory

planar but its normal has to vary smoothly, and Ks and r as well (see (2)).

In that context, the model (17) is well suited to compensate for specular

highlights.

2) lighting changes, when the albedo and the normal n vary smoothly (see

equation (9)). The approximation of a(m) by a first order polynomial be-

comes more and more crude for large and textured surfaces.

3.3.2. A photometric model for large areas

According to (11), α depends on θi, which varies on singular surfaces,

especially on wide W . Likewise, β depends on the non-uniform specular

highlights since they depend on n and ρ. However, it is reasonable to assume

2It implies that n varies smoothly in W, i.e the surface is regular.
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that they are continuous and differentiable in each point m when n, h and

r vary smoothly in W . Then, α and β can be expanded in Taylor series

around p. By writing α =

(
∂α
∂x

∣∣
p
, ∂α
∂y

∣∣∣
p
, α(p)

)
and β =

(
∂β
∂x

∣∣
p
, ∂β
∂y

∣∣∣
p
, β(p)

)
,

it yields

f ′(m′) = α>uf(m) + β>u (18)

This model assumes that the photometric changes can be non-uniform on

a same W . It is suited locally for both highlights and lighting changes,

only when the surface is smooth. The validity of this model is studied more

thoroughly in the next section.

4. Study on the validity of the photometric model

Consider a planar object3 viewed under one point light source at a known

location. We compute the real photometric changes (α and β given by (11))

resulting from a change of the pose of the camera and the light source with

regard to the object.

Second, we achieve a local approximation of these photometric functions

by computing the second order Taylor series of α and β. The first order

approximation of (18) is suited when at least its coefficients of second or-

der are null or almost null. So, this study consists in finding these specific

configurations4.

3Obviously, the photometric model will be less adequate for non-planar surfaces [31].
4To be comprehensive, the third and upper orders should be analyzed, but this fastid-

ious analysis would have been detrimental to the clarity and concision of the paper.
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4.1. Modeling of the scene geometry

Consider a frame Fc linked to the camera. A point P with coordinates

(Xp, Yp, ZP ) is located at the center of a region of interest on the object.

Let us also consider a point M , with coordinates (X, Y, Z), located in the

neighborhood of P . We assume that the surface in P can be described as a C2

function leading to the following approximation of the depth in M , assumed

to be valid in each point of W :

Z = ZP +DX(X −XP ) +DY (Y − YP ), (19)

where the first derivatives of the surface DX , DY describe the orientation

between the tangent plane of the surface at P and the CCD plane: DX =

∂Z
∂X

∣∣
P
and DY = ∂Z

∂Y

∣∣
P
The normal vector in P is n =

(
∂Z
∂X
, ∂Z
∂Y
,−1

)
.

Given S = (Sx, Sy, Sz) (in the frame Fc) the location of the light source,

let L = (X − Sx, Y − Sy, Z) be the vector linking the lighting source S to

the point M . Then, cos θi = L.n. By perspective projection and by using Z

given by (19), the real parameters α and β given by (11) can be expressed

with respect to the pixels coordinates m. Therefore some approximations

and Taylor series expansions are achieved according to the acquisition con-

figurations.

First of all, we study the validity of the approximation of α (section 3.3.2)

by a first order polynomial. In order to simplify this study, we focus on small

windows of interestW which are located near the optical axis of the camera.
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4.2. Validity of the approximation of α

Let be u = x− xP and v = y − yP and consider the approximation of α

(see equation (11)) at second order:

α(m) = α1u+ α2v + α3 + α4u
2 + α5v

2 + α6uv (20)

The lighting conditions for which (α4, α5, α6) can be neglected are those for

which the photometric model (18) better fits the illumination changes.

Only the direct light source is moved from its initial position S with a

small motion dS = (dSX , dSY , dSZ). Indeed, a single motion of the light

source impacts both α and β. Assuming a small dS, the coefficients αi can

be expanded in Taylor series around dS. Let us focus on the expression of

α4 at first order, since the two other coefficients α5 = α6 do not provide

additional information. Three different configurations are considered.

1. The lighting vector L coincides with n: L = τn with τ constant:

α4 = α5 = α6 = 0 (21)

2. The light source is close to the camera (S = O and V = L):

α4 = − 1

ZP
(2dSZ + 2DXdSX) (22)

3. The lighting source is close to the surface (S = (Xp, Yp, Zp − ε) and

Taylor expansion around ε = 0).

α4 = −2ZP (ZP +D2
Xε− ZPD2

X)

ε3
dSZ +

2ZP (DX(ε− 1))

ε3
dSX (23)

Thus, our approximation of α is particularly well adapted when L coincides

with n at the considered point (see (21)) and when the tangent plane of the
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surface at P is parallel to the sensor plane i.e. when V coincides with n

(indeed, DX =0 in (22) and (23)). The model is also well adapted when

the depth of camera and light source are high (high ZP in (22)). When the

lighting source is close to the surface, the model is correct when the camera

is even closer to the surface (low ZP in (23)). Note also that a backward or

forward motion of the light source influences the coefficient values, since dSZ

appears in (22) and (23).

4.3. Validity of the approximation of β

In order to study the validity of the modeling of β (expressed by (11)),

it is necessary to consider the specular highlights and therefore the material

properties. For this purpose, we use the Phong model (2). We assume a static

object under constant lighting (Ka andKd), so that α(m) = 1. Consequently,

β is equivalent to the function γ in (6). Thus, we study the validity of the

following expression: β(m′) = h′(m)− h(m). β is expanded in Taylor series

at second order around p:

β(m) = β1x+ β2y + β3 + β4x
2 + β5y

2 + β6xy (24)

where the coefficients βi depend on the geometry parameters explained in

section 4.1. Since h reaches its maximum when ρ is null, it is interesting

to study the validity of the photometric models in this configuration, i.e n

coincide with B (see Figure 1). As previously, we assume a small motion of

the light source dS and achieve a Taylor series expansion of (24) around dS.

Some particular configurations of the scene geometry are studied in order to

reach some simple conclusions.
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1. L = V = n, therefore DX = DY = 0 and θi = 0. Since the expression

of β4 is far too complicated to deduce any useful information, let us

focus on two particular configurations:

(a) The light source is close to the surface (ZS = ZP ), then:

β4 = −r
(

1

ZP

)
dSZ (25)

(b) The sensor is close to P (ZP low, and Taylor series around ZP =

0), then:

β4 = β5 = β6 = 0 (26)

2. Small orientation of the surface with regard to the sensor plane (small

DX and DY and Taylor series around DX = DY = 0, n = B).

(a) The light source is located near the surface ZS = ZP

η4 = − r

ZP

(
DX

4
(3r + 7)dSX +

DX

4
(r + 1) dSY + dSZ

)
(27)

(b) The sensor is close to the surface

β4 = β5 = β6 = 0 (28)

According to (26) and (28), our photometric approximation is appropriate

when the sensor is close to the surface. Otherwise, a forward (or a backward)

motion dSZ of the light source w.r.t the surface induces variations of the βi.

A motion along the Z axis has less impact when the sensor is far from the

surface (large ZP ) and when the surface is rough (low r in (25) or (27)).

In those conditions, the variations of the specular highlight draw up a

plane on the window of interest W , which can properly be compensated by

the proposed illumination model.
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4.4. Summary

Table 1 provides an overview of the configurations for which the proposed

photometric model is adapted (+) or not (-), or when the configuration has

no influence (=). Note that the affine photometric model (see section 3.2)

relies on more restrictive assumptions, since α2, α3, β2, β3 have also to be

null in (24) or (20). As said in section 3.2 page 10, the affine model is suited

for Lambertian surfaces and is not adapted for a motion of a light source

w.r.t to the surface.

The photometric models can be used for matching in order to improve

some higher level procedures [21]. In this paper, we improve the robustness

of KLT-like tracking.

5. Feature points tracking algorithms

Tracking features in a robust and accurate way along an image sequence is

still an open problem, which explains the large variety of existing methods.

The relative motion between the camera and the scene induces a geomet-

ric deformation described by the function δ which links m′ to m such that

δ(m,µ) = m′ forall m ∈ W , according to a parameterization described by

the vector µ. The feature point tracking consists in computing µ according

to a photometric model. We will show how to compute µ for the photometric

models given in Section 3.

5.1. Commonly used tracking methods

5.1.1. The classical approach

The classical KLT technique (for Kanade-Tomasi-Lucas tracker [7, 8])

assumes a Lambertian object, thus a perfect conservation of luminance at a
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Table 1: Overview of the results about the validity of the approximations of α and β by a

Taylor series expansion at first order. +: good approximation. -: bad approximation. =:

there is no influence on the validity.

Configuration α β

Lighting vector coincides with the normal + +

Viewing vector coincides with the normal + +

Rough surface = +

Sensor close to the surface and lighting source

far from the surface

+ +

Motion of the lighting source along the optical

axis

- -

point during the sequence (see (12)), so f(m) = f ′(δ(m,µ)). However, as

seen in Section 2, the luminance constancy assumption is not true. Besides,

δ(m,µ) is also an approximation. Thus, it is more judicious to minimize the

following criterion:

ε1(µ) =
∑
m∈W

(f(m)− f ′(δ(m,µ)))
2 (29)

In order to obtain µ, we suppose that µ = µ̂ + ∆µ, where ∆µ expresses

a small variation around an estimation µ̂ of µ. When µ̂ is unknown, it is

initialized as µ̂ = 0. In those conditions, f ′(δ(m,µ)) can be expanded in a

first order Taylor series around µ̂:

f ′(δ(m,µ)) = f ′(δ(m, µ̂)) +∇f ′>(δ(m, µ̂)) Jδ
µ̂ ∆µ (30)

where Jδµ̂ is the Jacobian of δ according to µ, expressed in µ̂. Substituting

(30) into (29) leads to a linear system in ∆µ, which can be solved iteratively:
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(∑
m∈W

vc vc
T

)
∆µ =

∑
m∈W

(f(m)− f ′(δ(m, µ̂)))vc (31)

with vc = (Jδ
µ̂)
>∇f ′(δ(m, µ̂)). When considering an affine motion model,

vc is the vector defined by vc =
(
f ′x, f

′
y, xf

′
x, xf

′
y, yf

′
x, yf

′
y

)>, where f ′x
and f ′y are the derivatives of f ′ with respect to x and y respectively.

5.1.2. Tracking methods robust to affine photometric changes

These approaches are based on the photometric model described in section

3.2. Therefore, the minimization function becomes:

ε2(µ, α, β) =
∑
m∈W

(αf(m) + β − f ′(δ(m,µ)))
2
, (32)

where α and β refer to the parameters of the affine model (13). There are two

ways to obtain α and β, either by computing them outside the minimization

loop (32) [17] or by computing them simultaneously with µ.

The photometric normalization. The tracking technique consists in com-

puting µ as in Section 5.1.1 since α and β are constant. We have to solve:(∑
m∈W

vc vc
>

)
∆µ =

∑
m∈W

(αf(m) + β − f ′(δ(m, µ̂)))vc (33)

where α and β are computed using (15).

Estimation of α and β : the Jin’s technique. In [24], the authors

propose to estimate the contrast α and intensity β simultaneously with the

motion model.

Let ν be the vector of photometric variations ν = (α, β), and d the

concatenation of µ and ν. As previously, we assume a small variation ∆d =
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(∆µ,∆ν) of d around its estimate d̂ so that d = d̂ + ∆d. Thus, by using

(30) and introducing ν̂, (32) becomes(∑
m∈W

vs vs
>

)
∆d =

∑
m∈W

(
α̂f(m) + β̂ − f ′(δ(m, µ̂))

)
vs (34)

where vs = (−vc, f(m), 1)>.

Refer to Appendix A which compares the conditioning of the matrices

used in the trackers detailed in the paper. The matrix
∑

m∈W vs vs
> is

ill-conditioned and cannot be inverted easily, therefore a preconditioning,

adapted to the image, is required.

The next section proposes two tracking procedures to account for non-

uniform photometric changes.

5.2. Proposed tracking procedures

5.2.1. A tracking method robust to specular highlights

The first tracking method is based on the illumination model given by

(17). The following criterion has to be minimized:

ε3(µ,γ) =
∑
m∈W

(
f(m)− f ′(δ(m,µ)) + γ>u

)2 (35)

Let d = (µ,γ) and further assume a small motion ∆d = (∆µ,∆γ) around

an estimate d̂ of d. Similarly to the classical method of Section 5.1.1, ∆d is

computed by solving the following linear system:(∑
m∈W

vp vp
>

)
∆d =

∑
m∈W

(
f(m)− f ′(δ(m, µ̂)) + γ̂>u

)
vp (36)

where vp = (−vc,u)>. Unlike the previous tracker, the matrix
(∑

m∈W vp vp
T
)

is well conditioned (see Appendix A).
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According to the assumptions of the photometric model (17), this tracker

is more appropriate to compensate for specular highlights. For small W , it

can also compensate for lighting changes when (9) can be approximated by

a first order Taylor series expansion. For large windows, the next method is

more appropriate.

5.2.2. A tracking method robust to specular highlights and lighting changes

Section 3.3.2 has detailed a comprehensive photometric model which com-

pensates for spatial variations of specular highlights and lighting changes.

The parameters µ, α and β are computed by minimizing the following cri-

terion

ε4(µ,α,β) =
∑
m∈W

(
α>uf(m)− f ′(δ(m,µ)) + β>u

)2 (37)

The system can be linearized as in section 5.2.1, with d = (µ,α,β). Thus,

the tracking consists in solving the following system:(∑
m∈W

vm vm
>

)
∆d =

∑
m∈W

(
α̂>uf(m)− f ′(δ(m, µ̂)) + β̂>u

)
vm (38)

where vm = (−vc, f(m)u,u)>. Since the values of vm are often dissimilar,

the matrix
∑

m∈W vm vm
> can be ill-conditioned (see Appendix A).

Moreover, the number of parameters is quite large. Indeed, by using an

affine motion model, twelve parameters have to be computed. Obviously,

the use of too small windows of interest may alter the accuracy of both

photometric and motion estimations.

6. Validation and experimental results

This section compares the previous trackers through several sequences

showing geometric and photometric changes simultaneously. First of all, we
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detail the experimental setup, the notations and the outlier rejection strategy.

The first experiments are carried out on sequences for which a ground-truth

is available in order to evaluate the methods as well as the outliers rejec-

tion procedure. Then, experiments are performed on real sequences, without

ground-truth.

6.1. Experimental setup and evaluation with ground-truth

Tracking methods. The following notations are used:

C: classical tracking (section 5.1.1) for which f ′(δ(m,µ)) = f(m)

N: photometric normalization (section 5.1.2): f ′(δ(m,µ)) = λf(m) + η

J: Jin et al. method (section 5.1.2): f ′(δ(m,µ)) = λf(m) + η

P3: tracker with three parameters (section 5.2.1): f ′(δ(m,µ)) = f(m) + u>γ

P6: tracker with six parameters (section 5.2.2): f ′(δ(m,µ)) = α>uf(m) + β>u

Size of the window of interest. Usually, the choice of the size N ×N

of the square window W is based on a trade-off between robustness to noise,

computation times and reliability of the assumptions on which the tracker is

based. Here, we consider some sizes ranging from N = 9 to N = 35.

Point rejection and comparison criteria. The points are selected in

the first frame of the sequence by the Harris detector [5] and an affine motion

model is computed between the first frame and the current frame.

The rejection process and its validation. The tracker has to con-

stantly check whether the points are correctly tracked and are reliable5. To

this end, most techniques analyze the residuals [24, 16]. In our work, a

point is rejected as soon as its residuals become higher than a threshold,

5They can be lost because of noise, disappearance or bad convergence.
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Sconv = N 2E2
ave, where Eave is the tolerated luminance variation for each

point in W between f and its model. We choose Eave = 15. For each se-

quence, the following evaluation criteria are considered:

1) The robustness of the tracking, i.e. the number of points correctly

tracked during the whole sequence.

2) The temporal evolution of the mean convergence residuals : (1/nk)
∑nk

i=1 ε
i,

where nk is the number of points currently tracked by the considered method

k. These two first criteria have to be considered jointly since the most sat-

isfactory method is the one which tracks a large number of points with low

residuals.

3) The location errors. When ground-truth is available, the mean location

error is computed on all the points that are correctly tracked by the technique.

Note that for a same location error, the best technique is the one which tracks

the larger number of points.

Computation of the ground-truth. For planar surfaces, four blobs,

easy to segment, are put on the object in order to compute the homography

transform from the initial frame to the current one. For non planar surfaces,

the pose is computed between the camera and the object, which is static (see

[30] for the implementation details). In each case, the error is given by the

euclidean distance between the theoretical points and the location provided

by the tracker.

Sequences. In the two sequences used, there is no lighting change but

the motion yields specular variations. Glossy paper has been chosen to cover

the objects. The sequence Planar (Fig.2(a)) shows a planar surface of size

1× 1 m. The camera is fixed at ZP = 4 m and two light sources are located
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at Sz ' 2 m. The object is moved by an operator. The sequence Cylinder

(Fig.2(b)) shows a cylinder of radius 7 cm. The object and light sources are

static, the camera is moving and ZP ' 1 m and Sz > ZP .

Results.

1) Robustness. Table 2(a) and 2(b) page 26 show the percentage of correct

points. For small windows, P3 tracks the highest number of points. In con-

trast, for largerW , P6 is the most competitive method: on the planar surface

it correctly tracks around twice the number of points. Despite its bad con-

ditioning (see Appendix A), it outperforms J or N by better compensating

the specular changes.

2) Location errors. Fig. 3 and 4 compare the mean location error computed

on the correct points6. The location errors are low: around 1 pixel at the

beginning of the sequence and less than 1 pixel when outliers points are re-

jected. The strategy for outliers rejection, based on the residuals, is therefore

efficient to maintain a good accuracy of the tracking.

6.2. Experiments on real sequences

In the next sequences, the camera is moving and the scene is motionless:

1) Sequence Cylinder2 (150 images) (see Fig. 5a) shows a specular cylinder.

The lighting conditions do not change but the motion of the camera causes

some specular highlight variations on the object surface.

2) Sequences Planar object (Fig. 5b) and Marylin (Fig. 5c) show several

textured objects consisting of several materials (glossy paper, ceramic, metal,

cardboard, glass) under an ambient lighting (daylight and fluorescent lamps

6The method C is not taken into account since too many points are lost.
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Table 2: Lab sequences. Percentage of points which have been correctly tracked during the

sequence (occluded points or points going out of the image are not taken into account).

C: classical tracking. N : tracking with photometric normalization. J : Jin et al. method.

P3: tracker with three photometric parameters. P6: tracker with six parameters.

(a) Planar surface. (b) Cylinder.

N 9 15 25

C 6 9 6

N 29 32 32

J 23 37 43

P3 34 34 37

P6 0 46 69

N 9 15 25 35

C 8 24 14 10

N 2 30 36 40

J 0 8 28 34

P3 10 40 70 62

P6 0 0 34 68

located on the ceiling) and a direct light source. In the sequence Planar

object, the intensity of the direct lighting varies strongly and periodically,

with a period of about 20 frames, from a maximum value to a minimal one.

The sequence Marylin is particularly complicated because of the large motion

of the camera. In addition, some intensity variations of the light source are

deliberately caused: around the iteration 135, the direct light is switched off,

which induces some strong illumination changes.

3) Sequence Hill7 (Figure 5d) shows an outdoor scene acquired at different

times of the day.

In sequences Cylinder2, Planar object and Marylin, ZP ' Sz, which is

7This sequence can be found in the image database CMU/VASC : http://vasc.ri.-

cmu.edu/idb/html/motion/index.html

26



not a favorable case for any photometric models (see section 4 and Table

1). In the sequence Hill Sz >> ZP , which is a favorable configuration. Each

sequence is played forward and backward, in order to check the good behavior

of the tracking, i.e the symmetry of residuals curve.

Results. Table 3 reports the percentage of correct points w.r.t N , for

each tracking technique and each sequence. P3 tracks the largest number of

points for N ≤ 15 (up to N = 25 for Cylinder2). P6 does not converge8 for

small N but performs well for N ≥ 25.

As noticed in section 6.1, the behavior of the mean residuals has also

to be considered. As can be seen on Fig.6 to 9, the residuals evolve in a

similar way as the illumination changes. For instance on Fig. 7, they vary

periodically with the same frequency as the lighting. In most sequences, for

N = 9, P3 provides the lowest residuals, although these values are computed

from a larger number of points than J and N (see Table 3) especially in

Marylin. P3 offers almost similar residuals as J and N in Planar surface and

Hill but it performs better when only specular highlights are considered (see

Fig. 6b). In contrast, its residuals are higer when lighting changes occur (see

Figures 7b and 8c) except for the Hill sequence (see Figure 9c), which offers

a favorable configuration for the photometric models (see section 3.3.1). (see

the residuals on the Fig. 7c, 8c, 9c) P6 always yields the lowest residuals

and tracks the largest number of points. As an example of the relevance of

the photometric correction, Fig. 10 (a) shows the temporal evolution of the

luminance of a window W tracked in the sequence of Fig. 7 and Fig. 10 (b)

8The number of unknown parameters is too large to be properly estimated by the low

number of pixels in W.
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shows the sameW after proper photometric correction by P6. The evolutions

of the spatial photometric corrections α>u and β>u in W are displayed on

Fig. 10 (c) and Fig. 10 (d) respectively.

Computation times. Consider a point correctly tracked by each method.

The computation times are reported in Table 4, for N=9, 15 and 35. Ob-

viously N and P6 are the most time-consuming techniques, either because

of the computation of the photometric normalization or because of the high

number of photometric parameters. In addition, they might require a larger

number of iterations to converge. For N=9 and 15, C, J and P3 have similar

computation times9.

6.3. Discussion

On small windows of interest, J , N and P6 perform bad compared to C

and P3. This can be partly explained by a sensitivity to image noise: when a

pixel is noisy inW , the values of µf , σf , µg, σg (see (15)), and α also become

noisy since they depend on the luminance. For J and P6, α is multiplied by

f , consequently an error on α can have a huge influence and the minimization

can lead to an incorrect value of µ.

For small W , P3 tracks a larger number of points than N and J by

correctly compensating for the specular highlights and lighting changes. Its

performance is reduced on largeW under lighting changes since the model has

to approximate somehow the albedo of the object by a first order polynomial

on W , which is a strong assumption when reflectance varies drastically.

Note also that, even if P3 requires the computation of an additional pa-

9However, note that the KLT trackers can be accelerated on GPU units as in [32].
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Table 3: Percentage of the points that have been tracked up to the end of the sequence

with respect to the points which were initially selected, with regard to N .
(a) Cylinder2 (137 points selected) (b) Planar object (58 points are se-

lected)

N 9 15 25 35

C 86.5 80.2 71.4 60.5

N 40.6 69.5 83.3 71.4

J 76.7 85.5 85.7 73.9

P3 96.2 93.1 87.3 77.3

P6 - 64.8 81.7 88.2

N 9 15 25 35

C 63.8 36.2 8.6 6.9

N 77.6 91.4 96.6 93.1

J 67.2 51 87.9 89.7

P3 100 100 96.6 96.6

P6 48.3 94.8 100 100

(d) Hill (156 points are selected) (e) Marylin (56 points are selected)

N 9 15 25 35

C 49.6 20 11.2 9.6

N 45.9 63.7 73.7 75

J 55.6 70.4 85.6 93.3

P3 74.8 75.6 86.4 95.2

P6 - 77.8 89 97.1

N 9 15 25 35

C 0 0 0 0

N 0 21.4 17.9 17.9

J 0 7.2 10.7 17.9

P3 46.4 14.3 7.2 3.6

P6 - 14.3 42.9 39.3

rameter w.r.t J and consequently the inversion of a wider matrix, the com-

putation times of these techniques are similar, due to a better convergence

of P3.

P6 is the most accurate tracker for large W , because the use of a com-

prehensive photometric model improves the estimation of the motion model

during the sequence.
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Table 4: Computation times (in ms) of the tracking of one point in the sequence Cylinder2,

and planar object for N=9, 15 et 35. (- = no convergence)

Specular highlights Lighting changes

Method N=9 N=15 N=35

C 1.3 2.7 21

N 4.6 6.8 31.2

J 1.7 3.1 21.7

P3 1.4 3.2 12.3

P6 - 8.5 25

Method N=9 N=15 N=35

C 1.3 2.9 11.4

N 4.3 3.5 14.1

J 1.6 3.2 11.5

P3 2 3.5 13.8

P6 - 5.9 18.4

7. Conclusions

Through the analysis of specular reflection models, this paper has ex-

plained the assumptions on which the most widely used photometric models

are implicitly based. Then, it has proposed some local photometric models

which rely on a precise analysis of the reflection, and on the assumption that

illumination changes vary smoothly in local areas of the image.

The proposed photometric models can be useful in many computer vision

applications where lighting is not perfectly controlled, especially in outdoor

experiments or for mobile cameras. This paper incorporated the models into

two KLT feature point tracking procedures.

By compensating for the spatial variations of illumination changes, the

proposed methods have proved to be more robust than the existing ones.

The first tracker is well adapted for small windows of interest, while the
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second one is applicable for larger windows of interest. Experimental results

on several images sequences have shown good convergence and accuracy for

these procedures. Future work will investigate the combination of the two

photometric models depending on the characteristics of the point to track

and depending on the local characteristics of illumination changes that are

computed during the sequence.
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Appendix A. Conditioning

The conditioning of the trackers detailed in that report can be compared.

Indeed, each linear equation system involved in the tracking procedure (see

equations (31), (33), (34), (36) and (38)) can be written as Ax = y and more

precisely  A11 A12

A12
> A22

 x1

x2

 =

 y1

y2

 (A.1)

Consequently, the inversion of A is given by

A−1 =

 I3 0

−A22
−1A12

> I3

 ∇−1 0

0 A22
−1

 I3 −A12A22
−1

0 I3


(A.2)

where ∇ is the Schur complement ∇ = A11−A12A22
−1A12

>. The inversion

of ∇ can be achieved in the following way:

∇−1 = A11
−1 + A11

−1A12(A22 −A12
>A11

−1A12)−1A12
>A11

−1 (A.3)
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Since (A12A22
−1)>=A22

−1>A12
> we can introduce :

M =

 I3 −A12A22
−1

0 I3


so that

A−1 = M>

 ∇−1 0

0 A22
−1

M

Consequently, the inversion ofA succeeds if∇ andA22 are well-conditioned

and can be correctly inverted. ∇ is well conditioned when A11 is well-

conditioned (see (A.3)).

In the tracking techniques, for each approach the matrix A11 is the same.

Therefore, the comparison of the conditioning of the method only depends on

the conditioning of A22. The matrices associated to the methods which ap-

proximate the photometric parameters A22
J (for the Jin’s technique), A22

P3

and A22
P6 are written as:

J A22
J =

∑
m(f(m), 1)(f(m), 1)>

P3 : A22
P3 =

∑
m uu>

P6 : A22
P6 =

∑
m(uf(m),u)(uf(m),u)>

(A.4)

The matrix A22
P3 is the best well-conditioned. On the contrary, the

matrix A22
J and A22

P6 are ill-conditioned and their terms depend on the

image through f(m).
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(a) (b)

Figure 2: Sequences used to evaluate the accuracy of the tracking procedures. (a) Planar

surface. (b) Cylinder.
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Figure 3: Planar surface. Convergence residuals and location errors for N = 9 (left)

and N = 25 (right).
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Figure 4: Cylinder. Convergence residuals and location errors for N = 9 (left) and

N = 25 (right).
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(a)

1 rst frame 110th frame 150th frame

(b)

1rst frame 75th frame 150th frame

(c)

1rst frame 145th frame 299th frame

(d)

2nd frame 9th frame 13th frame

Figure 5: Images sequences. (a) Cylinder2. (b) Planar object. (c) Marylin. (d) Hill.
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(a) N=9 (b) N=35

Figure 6: Sequence Cylinder2. 37 points have been selected. Average of the residuals with

regard the frame number, with a window size (a) N = 9 (b) N = 35.
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(a) N = 9 (b) N = 9 (c) N = 35

Figure 7: Sequence Planar object. (a) Average residuals obtained with N=9. (b)

Residuals obtained with N=9 on the points which are tracked simultaneously by

N and P3. (c) Average residuals obtained with N=35.
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(a) N = 9 (b) N = 15 (c) N = 35

Figure 8: Sequence Marilyn. Average residuals obtained with (a): N=9, (b): N=15 and

(c): N=35.
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(a) N = 9 (b) N = 15 (c) N = 35

Figure 9: Sequence Hill. (a) Average residuals obtained with N=9. (b) Residuals obtained

with N=9 on the points which are tracked simultaneously by N and P3. (c) Average

residuals obtained with N=35.
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Figure 10: Examples of photometric correction in the sequences (a) Planar Object and

(b) Cylinder2 (point A) for different times k: (1) without photometric correction. (2)

correction with P6. (3) Evolution of α>u. (4) Evolution of β>u.
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