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A B S T R A C T   

Pepsin is a protease used in many different applications, and in many instances, it is utilized in an immobilized 
form to prevent contamination of the reaction product. This enzyme has two peculiarities that make its 
immobilization complex. The first one is related to the poor presence of primary amino groups on its surface (just 
one Lys and the terminal amino group). The second one is its poor stability at alkaline pH values. Both features 
make the immobilization of this enzyme to be considered a complicated goal, as most of the immobilization 
protocols utilize primary amino groups for immobilization. This review presents some of the attempts to get 
immobilized pepsin biocatalyst and their applications. The high density of anionic groups (Asp and Glu) make 
the anion exchange of the enzyme simpler, but this makes many of the strategies utilized to immobilize the 
enzyme (e.g., amino-glutaraldehyde supports) more related to a mixed ion exchange/hydrophobic adsorption 
than to real covalent immobilization. Finally, we propose some possibilities that can permit not only the covalent 
immobilization of this enzyme, but also their stabilization via multipoint covalent attachment.   

1. Biocatalysis in food technology 

Enzyme biocatalysis is gaining interest in many different industrial 
areas [1–10]. Enzyme selectivity and specificity, together with their 
capacity to perform their function under mild conditions (atmospheric 
pressure, aqueous medium, room temperature, etc.) has made them 
ideal catalysts from the point of view of green chemistry [11–14]. 
However, enzymes have evolved to fulfil their physiological role in vivo, 
and that way many of their features do not fit those required for in-
dustrial catalysts: moderate stability, saturation kinetics, inhibitions, 
solubility in aqueous media, etc. [15]. These drawbacks are hampering 

their industrial implementation. Even enzyme specificity may become a 
problem in some instances [16–19], like in the full modification of 
multifunctional or heterogeneous substrates (e.g., oils and fats) [20]. 
This can also make searching for a new enzyme mandatory if the sub-
strate is slightly different to the natural one [21]. In fact, some current 
research is focused in strategies to enlarge the enzymes specificities, to 
utilize them in substrates that differ from the physiological ones [22,23]. 

Nowadays, there are many different tools to improve the enzyme 
features and make them fit the industrial requirements better. Meta-
genomics grants access to all present or even extinct biodiversity 
[24–28]. Moreover, directed evolution permits to mimic natural 
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evolution but focused on the property selected by the researcher in an 
accelerated way [29–33]. Advances in enzyme modelling are permitting 
a better design of site-directed mutagenesis to get the desired enzyme 
improvements [34–39]. Chemical modification becomes more 
controlled and effective each day [40–43], while enzyme immobiliza-
tion advances permit to further improve enzyme features [44–49], being 
compatible with all previous strategies [50–54]. Even the design of new 
reactors compatible with biocatalysts bearing different mechanical 
resistance facilitates the final implementation of the enzymatic biocat-
alyst [55]. In this sense, one of the outstanding developments showing 
the potential of integrating different strategies has been the design of 
artificial metal-plurizymes. Researchers generated a second active cen-
ter in an esterase by using modelling and directed mutagenesis [56]. 
Next, the activity of this second active center was improved by model-
ling and site-directed mutagenesis [57]. In a further effort, they 
designed an organometallic complex coupled to an enzyme irreversible 
inhibitor intended specifically for one of the enzyme active centers. The 
coupling of this inhibitor to the enzyme generated an enzyme bearing 
two different catalytic activities, and it was able to catalyze cascade 
reactions involving the esterase catalytic center and the organometallic 
catalyst [57]. 

In food technology, enzyme specificity is an important feature, as in 
many instances the researcher only desires to modify one of the very 
similar compounds that are present in the food [58–60]. Furthermore, 
enzyme selectivity tends to be a key positive feature, as that way, the 
production of toxic by-products (or just of some products with undesired 
organoleptic properties) may be prevented. Standard catalysis is not a 
competitor of biocatalysis if the modification is carried in the whole 
food, as a standard catalyst will require incompatible conditions with 
many of the food components. This will produce a massive modification 
of all similar compounds and will hardly give only the desired product. 
That way, implementation of enzymes in food technology is a fact since a 
long time ago [58–60]. 

2. Proteases in food technology 

Studies on proteases remain numerous and relevant, as they find 
justifications in broad aspects [61–64]. On the one hand, they comprise 
studies of their characteristics and functions in their place of production 
and action, which contribute to the elucidation of essential cycles in 
living beings and forms of metabolic control [65]. But, in addition, these 
studies also contribute to an important perspective of application 
completely outside this natural environment, such as in the cleaning 
(detergent development) [66–68] and pharmaceutical industries, or in 
food production stages [62,69,70]. One of the most effective applica-
tions of proteases as a biocatalyst in food production is in the generation 
of protein hydrolysates, either for the direct consumption of these hy-
drolysates or for the release of bioactive peptides, as it can be inferred 
from the numerous works in the literature [71]. 

Food can be seen as complex reaction media, where different types of 
components and matrix structuring complexities lead to different pos-
sibilities of alteration of the proteases when used as industrial bio-
catalysts, with possible inhibitors or protein denaturing agents, or pH 
values in the medium that affect enzymatic activity (and that cannot be 
modified by the researcher) [65]. Proteases can be quite versatile, pre-
senting a huge range of types and specificities, which lead to an 
expansion of the options of choice. Proteases can be classified by 
different systems, considering their structures, catalytic mechanism, and 
their inhibitors. In addition to the classic international system developed 
in the 1950s [72] for the nomenclature and classification of enzymes (EC 
number), other databases have been expanded, such as the MEROPS 
peptidase database. A widely adopted way of grouping sets of proteases 
with common characteristics is through the focus on their iconic amino 
acid or metal present in their active sites: cysteine peptidases (C), 
aspartic peptidases (A), serine peptidases (S), metallo peptidases (M), 
mixed catalytic type (P) and unknown type (U). 

Another useful classification identifies proteases against the optimal 
pH of the medium, acidic (action at pH < 7.0), neutral (better activity 
around pH 7.0) and alkaline proteases (pH > 7.0), or even high alkaline 
proteases (pH > 10.0) [73]. Of course, these classifications can be 
related, since the different characteristics addressed precisely influence 
other aspects. For example, acidic proteases usually present aspartate in 
their triad of amino acids as catalytic groups, which would also classify 
them as aspartyl proteases. All these features and preferences on catal-
ysis conditions make an enzyme more or less suitable for processing a 
specific food. In addition to the characteristics that make it more or less 
susceptible to the food environmental conditions, proteases have an 
enormous variety of specificities, that is, proteases are able to attack 
peptides and proteins in very different positions (e.g., endo or exo-pro-
teases) [65,74]. This greatly expands the range of choices based on the 
expected result. However, in addition to the natural characteristics of 
proteases, when seeking to apply these enzymes, it is possible to 
consider modifying certain aspects of these catalysts, such as increasing 
their stability or reducing inhibitions. In this way, in addition to the 
characterization studies and ways of obtaining it, there are studies of 
enzymatic modifications that include improving proteases performance 
via chemical modifications of the protease, ultrasound treatment of the 
food or immobilization technics [65,74,75]. 

3. Enzyme immobilization 

Enzyme immobilization was developed to solve the problem of 
enzyme recovery and reuse, as initially the high prices of enzymes 
became a barrier for their implementation [46,76]. However, nowadays, 
the price of some enzymes has been reduced to a level that they are now 
“recommended” to be used in a free way for one cycle, even to produce 
some relatively cheap products, such as biodiesel [77–79]. Nevertheless, 
enzyme immobilization is far more than a mere system to recover and 
reuse enzymes. It has been shown that, if properly performed, enzyme 
immobilization may be a powerful tool to improve many enzyme fea-
tures [45,48,49]. Thus, although the main objective of an immobilized 
protocol remains to maintain the enzyme in a heterogeneous form, an 
immobilization protocol should, nowadays, improve greatly the enzyme 
features. One of the enzyme features that is expected to be improved 
using immobilization is enzyme stability [44]. This may be achieved by 
different reasons as it has been recently reviewed (e.g., rigidification by 
multipoint covalent attachment, prevention of enzyme subunit dissoci-
ation) [44,80]. Moreover, the enzyme range of operation conditions 
may be greatly expanded, as a result of the mere immobilization that 
prevents enzyme precipitation and, more interestingly, by enzyme sta-
bilization [44,81,82]. In some instances, enzyme activity may be 
increased upon immobilization, due to diverse reasons [47,83]. Immo-
bilized enzyme selectivity and specificity may be randomly tuned, 
converting an unspecific enzyme in a specific one, or vice versa [47]. 

In other instances, immobilized enzymes become more resistant to 
the inactivation by chemicals [83,84], or become more insensitive to 
inhibitions [49,85–88]. Immobilization may be also coupled to enzyme 
purification, saving costs and time [83,89–94]. However, all these im-
provements of the enzyme features lay in the understanding and control 
of enzyme immobilization. Otherwise, enzyme immobilization may 
even drive to the worsening of the enzyme features [95]. For example, if 
the support used in the preparation of the biocatalyst presented a 
physically no inert surface, it may lead to some undesired enzyme 
conformational changes during operation [96]. The situation is worse if 
the support maintains some chemical reactivity after the enzyme 
immobilization. It has been recently shown that the activity, stability 
and even the path followed by the enzymes during inactivation may be 
altered by the support-enzyme interactions [97]. 

4. Immobilization of proteases 

The specific suitability and advantages of the practical use of enzyme 
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immobilization depends on specific enzyme features, reaction charac-
teristics, and substrate and product properties [76,98–101]. Thus, the 
formulation of immobilized proteases as immobilized enzymes displays 
some special advantages and specific problems that require careful and 
detailed consideration. The special characteristics of the proteases are 
related to their action on macromolecular substrates (one of the target 
uses of proteases is in the modification of proteins), the broad molecular 
diversity of products (from peptides of different sizes to amino-acids) 
and the possibility of autolysis [48,65,75,102,103]. When considering 
the potential advantages of immobilization, a distinction between 
technical and functional advantages is of importance. Technical ad-
vantages are associated to the facilitation of enzyme separation, possi-
bility of enzyme reuse or continuous use, which might suggest in many 
cases a mandatory use of enzyme immobilization. However, this is not 
true in the case of proteases for all instances. The importance of enzyme 
separation and reuse is highly dependent on the specific application. For 
example, application in detergents industry does not need enzyme sep-
aration or reuse. Technical benefits of immobilization become more 
important in food processing that implies a protease-free product 
formulation or in the manufacturing of specialized proteolytic enzyme- 
immobilized reactors [76,98–101]. 

As explained above, the functional advantages of the immobilization 
are related to the possibility of modulating/enhancing catalytic func-
tional properties of the enzyme to design the final enzyme-immobilized 
catalyst: activity and stability [44,47–49]. For example, in some cases 
the application of the reaction might require some conditions (organic 
solvents, acidic/basic conditions) that might be incompatible with the 
use of the free enzyme [76,98–101]. In other cases, it is convenient to 
use high temperatures or chaotropic agents to re-dissolve protein ag-
gregates, conditions where a non-stabilized enzyme may be unable to 
perform their function [104,105]. Including the use of proteases to 
catalyze small peptides synthesis (via thermodynamically controlled 
synthesis or kinetically controlled synthesis) [106–111], resolution of 
racemic mixtures [112–116], etc., the range of conditions where pro-
teases can be utilized is quite diverse [65]. In many of these uses, the 
immobilization of the proteases into a solid matrix is an enabling tech-
nology for active product formulation. The activity/stability profile of 
immobilized proteases is not a trivial feature given the characteristics of 
the reactions where the enzymes may be used. The immobilized protease 
must be designed with careful consideration of the different design 
variables involved: the carrier material properties, the immobilization 
chemistry and the protease loading [65]. Some basic aspects with the 
corresponding advantages/disadvantages are commented as follows. 

The choice of the material support where the enzyme is immobilized 
represents a key decision (Fig. 1) [48,96,117]. For example, the 
immobilization of proteases into the internal surfaces of porous material 
disables the undesired possibility of autolysis since the immobilized 

protease molecules cannot interact with each other (Figs. 1A, 2A). This 
advantage may be extended to avoid any undesired effect due to protein- 
protein interaction (e.g. aggregation in the presence of organic solvents) 
or interaction with external interfaces (solvent drops, has bubbles, etc.) 
[48,118,119]. However, when proteases are immobilized onto non- 
porous supports, protein-protein interactions are still possible between 
molecules located in different particles and autolysis might still occur 
(Figs. 1B, 2B). In those cases, post-immobilization treatments to coat the 
protease surface with polymers might be a solution, but this could also 
avoid the hydrolysis of the proteins if it is not carefully designed. The 
choice between non-porous and porous particles is therefore critical. 
The use of porous supports displays the additional advantage of the high 
internal surface area for achieving high loading of catalyst immobili-
zation while a manageable size of particle size (50 micron-500 μm) is 
used (Fig. 2A). In non-porous particles, the loading capacity decreases 
reciprocally with particle diameter, so the increase in loading might 
require too small particle size leading to the colloidal suspensions 
becoming difficult to separate from the liquid solution unless magnetic 
particles are used (Fig. 2B) [120]. The prevention of protease autolysis 
when immobilized on porous supports can give a significant enzyme 
stabilization, which will not be related to a real enzyme rigidification, 
but inherent to any immobilization. To really check if the enzyme is 
stabilized by enzyme rigidification, it is recommended to compare the 
stability of the new immobilized enzyme with those of an enzyme 
immobilized via a single point. 

The use of porous particles implies an important disadvantage, 
however. For the catalytic action, the substrate has to diffuse into the 
porous network where the protease is immobilized (Fig. 2A). Given the 
macromolecular character of the substrate, the diffusive transport of the 
substrate might limit or fully disable the reaction. It should be consid-
ered that the nature of the substrate where proteases are used will be a 
collection of different proteins, with different sizes, and that the source 
of the proteins that we desired to hydrolyze may be diverse. As each 
protein source may have their own composition, each with different 
maximum sizes in their components, this can raise some additional 
problems. Hence, the porous structure of the biocatalyst must be 
considered to facilitate transport. Once the protein starts to decrease in 
size by partial hydrolysis, the fragments may diffuse with higher rate 
and the problems may decrease along time. One support/reactor ar-
chitecture broadly used in proteolytic reactors is the wall-coated 
microfluidic protease-immobilized continuous reactors that combined 
both the positives features of non-porous a porous material supports. In 
these systems, the protease is immobilized in the inner surface of 
capillary or monolithic channels where the substrate mixture flows 
through [55,121–125] (Fig. 1C). The high surface-to-volume ratio of the 
channels enables a high enzyme loading and thus, high reaction rates, 
while the channel diameter is in the micrometer scale, and therefore not 

A

B

C

Fig. 1. Different formats of material support used for proteases immobilization. A) Porous particles; B) non-porous particles; C) Microfluidic channels.  
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liming substrate transport. 
The choice of the support surface-activation and immobilization 

protocol has a critical influence on activity/stability since it determines 
the structural and molecular features of the catalyst: enzyme orienta-
tion, enzyme localization, enzyme density, structure distortion, struc-
ture rigidification, etc. [65] (Fig. 3). 

Enzyme orientation is generally an important factor of the catalytic 
activity of any immobilized enzyme [97,126]. However, in the case of 
enzymes acting on macromolecular substrates, the enzyme orientation is 
critical since it determines the substrate accessibility to the active center 
of the protease, even if it is immobilized on a non-porous support 
(Fig. 3A) [48,127]. The importance of this effect will depend on the 
support surficial geometry. A support formed by fibers with a size 
similar to that of the protease, will reduce the steric hindrances, but also 
reduce the possibilities of really improving enzyme stability via multi-
point covalent immobilization [44,96]. That way, at first glance, sup-
ports forming flat surfaces should be preferred, but these supports can 

generate some steric undesired problems. Enzyme orientation must 
facilitate full access of the enzyme to the substrate, Fig. 3. The control of 
the orientation by immobilization can be based on the control of the 
immobilization. This may be achieved if the first event of the immobi-
lization aiming to involve different regions of the enzyme to direct the 
immobilization by different regions (e.g., using heterofunctional sup-
ports) [90] or by the use of directed mutagenesis to introduce specific 
groups that permit the full control of the first groups of the enzyme that 
will react with the support (e.g., a Cys residue) or by the fusion of the 
target protease with specific binding modules [127]. Again, the problem 
is higher using the intact proteins as substrate and will decrease when 
smaller protein fragments are generated. 

In the case of proteases, as other enzymes acting on macromolecular 
substrate, a correct enzyme orientation is a needed condition but not 
sufficient to have suitable substrate access. Beyond the commented 
possible influence of the diffusive hindrances originated in porous sup-
ports, the catalyst loading in the surface is another critical factor 
[128–134]. 

At low protease surface density, substrate transport to the surface 
and access to the active site of the protease are enabled (Fig. 4B). On the 
contrary under conditions of high surface protease density, additional 
steric hindrances might be created disabling the access to the active site 
(Fig. 4B) [104]. The undesirable condition of a too high surface density 
of protease molecules can occur depending on the interplay of some 
variables: the enzyme loading, the immobilization rate, the enzyme 
orientation and the size of the substrate. 

It is obvious that using a high surface density of the immobilized 
enzyme, if the enzyme active center is not fully oriented toward the 
medium, and it is in some way near the support surface, using a very low 
enzyme surface density, the substrate may access the active center of the 
enzyme. However, there will be a critical loading beyond which steric 
hindrances are created by proximity of each immobilized protease 
molecule with other immobilized enzyme molecules, promoting a drop 
in the observed enzyme activity, Fig. 4B [104]. 

If the immobilization rate is low and the protease is permitted to 
diffuse into the pore of the biocatalysts before immobilization, the 
average distance between immobilized may be next to the size of the 
protease. That way, the problem will be more important using substrate 
proteins larger than the protease, and lower using protein substrate 
smaller than the protease. If the immobilization rate is very high, the 
immobilized proteases packing will be more significant, and the steric 
hindrances will be more significant with all moderately large substrates. 

A

B

Avoided autolysis

Possible autolysis 

High loading

High requires small particle size

Potential hidrances for substarte access

Easier substrate access

Fig. 2. Disadvantages of using porous (A) or nonporous particles (B) for proteases immobilization.  

A B

C

D

E

Fig. 3. Importance of the enzyme immobilization design on the final features of 
immobilized proteases. A) Surface activation degree, immobilization chemistry 
and protein surface chemistry are the key factors influencing the achievement 
of different protease orientation (B), protease distribution (C), immobilized 
enzyme density (D), enzyme structural distortion (E). 
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In fact, a high surface density of the protease will be also possible even at 
low enzyme loadings if the enzyme immobilization rate is much quicker 
that the enzyme diffusion [135]. During the enzyme immobilization 
process, the protein has to diffuse through the pores to access the sup-
port active surface to be immobilized. When the diffusive transport of 
the protein is significantly slower than the immobilization reaction, the 
protein will be preferentially located on the more external areas of the 
material support leading to a high local density of protein and, therefore, 
steric hindrances may appear far before the support is fully loaded with 
the enzyme. Therefore, in the case of protease, special care must be 
maintained for the immobilization rate, that should be sufficiently slow 
to avoid crowding. Enzyme crowding may also alter enzyme stability 
[136–138], but in the case of protease use to hydrolyze proteins, the 
problems may be higher than the benefits. The immobilization rate can 
be modulated by controlling the surface density of reactive groups on 
the surface [44], using conditions where the immobilization rate may be 
reduced (e.g., adding a solvent in hydrophobic immobilization) [135], 
increasing the ionic strength in ion exchange [139], decreasing the 
reactivity of the groups in the support (e.g., using borate [140] or 
aminated compounds [141,142] using glyoxyl supports), using pH 
values where the reactivity of the support may be reduced [140], etc. 
These problems can generate interesting reaction profiles. For example, 
when these problems exist, the protein molecules that go into the sup-
port may be fully fragmented (by the action of all enzyme molecules 
because even if they have not activity versus the large initial protein, 
they can attack the protein fragments) while a large percentage of initial 
proteins remain still intact. This will never occur using free proteases. 

Using proteases that are intended for protein hydrolysis, it will al-
ways be recommended to follow the activity using a small substrate to 
check that the active center maintains the functionality and a protein to 
check that the active center remains accessible. That way, if the activity 
decreases it becomes possible to discriminate if the enzyme is really 
inactive or just its active center is blocked. 

5. Pepsin features 

The first studies on pepsin identification, concentrated specifically in 
the beginning of the 19th century [143–146], evolved around the 
identification of the component able to covert nitrogenous foodstuffs 
observed in gastric fluids. Some important moments in the advances of 

these studies can be highlighted, such as the effective identification of 
pepsin as a protein with activity among other components of gastric 
fluids, and its isolation/crystallization after 1930 [147]. With its crys-
tallized form available, in addition to the possibilities of its application, 
primarily related to medical proposals, there have been advances in the 
elaboration of specific substrates and thus in deeper understanding of its 
actions and in kinetic studies [148–152]. Understandably, a huge range 
of studies with pepsins focused, and still focuses, on their participation 
in digestive systems, and other relationships with the metabolic situa-
tions of living organisms, being one of the most prominent representa-
tives among the aspartyl proteases [147,153]. Aspartyl proteases are of 
great interest because, in addition to their key gastric digestive action, 
they exhibit a relationship with virus activities that affect humans, such 
as HIV [154–157], and mechanisms involved in the generation of Alz-
heimer's disease [158]. 

However, its isolation and production, already well mastered, allow 
its application in different processes such as medical applications (e.g., 
the treatment of dyspepsia) [159,160], in food quality tests, (e.g., in 
digestion simulations) [161–164], and more directly in the production 
of modified foods and nutraceuticals. Many studies point to the prom-
ising application of pepsin in the production of protein hydrolysates, and 
release of peptides [165–167], with differentiated bio and techno 
functionalities, and, in particular, low allergenicity foods [168–172]. 
The often observed reduction in the allergenicity of certain proteins after 
treatment with pepsin has been closely related to one of the functions 
indicated for this enzyme in the human digestive system [173–175]. 
Some studies highlight that, despite its low effectiveness in releasing 
amino acids for absorption in the intestine, pepsin has an important role 
in reducing the risk of allergenic sequences of proteins reaching the 
intestinal lumen [173–175]. Although the correlation between resis-
tance to proteolysis and allergenic activity is not absolute, many studies 
suggest the importance of understanding the role of pepsin in human 
digestion as a controller of the passage of allergens into the intestinal 
lumen [176] and it has been proposed that there is a relationship be-
tween this escape from hydrolysis by pepsin, that is, a resistance to 
proteolysis by this enzyme and therefore the absence of amino acid se-
quences susceptible to catalysis, and the allergenicity of certain proteins 
[177]. Taking into account and due to these characteristics, studies find 
the application of these proteases, among others, in the production of 
hydrolysates with reduced allergenicity. He et al. (2021) demonstrated 
that pepsin reduced the allergenicity of silkworm pupa protein more 
strongly than trypsin [168]. 

Both human and porcine pepsin have a well-demonstrated mecha-
nism of activation by just a change in pH from pepsinogen, which is a 
molecule originally with two lobes, N and C terminal, which remains 
stable at alkaline pH value. The auto-catalytic activation occurs when 
this molecule is brought to a pH below 5, and the removal of the N- 
terminal section occurs, releasing the pepsins, with molecular weight 
about 34 and 37 KD. Human and porcine pepsins are very similar, and 
studies show that human pepsins have a unique sequence of 373 amino 
acids [178] and porcine has 326 amino acids residues [179] in porcine 
pepsin, the Asp32 and Asp215 residues belong to the catalytic triad and 
present dispositions very similar to the equivalent residues in the other 
aspartic proteinases. Another interesting feature is that there is a 
phosphoryl group covalently attached to Ser68 and which ensures a net 
negative charge on porcine pepsin in a strongly acid medium, contrib-
uting to the enzyme's behavior in low pH media [179]. 

Some other residues must contribute to this difference in behavior 
regarding the pH of the medium between pepsinogen and pepsin, since 
the first contains 13 cationic residues and pepsin only 4, two Arg, only 
one Lys and only one His [180]. 

Although pepsin is, like other proteases, a single-chain enzyme, it is 
constituted by two homologous lobes, and the denaturation phenomena 
occurring in the N-terminal lobe are more associated with enzyme in-
stabilities in the face of pH elevations [153]. 

Although pepsin has a certain range of action between pH 1.0 and 

A

B

Fig. 4. Importance of protease immobilization features on the performance of 
the immobilized proteases. A) Different enzyme orientation enables or full 
disables substrate access. B) Different enzyme density enables unrestricted ac-
cess of substrate or creates steric hindrances. 
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4.0, studies indicate that the best pH of action is around 2.0. As for its 
specificity, pepsin is mainly influenced by the amino acid residues at 
position P1 and P1′. However, it is possible to verify that the presence of 
certain residues in positions such as P2, P2′, and P3, P3′, may or may not 
be favorable to their actions: phenylalanine, leucine, and methionine are 
preferred in P1, while histidine, lysine, proline and arginine do not work 
as P1; pepsin activity is also favored with tyrosine, tryptophan, and 
phenylalanine at position P1′. Amino acids in P3 also influence the ac-
tion of the enzyme, with the presence of histidine, lysine, and arginine 
being unfavorable [181]. 

6. Immobilization of pepsin 

Pepsin surface is quite rich in Asp and Glu groups, (Fig. 5), but it has 
only this enzyme only possesses one lysine residue [179,182] (Fig. 6). 
The enzyme has an isoelectric point around 3, while other proteases 
such as ficin, trypsin or chymotrypsin have an isoelectric point over 9, 
making that their capabilities to interact with ion exchangers may be 
fully different. This is very important as most of the immobilization 
protocols that permit the improvement of the enzyme stability via 
multipoint covalent immobilization are based on the reaction of the 
primary amino groups of the enzyme and the support (such as glyoxyl, 
glutaraldehyde) [44,140,183]. That way, at first glance, other supports 
able to react with other groups may be more adequate for this enzyme. 
Pepsin possesses several Tyr residues in its surface, but few Cys or His 
(Fig. 7). Epoxide activated supports can react with a diversity of groups 
contained in proteins, such as phenol, thiol, imidazole, or carboxyl 
group [184]. These supports require the previous fixation of the enzyme 
on the support due to other reason, because of the poor reactivity of 
epoxide groups [185]. Vinyl sulfone activated supports can react with a 
wide variety of groups (similar to epoxy but discarding carboxylic 
groups), and it is much more reactive [186–191]. Both support require a 
blocking step, that can become complicated if the immobilzied enzyme 
is not stable at pHs where the blocking agents and the support are 
reactive enough. 

Another important feature of pepsin when its immobilization is 
pursued is the low stability of the enzyme at neutral or alkaline pH 
values [192–195]. This makes it necessary to employ acid pH values 
during its handling, which are not recommended to get an intense 
multipoint covalent immobilization [44]. If the enzyme is not going to 
be highly stabilized by immobilization, the physical and reversible 
enzyme immobilization may be a better solution, as long as the enzyme 
is not released to the medium during operation [48]. That way, at least 
the support may be recovered and reused after enzyme inactivation, 
after releasing the inactivated enzyme. The low isoelectric point of 
pepsin (around pH 3) suggests that immobilization via anion exchange 
may be a good option [196]. Ion change involves the formation of 
several ion bridges between enzyme and support [197], it may be pro-
duced even on supports with mixed anion and cation groups [198], or in 

conditions where the global ionic nature of the enzyme and support are 
the same [199,200], requiring just the possibility to establish this multi- 
point immobilization. 

Next, we will present a summary of the main efforts in the immo-
bilization of this complex protease. 

7. Covalent immobilization of pepsin 

7.1. Use of glutaraldehyde activated supports for pepsin immobilization 

One of the most employed tools to achieve an enzyme covalent 
immobilization has typically been the use of glutaraldehyde chemistry, 
usually employing aminated supports activated with glutaraldehyde 
[183]. These supports have an intrinsic heterofunctionality, which can 
permit the first protein immobilization via different events (ion ex-
change, hydrophobic adsorption or covalent reaction), with quite 
different results depending on the first cause of immobilization 
[81,201–205]. However, this means that enzyme immobilization is not 
compulsory meaning that the enzyme has been covalently immobilized; 
it may be only physically adsorbed. 

Another possibility of using glutaraldehyde is the treatment of pre-
viously adsorbed enzymes, that can permit the covalent immobilization 
or the promotion of large intermolecular protein aggregates that make 
enzyme release almost impossible [206]. This method is regarded as a 
very effective one to get enzyme stabilization via multipoint covalent 
attachment [44]. 

It is possible to find many examples in the literature where glutar-
aldehyde has been used for the covalent immobilization of pepsin, as 
presented below. Unfortunately, the heterofunctionality of the support 
is usually ignored, and the fact that the enzyme has only two available 
residues to covalently react with the support is hardly considered. 

One of the most typical aminated supports used to immobilize 
enzyme is chitosan. It is an accessible support, cheap and easy to use 
[207,208]. There are several studies where it has been used together 
with glutaraldehyde in order to immobilize pepsin. In one work, for 
instance, pepsin was immobilized on chitosan and then modified with 
glutaraldehyde [209]. The method was optimized and the properties of 
the immobilized enzyme were studied. The recovery of the immobilized 
pepsin reached 74%, the optimum reactive temperature and pH were 
55 ◦C and 3.0 respectively. The enzyme remained active after five weeks 
stored at 4 ◦C [209]. In another study, pepsin immobilization on 
glutaraldehyde crosslinked chitosan - silica nanobeads was character-
ized and the effect of pH, pepsin concentration, and temperature were 
evaluated [210]. The results showed that pH range, performance and 
stability to high temperatures were improved on the immobilized pepsin 
with respect to the free enzyme. The biocatalyst can be reused up to 10 
times, maintaining 20% of the initial activity [210]. Another interesting 
research describes how pepsin was immobilized on chitosan beads using 
glyoxal hydrate and glutaraldehyde as crosslinkers [211]. The 

N-Terminal Lys

Fig. 5. Tridimensional structure (based on pdb code “4PEP”) of porcine pepsin (EC: 3.4.23.1) showing the presence of amine groups on the surface of the enzyme.  
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immobilized pepsin showed some improved properties with respect to 
the free enzyme, such an increased thermal stability and storage sta-
bility. The biocatalyst was then applied to the milk clotting process. It 
was found that the optimum temperature for the enzyme increased from 
40 to 50 ◦C after pepsin immobilization [211]. Pepsin was also suc-
cessfully immobilized on chitosan-acrolein and chitosan-glutaraldehyde 
gels together with many other enzymes [212]. 

Glutaraldehyde and chitosan have also typically been used together 
to silica supports. For instance, Daisogel silica microparticles covered by 
chitosan were employed to immobilize pepsin and lysozyme, using 
glutaraldehyde or 3,3′,4,4’benzophenonetetracarboxylic-dianhydride 
(BTCDA) as crosslinkers. It was found that pepsin was immobilized onto 
Daisogel//(chitosan -BTCDA)- glutaraldehyde in a lower amount than 
lysozyme, and that the amount of immobilized enzymes depended 
significantly on the isoelectric point of the enzyme. [213]. The same 
group also studied how pepsin an lysozyme were immobilized, using the 
glutaraldehyde chemistry as well, on silica microparticles of different 
sizes initially treated with poly(ethylenimine) and then modified with 
BTCDA to generate carboxylic groups on the surface [214]. The amount 
of the attached enzyme significantly depended on the isoelectric point of 
the enzyme [214]. This suggests that the enzyme ionic exchange may 
take a more relevant role than the direct covalent immobilization. 

In other instances, glutaraldehyde is used just as a crosslinker. For 
example, pepsin was immobilized together with chicken ovomucoid on 
porous aminopropyl-silica activated with N,N′-disuccinimidyl carbonate 
and later on, the bioconjugate was cross-linked with glutaraldehyde for 
a further stabilization of the immobilized enzyme [215]. 

In a different study, silica gel carrier, acrylic beads, and a cellulose- 
based carrier – Granocel, were employed to immobilize pepsin via co-
valent attachment. The different supports were previously functional-
ized to present -OH, -COOH, -NH2, or glycidyl groups on their surfaces 

[216]. Three different crosslinkers were used. As a result, pepsin was 
successfully immobilized on Granocel activated by glutaraldehyde or 
carbodiimide and on silica gel activated by glutaraldehyde [216]. 

Pepsin was immobilized via absorption and covalent attachment, 
using the glutaraldehyde chemistry, on functionalized biochar support 
[217]. The objective was to employ this biocatalyst in the hydrolysis of 
casein. The covalently immobilized pepsin showed a higher casein hy-
drolysis rate when compared to the enzyme immobilized only by 
adsorption, maintaining 95% of the initial activity after 60 min [217]. In 
another paper, Jasim et al. (1987) immobilized five proteases (brome-
lain, ficin, papain, pepsin and trypsin) on cellulose supports using two 
different protocols: cyanogen bromide or glutaraldehyde. However in 
this instance cyanogen bromide proved to be the most suitable tech-
nique in terms of immobilization yield, activity and stability of the en-
zymes [218]. Pepsin was also immobilized onto aminohexyl-Sepharose 
activated with glutaraldehyde under acidic conditions [219]. The 
immobilized enzyme maintained >40% of its initial activity against a 
synthetic substrate, and 30% against IgG. The stability of the biocatalyst 
also was increased with respect to the free enzyme. The preparation was 
employed to obtain an efficacious and safe immunoglobulin G prepa-
ration for intravenous use [219]. In other instance, synthetic zeolites 
were used to immobilize pepsin using glutaraldehyde as crosslinking 
agent [220]. This biocatalyst presented higher retention of activity and 
higher thermal stability in comparison to pepsin immobilized in absence 
of glutaraldehyde [220]. 

Glutaraldehyde has also been used together with diverse inorganic 
supports. For instance, various different inorganic supports were used in 
order to immobilize pepsin and later, used on a milk coagulation 
continuous process [221]. The chosen supports for this study were beads 
of alumina, titania, glass, stainless steel, iron oxide, and Teflon. Two 
strategies were employed to activate the supports: glutaraldehyde and 

Asp Glu C-terminal

Fig. 6. Tridimensional structure (based on pdb code “4PEP”) of porcine pepsin (EC: 3.4.23.1) showing the presence of carboxylic groups on the surface of 
the enzyme. 

His Cys Tyr

Fig. 7. Tridimensional structure (based on pdb code “4PEP”) of porcine pepsin (EC: 3.4.23.1) showing some important residues on the surface of the enzyme 
interesting for enzyme immobilization. 
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silanized supports. Titania and glass resulted to be the best supports for 
the immobilization of pepsin [221]. Another research group was able to 
immobilize pepsin on a porous membrane, coated with polydopamine, 
via three different mechanisms: hydrophobic adsorption, electrostatic 
attraction and covalent bonding [222]. This last procedure was achieved 
by means of the glutaraldehyde chemistry, activating the support and 
attaching the enzyme to it. Results showed that except for dextranase, 
enzyme immobilization via electrostatic attraction retained the most 
activity, whereas covalent bonding and hydrophobic adsorption were 
detrimental to enzyme conformation [222]. In another example, pepsin 
was immobilized on magnetic nanoparticles via two different ap-
proaches: by covalent immobilization activating the nanoparticles with 
glutaraldehyde, and by physical adsorption on amino-functionalized 
nanoparticles. In this instance, the best results were obtained employ-
ing the adsorbed pepsin, with a loading of 2 mg/g [223]. Finally, pepsin 
was immobilized via the glutaraldehyde chemistry on particles of 
gelatin insolubilized by formaldehyde treatment [224]. The biocatalyst 
was used to reduce the haze formation during beer production, finding 
that good protein stability of the beverage results when at least 50 g 
immobilized enzyme per hl beer per h are applied in a special type of 
packed bed reactor [224]. 

As explained above, the fact that the enzyme has only two primary 
amino residues and that the researchers have not included studies to 
assess the real covalent immobilization of the enzyme does not clarify if 
in all the above examples the enzyme has been immobilized even by just 
one covalent immobilization. 

7.2. Use of methacrylate as support for pepsin immobilization 

Another kind of support to immobilize enzymes is the methacrylate- 
derived supports [184,225–228]. Methacrylate can adopt different 
shapes (monoliths, gels, microspheres…) depending on the desired 
properties and the planned usage of the biocatalyst, and may be acti-
vated using different groups. One characteristic is a moderate hydro-
phobicity of the matrix, which coupled to some physical characteristics 
of the active groups, can convert this in heterofunctional supports. The 
use of an hydrophobic supports may be negative for the enzyme sta-
bility, as it the interactions with partially unfolded enzyme structures 
can drive to their stabilization [96]. 

For instance, pepsin was immobilized via reductive amination on a 
poly(glycidyl methacrylate-co-methyl methacrylate) monolith modified 
with aminoacetal to produce aldehyde groups on the surface [229]. 
Immobilized pepsin showed better pH and thermal stability compared 
with free pepsin. This biocatalyst was later employed for online protein 
digestion [229]. As another example of the use of methacrylate mono-
liths, pepsin was covalently immobilized on a monolith prepared in situ 
as a copolymerization of 2-vinyl-4,4-dimethylazlactone and ethylene 
dimethacrylate. The biocatalyst was successfully used in the online 
digestion of myoglobin, albumin, and haemoglobin [230]., 

There are also several examples of the use of methacrylate micro-
spheres. In one study, pepsin was covalently immobilized on poly 
(methyl methacrylate)/acrylaldehyde microspheres [231]. This support 
possesses aldehyde groups on the surface, which offer a simple immo-
bilization. With this protocol, it was possible to immobilize up to 82 mg 
of enzyme per g of support Although the Km increased and the Vmax 
decreased, the activity decreased only by 50% of the free enzyme, and 
the optimum temperature increased from 43 to 47 ◦C [231]. Modified 
poly(methyl methacrylate) microspheres were employed by the same 
research group in another study for the immobilization of pepsin. This 
support also has aldehyde groups on the surface, which react with the 
amino groups of the enzyme forming covalent bonds. The Km value 
increased and Vmax decreased respect to the free enzyme. However, the 
temperature resistance was improved after immobilization, making this 
protocol useful for pepsin immobilization-stabilization [232,233]. 

In another study, chitosan was introduced in poly(styrene-co-gly-
cidyl methacrylate) (PSt-GMA) microspheres with/without spacer-arms 

in order to immobilize pepsin [234]. The different microspheres 
proportioned different mechanisms of interaction with the enzyme, as it 
was discussed before, chitosan is a complex polymer that can react in 
many different ways with the enzyme (covalent bonding, hydrogen 
bonding, electrostatic interaction and hydrophobic interaction, etc.). 
Thermal and storage stabilities of immobilized pepsin were enhanced 
respect to the free enzyme [234]. 

Methacrylate has also been used in the form of gels to immobilize 
pepsin. In one work, pepsin was immobilized on hydrogel films by 
radical polymerization with poly-(ethylene glycol) dimethacrylate as 
crosslinking agent [235]. Hydrogels showed the ability to preserve the 
catalytic sites at temperatures above the lower critical solution tem-
perature, and the immobilization process allowed pepsin to preserve its 
activity after several cycles of reuse. [235]. Another example of covalent 
attachment of pepsin, is its immobilization on hydroxyalkyl methacry-
late gels modified with 1,6-diaminohexane or ε-aminocaproic acid. After 
immobilization, parameters such as proteolytic activity, pH activity 
curves and stability depending on the pH and time were improved 
regarding the free enzyme [236]. 

In another study, pepsin was immobilized on a copolymer of acryl-
amide and 2-hydroxyethyl methacrylate. Covalent bonds were produced 
due to the simultaneous activation of the hydroxyl and amino groups of 
the support, although the order of activation was relevant to permit 
pepsin immobilization. The study of the kinetic variables showed that 
there were no conformational changes on the enzyme. This biocatalyst 
was successfully employed on the hydrolysis of casein [237]. 

In a different approach, a wide number of enzymes, including pepsin, 
were covalently immobilized on copolymers of 2-hydroxyethyl meth-
acrylate and ethylene dimethacrylate (Separon HEMA), containing 
epoxy groups, in order to study the effect of the addition of salts in the 
immobilization efficiency. It was observed how the immobilization 
yields depended on the concentration and type of the ions added [238]. 
In this instance, the blocking steo was not utilized making complex to 
understand the results. 

Finally, a composite of chitosan on Fe3O4 nanoparticles was the 
chosen support to immobilize pepsin via imine linkages. A biocatalyst 
with a loading of 99 mg/g of pepsin was achieved. With this biocatalyst, 
the deacetylation of various amides was prosperously accomplished. 
Hydrolysis yields of 56–98% were obtained using chitosan magnetic 
nanoparticle-supported pepsin and it could be reused for at least three 
cycles [239]. 

7.3. Use of the carbodiimide chemistry in the covalent immobilization of 
pepsin 

Carbodiimide is a reagent widely employed as an carboxylic acti-
vator to form covalent bonds between a carboxylic group and a primary 
amine group [240]. As pepsin has plenty more Asp and Glu groups than 
Lys (see Fig. 5), it seems a possible good strategy to get an intense 
multipoint covalent attachment. Unfortunately, the poor stability of 
these groups makes to reach high stabilization degrees complex, 
although it may be quite efficient to immobilize an enzyme, that re-
quires long enzyme-support reaction time [44]. This also produces the 
chemical modification of groups of the enzyme do not involved in the 
enzyme immobilization. 

In this regard, many studies employ this resource to immobilize 
pepsin via covalent attachment. In one study, pepsin was immobilized 
on Duolite amine resin and later treated with carbodiimide to get some 
covalent attachments [241]. The biocatalyst presented a half-life of 15 
days and it was used for the hydrolysis of 2.5% haemoglobin solution in 
a column reactor. The degree of hydrolysis could be modulated by 
changing the flow rate of the reactor [241]. 

Another research shows how carbodiimide was employed to obtain a 
covalent immobilization of pepsin to wide-porous and nonporous 
ω-aminoalkyl derivatized inorganic supports [242]. The determination 
of the enzyme loading on the support and proteolytic activity of the 

R. Morellon-Sterling et al.                                                                                                                                                                                                                     



International Journal of Biological Macromolecules 210 (2022) 682–702

690

biocatalyst was carried out. All the tested biocatalysts were stable on 
storage at 8 ◦C and pH 4.5 for 1 month [242]. 

In another research, pepsin together with trypsin, α-chymotrypsin, or 
some other intestinal mucosal peptidases were covalently immobilized 
on porous succinylated aminopropyl-glass beads, using carbodiimide as 
activator of the groups in the support [243]. The biocatalysts were 
employed to determine the digestibility of several animal and plant 
proteins, finding that the combined proteolysis using various enzymes 
produced a more rapid digestion [243]. However, for pepsin, we cannot 
see the advantage of using their two amino groups for the immobiliza-
tion. At first glance, it had been more productive to adsorb the enzyme in 
an aminated support. A comparison of both strategies could be 
interesting. 

In another work, pepsin was immobilized via its carboxyl groups on 
an ethylene maleic anhydride copolymer presenting 1,6-diamino-hex-
ane, in presence of dicyclohexylcarbodiimide [244]. On lyophilisation, 
the immobilized pepsin preparations retained 70–80% of their activity. 
The preparations were stored at 4 ◦C for four months without any 
remarkable loss in their activity [244]. Alternatively, the immobiliza-
tion of pepsin on N-(carboxyphenylcarbamoylmethyl) cellulose was 
studied [245]. In this case, the activating reagent to produce covalent 
bonds was dicyclohexylcarbodiimide. The researchers analyzed how the 
enzyme/support and activator/support ratios, pH, and immobilization 
time influenced the immobilization process. It was also observed that 
the Km was lower for the immobilized enzyme [245]. Another study 
employed BIOZAN R to immobilize pepsin, using dicyclohex-
ylcarbodiimide as activator [246]. A pepsin loading of 35–110 mg/g of 
polymer and a proteolytic activity between 20.85 and 28.75 μmol 
tyrosine/L⋅min⋅g of polymer was obtained [246]. 

Pepsin was also immobilized on agarose supports. They were ob-
tained through the modification of Sepharose 4B with cyanogen bro-
mide, then treated with 3,3′-diaminodipropylamine to finally produce 
carboxyl groups with succinic anhydride [247]. The covalent attach-
ment of the enzyme was achieved by the use of carbodiimide as acti-
vator. The biocatalyst was successfully employed in the digestion of 
haemoglobin and rabbit IgG [247]. Carbodiimide has been also used in 
chitosan supports to immobilize pepsin [248]. To reach this goal, chi-
tosan was previously succinylated, forming amide bonds with the 
enzyme after condensation with carbodiimide (again, using the amino 
groups of the enzyme and not the carboxylic groups). At the end of the 
process, the preparation retained 80% specific activity, presenting a 
higher storage stability than the free enzyme [248]. 

Finally, Kurth and Bein (2003) immobilized pepsin on oxidized 
aluminum substrates functionalized with thin layers of (3-aminopropyl) 
triethoxysilane, (3-mercaptopropyl)trimethoxysilane, (3-bromopropyl) 
trimethoxysilane, and (8-bromooctyl)trimethoxysilane by means of the 
carbodiimide chemistry. The results showed that, even though the 
packing structures may differ to a certain extent, the attachment of a 
single pepsin layer with a 100% surface coverage was produced. [249]. 

7.4. Gold nanoparticles as a flexible tool for pepsin immobilization 

Gold nanoparticles have become popular enzyme carriers 
[250–254]. Gold surfaces allows ionic and hydrophobic interactions, but 
also, covalent attachment can be achieved by different mechanisms, 
such as the strong chemo-adsorption of thiol groups [255]. This means 
that the enzyme will be immobilized in an always active surface, that 
can be negative for the final enzyme stability [96]. 

Regarding pepsin, there are some studies that utilize this material. In 
a study to determine if gold nanoparticles, with a carboxy-terminated 
hydrophilic PEG7 shell, were suitable as a heterogeneous support to 
be employed in protein sequence determination, pepsin was immobi-
lized via amide coupling [255]. Turnover rates, kcat and enhanced 
catalytic efficiencies were essentially equivalent compared to the ho-
mogeneous catalyst. The catalyst was stable enough for more than a 
month [255]. In another work, the covalent immobilization of pepsin 

onto a free-standing gold nanoparticle membrane was successfully 
achieved [256]. The catalytic activity of the immobilized enzyme was 
similar to the free enzyme, and the biocatalyst could be reused over ten 
successive cycles. The stability against pH and temperature was 
enhanced as well [256]. In another paper, it is described how pepsin was 
immobilized on gold nanoparticles assembled in a polyurethane surface 
[253]. This bioconjugate material showed a slightly higher biocatalytic 
activity and significantly enhanced pH and temperature stability. It also 
permitted to separate the enzyme form the medium and reuse it over six 
reaction cycles [253]. The same research group, in a different study, was 
able to assemble the gold nanoparticles on a different surface, 3-amino-
propyltrimethoxysilane (APTS)-functionalized Na - Y zeolites, allowing 
the recovery of the bioconjugate from the medium [257]. Once again, 
pepsin was the enzyme employed to test this method, obtaining excel-
lent results, since the catalytic activity of pepsin in the bioconjugate was 
comparable to that of the free enzyme in solution, and it could be reused 
several times [257]. 

7.5. Other methods for the covalent immobilization of pepsin 

Apart from all the methodologies explained above, many different 
strategies exist to immobilize pepsin through covalent attachment. Next, 
we present all the different approaches we have been able to find in the 
literature about this topic. 

In one work, pepsin was immobilized, via covalent attachment, on 
agarose beads through the amino groups of the enzyme (and the enzyme 
has only one Lys and the terminal amino group, Fig. 5). The objective of 
the immobilization in the study was to eliminate the intermolecular 
interactions in order to be able to refold the enzyme. Finally, pepsin 
could be refolded, with a higher activity recovery in presence of salts 
that did not affect to the refolding rate [258]. In another study, cod 
pepsin was successfully immobilized via covalent attachment on 
Sepharose activated with cyanogen bromide [259], again a good method 
to immobilize the enzyme but that hardly will permit an intense mul-
tipoint covalent immobilization, and less considering the limitaitons 
promoted by the pepsin stability at alkaline pH values. The process 
increased the Arrhenius activation energy for haemoglobin hydrolysis 
from 8.5 Kcal/mol to 12.8 Kcal/mol. The biocatalyst was tested in milk 
clotting [259]. Sepharose activated with cyanogen bromide was 
employed to immobilize 43 mg porcine pepsinogen per g of support 
[260]. The specific activity of the immobilized enzyme was similar to 
that of the soluble one, and the biocatalyst was stable on exposure to 
protein substrates [260]. 

Cellulose has also been employed as support to immobilize many 
proteins [261] pepsin being among them. Pepsin and trypsin were 
immobilized in two steps on aminoethyl-cellulose [262]. The first step 
consisted on the chemical modification of the enzymes with bifunctional 
isothiocyanates. After the modification, the enzymes were covalently 
attached to the support, which presented amino groups on the surface. 
The results of the immobilization were satisfactory [262]. In another 
research, the authors immobilized pepsin together with beta- 
galactosidase on gel film of bacterial cellulose [263]. In this case the 
aldehyde groups of the support, obtained by oxidation with sodium 
periodate, interact with the amino groups of the enzyme, forming azo-
methine bonds. Although both enzymes were successfully immobilized 
on the gel film, it was confirmed that the gel film binds more β-galac-
tosidase than pepsin [263]. This could be explained by the poor content 
of primary amino groups of pepsin. 

Pepsin was also immobilized on POROS 20 resin beads through 
Schiff base bond (again, hardly an intense multipoint covalent immo-
bilization may be expected, considering that the enzyme has only two 
primary amino groups). The biocatalyst was employed to compare the 
protease cleavage specificities of pepsin with Nepenthesin II, a brand 
new protease with the potential to be used as the proteolytic agent in 
Hydrogen/Deuterium Exchange coupled with Mass Spectrometry 
studies. The cleavage of pepsin was much influenced by the amino acid 
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residue at position P1 while NepII offers advantageous cleavage to all 
basic residues and produces shortened peptides that could improve the 
spatial resolution in HDX-MS studies. [264]. 

In another paper, three proteases: chymosin, pepsin or trypsin were 
covalently immobilized on oxirane-acrylic beads in order to obtain the 
phosphopeptide-rich fractions from casein [265]. Some diffusional 
limitations were detected that influenced the degree of hydrolysis. In 
addition, the adsorption of small peptides to the biocatalyst produced a 
decrease in the detectable activity values. Up to 50% of the initial 
enzyme activity was recovered after immobilization [265]. The hydro-
phobicity of the support may also give some stability problems [96], but 
this was not studied in this paper. 

Pepsin was also immobilized on in situ synthesized urea- 
formaldehyde microspheres, obtained through a dispersion poly-
condensation polymerization method [266]. These microspheres pre-
sented reactive groups capable to produce a condensation reaction with 
the amino groups of the enzyme. The immobilized pepsin stability 
against temperature and pH was enhanced, and the biocatalyst could be 
reused at least eight times maintaining the 505 of the initial activity 
[266]. 

In a different study, pepsin was covalently immobilized on two 
different supports: acidic alumina and on 2-ethanolamine-O-phosphate 
(2-EAOP)-modified acidic alumina, obtaining similar results [267]. 
These biocatalysts were then applied to the hydrolysis of bovine hae-
moglobin for the production of bioactive peptides. Fixation of 2-EAOP 
on a pepsin-alumina complex gave hydrolysis kinetics of urea- 
denatured haemoglobin close to that obtained with the same amount 
of pepsin in solution, but with comparatively less adsorption of peptides 
and complete adsorption of haem, while heterogeneous hydrolyses of 
haemoglobin with pepsin, immobilized on functionalized alumina, 
resulted in the presence of VV-haemorphin-4, VV-haemorphin-7 and 
neokyotorphin in the supernatants without haem [267]. 

A new type of porous zirconia support activated with 3-isothiocyana-
topropyltriethoxy silane was proposed as an alternative to the exten-
sively used porous silica supports [268]. To show the usefulness of the 
new support, four proteases, including pepsin, were immobilized via 
covalent attachment. The results indicate that immobilization in this 
new support is suitable, providing a different support with clear ad-
vantages in terms of density and chemical robustness [268]. 

In a different work, a copolymer of acrylonitrile and acrylamide was 
used to immobilize pepsin to ultrafiltration membrane, via covalent 
bonds to the hydroxymethyl groups of the support [269]. A high relative 
activity was observed after immobilization (75%). The conjugate was 
employed for the hydrolysis of wine proteins in limited proteolysis 
conditions [269]. 

In another interesting research, poultry bone residue was employed 
as support matrix to immobilize different enzymes, including pepsin 
[270]. Both covalent attachment and adsorption were observed. The 
study describes the advantages of using bone as supports, since they are 
inexpensive, abundant, chemically functional, porous, non-toxic and 
mechanically strong [270]. 

A novel technology was applied to covalently immobilize a large 
diversity of enzymes, including pepsin [271]. The technology consists 
on the light-induced breakage of disulfide bridges in proteins, producing 
reactive thiols, which can react with thiol reactive surfaces. This pro-
tocol allows obtaining a spatially oriented and spatially localized co-
valent coupling of the enzymes with potential for biomedical, 
bioelectronic, nanotechnology, and therapeutic applications [271]. In 
another work, the authors propose a protocol to use photoactivatable 
polymers, containing diazirine photophore, on a polypropylene surface 
to immobilize various enzymes, including pepsin [272]. Upon irradia-
tion, the photoactivatable polymer successfully immobilized the en-
zymes covalently, acting as crosslinkers, in a one-step reaction. These 
polymers were synthesized from polyamine or polycarboxylic acid and 
supplied a hydrophilic environment around the enzymes that enhanced 
their activity [272]. 

In general, the use of methods involving amino groups should not 
permit a high rigidification of the enzyme, because of the restriction of 
the pH values that can be used by the enzyme stability and the poor 
number of reactive amine groups in pepsin. 

8. Immobilization of pepsin via ion exchange 

Ion exchange is a simple and utilized immobilization method [196], 
that even though it cannot promote a high rigidification of the enzyme, 
permits the reuse of the support after release of the inactivated enzymes 
[48]. One of the risks of this method is the enzyme release during 
operation. This can be favored using protease in hydrolysis of proteins, 
as the final concentration of ionically active species (even free amino 
acids) will be very high at the end of the process. Considering the low 
isoelectric point and the great excess of anionic groups of pepsin, 
immobilization using anion exchangers should be preferred, However, 
this did not occur in all cases. 

Pepsin and trypsin were immobilized onto resinous salicylic acid- 
resorcinol-formaldehyde and used in a fluidized-bed reactor for the 
study of milk coagulation [273]. Immobilized proteolytic enzymes 
showed improved thermal and chemical stabilities. The maximum ac-
tivity occurred between 30 and 40 ◦C, and the operational half-life of the 
systems was from 15 to 22 days [273]. Zhukovskii (1996) proposed a 
method for giving polypropylene thread ion-exchange properties, in 
which gentamicin, kanamycin, monomycin, tetracycline, trypsin, 
pepsin, or novocain were adsorbed separately and together [274]. It was 
found that when antibiotics and enzymes were combined, the activity of 
the immobilized enzymes was synergistically potentiated, and the 
modified polypropylene surgical thread demonstrated high efficacy on 
antimicrobial, proteolytic, and anaesthetic action [274]. 

In another work, it was demonstrated that modified proteases such as 
pepsin adsorbed on celite, a noncovalent complex of subtilisin with so-
dium dodecylsulfate, and subtilisin or thermolysin covalently on a cry-
ogel of polyvinyl alcohol presented a good activity [275]. These 
biocatalysts could catalyze the synthesis of a wide variety of peptides of 
various lengths and structures both in solution and on solid phase in 
organic solvents [275]. 

Porcine pepsin was immobilized in SBA-15 mesoporous silica 
through physical adsorption. In order to reduce the pore openings of the 
host material for minimization of the enzyme leaching, a grafting step 
with 3-aminopropryltriethoxysilane was performed [276]. The catalytic 
activity of the hybrid bioinorganic material, confirmed that pepsin was 
located inside the pore/channels of the silica material and that the 
grafting process did not affect the enzyme structure [276]. Porcine 
pepsin was also immobilized by physical adsorption inside of short, 
channelled Zr-Ce-SBA-15 mesoporous materials with hexagonal platelet 
morphologies [277]. A grafting process with [1-(2-amino-ethyl)-3-ami-
nopropryl] trimethoxysilane was performed to minimize the enzyme 
leaching, without affecting the mesoporous structure of the host mate-
rial. The results confirmed that pepsin was located inside the channels of 
the mesoporous materials and maintained the necessary degree of 
freedom to fulfil its catalytic activity [277]. 

Nanoparticles of pepsin generated in an aqueous solution were 
immobilized on both low-density polyethylene films, on polycarbonate 
plates or on microscope glass slides [277]. Pepsin coated onto poly-
ethylene showed the best catalytic activity in all the examined param-
eters, compared to native pepsin. At high temperatures, pepsin 
immobilized on glass exhibited better activity than the native enzyme. 
Enzyme activity of pepsin immobilized on polycarbonate was no better 
than native enzyme activity. A very surprising result was that immobi-
lized pepsin on all the surfaces was still active to some extent even at pH 
7, while free pepsin was completely inactive [278]. 

The surface of SBA-15 mesoporous aminated silica was methylated 
by treatment with methyltrimethoxysilane, and then pepsin was 
immobilized by physical adsorption on the obtained materials giving 
host-guest composite materials (SBA-15)-pepsin and (methylated SBA- 
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15)-pepsin. Methylated SBA-15 resulted in an improved immobilization 
efficiency of enzyme compared to initial SBA-15 silica. It was demon-
strated that pepsin was immobilized in the host pore channels without 
affecting the framework structure of the carriers while retaining its 
structure and conformation [279]. 

Pepsin was immobilized on Sepabeads functionalized with poly-
ethyleneimine polymers of varying molecular sizes [280]. The results 
showed that the immobilized pepsin had good storage and operational 
stability, which were dependent on polyethyleneimine molecular 
weight and also on the ionic strength of medium, used for immobiliza-
tion and protein hydrolysis [280]. In another research, pepsin and 
trypsin were immobilized on amino-functionalized sol-gel-coated mag-
netic nanoparticles, and then lightly crosslinked fluorescently doped 
polyacrylamide nanogels were subsequently produced by high-dilution 
polymerization of monomers in the presence of the amino- 
functionalized solgel-coated magnetic nanoparticles [281]. Both nano-
gels exhibited Kd < 10 pM for their respective target protein and low 
cross-reactivity with five reference proteins [281]. Later, pepsin from 
porcine gastric mucosa was immobilized by physical adsorption on 
amino-functionalized magnetite nanoparticles with the aim to obtain 
active and reusable biocatalytical constructs [223]. A total amount of 2 
mg pepsin was loaded on each mg of magnetite nanoparticles, and the 
immobilized pepsin was able to catalyze several cycles of haemoglobin 
hydrolysis after successive recovery through magnetic separation [223]. 
In another study, pepsin was encapsulated by electrostatically 
controlled diffusion into thermally evaporated fatty amine films [282]. 
The catalytic activity of the pepsin after immobilization was then eval-
uated using haemoglobin as substrate, showing that the activity of 
pepsin in the matrix activated with octadecylamine is slightly lower than 
that of the enzyme in solution [282]. Finally, pepsin was also adsorbed 
on Celite and Chromosorb [283]. The resulting biocatalyst was 
employed to study the specificity of the enzyme in organic media, using 
ethyl acetate and acetonitrile. It was observed that the most hydro-
phobic solvents produced the best yields, despite the low solubility of 
substrates in these media [283]. 

The high density of anionic groups in pepsin (Fig. 6) can give strong 
enough strength anion exchange if the supports are properly designed. 
Considering the difficulties to reach an intense multipoint covalent 
immobilization, this reversible immobilization method may be a suit-
able one for pepsin [48]. 

9. Pepsin immobilization by hydrophobic interactions 

Immobilization of enzymes in hydrophobic supports tends to be 
problematic, as in many instances the near presence of a hydrophobic 
surface may stabilize incorrect enzyme forms [96,284]. Lipases are the 
exception to this rule [83]. In any case, this strategy is used to immo-
bilize enzyme in different instances [285,286]. 

This strategy has also been used to immobilize pepsin. Thus, Mar-
akova et al. (1980) studied the effect of the macromolecular structure 
and the halogen content of the copolymers' brom- and iodoacetyl de-
rivatives which were used as polymeric carriers for the immobilization 
of glucoamylase and pepsin [287]. They found that the iodoacetyl de-
rivatives of the styrene-divinylbenzene copolymers with a high iodine 
content and a macro-porous structure are the most suitable for immo-
bilizing these enzymes [287]. In another study, the milk-clotting en-
zymes chymosin and pepsin were immobilized on various hydrophobic 
carriers (hexyl-substituted Sepharose 6B, phenoxyacetyl cellulose, acti-
vated carbon) and utilized in the continuous coagulation of skim milk in 
cheese production [288]. All enzyme-carrier preparations exhibited 
high initial activity on exposure to milk, but also high deactivation rates 
mainly by the loss of enzyme from the carriers due to physical desorp-
tion of enzyme, as well as from the relatively rapid leakage of the ligand 
from the carrier [288]. Zhang et al. (2018) proposed a platform for 
biocatalytic membrane preparation and provided a novel methodology 
to evaluate the effect of immobilization mechanisms on enzyme 

performance based on polydopamine coating [288]. Nemat-Gorgani and 
Karimian (1982) proposed a method to immobilize pepsin (among other 
enzymes) via hydrophobic adsorption on palmityl-substituted Sepharose 
4B containing long hydrophobic ligands. Although other enzymes were 
desorbed at increasing NaCl concentrations, pepsin remained adsorbed 
even at NaCl 1 M. The catalytic activity of pepsin was slightly increased 
upon immobilization [289]. 

10. Other immobilization strategies 

Monoliths represent a novel technology on the field of enzyme 
immobilization, but their utility due to the significant acceleration of the 
reaction rate probably caused by very fast mass transfer of the substrate 
to the immobilized enzyme has been proven more than enough [290]. 
This methodology can also be applied to the separation or concentration 
of proteins from a mixture, including pepsin. For instance, one research 
group was able to prepare inorganic monoliths covered with gold 
nanoparticles to retain standard proteins, like pepsin and haemoglobin, 
with the objective of getting a high effective isolation of these analytes. 
Preconcentration from a real sample was achieved [291,292]. 

Another research group developed a spongy monolith consisting of 
poly(ethylene-co-glycidyl methacrylate) with continuous macropores 
presenting epoxy groups on the surface [293]. The preparation was used 
to immobilize protein A with the objective of obtaining a high-yield 
collection of immunoglobulin G from cell culture supernatant, an also 
to immobilize pepsin for online digestion at high flow rate. Actually, 
longer reaction in solution yielded larger peptide fragments, but, in 
online digestion with the pepsin-immobilized spongy monolith, the 
peptide fragments were much larger, even though a faster flow rate 
(100 mL h − 1) was employed. [293]. 

11. Immobilization of specific ligands for pepsin selective 
immobilization/purification 

A strategy used to separate a certain enzyme from a mixture consists 
on the covalent immobilization of the inhibitor of that enzyme, and then 
present the protein containing the target enzyme mixture to the support, 
so the desired enzyme attaches to the support via interaction with the 
inhibitor. Using substrate analogs, or other compounds that directly 
interact with the active center, this is valid for enzyme fixation and 
purification, but the enzyme activity is blocked, that way, it should be 
released to the medium to have catalytic activity. This methodology was 
used in several studies regarding pepsin [294]. A research developed a 
synthetic protein scavenger material based on imprinted amino poly-
styrene microbeads and the pepsin inhibitor pepstatin, attached via 
carbodiimide linker reaction [295,296], to achieve the solid phase 
extraction of pepsin. Homogeneous pepsin binding sites on the surface of 
the imprinted microbeads was reported [295,296]. Tichá et al. (2004) 
used different specific pepsin substrates immobilized on divinyl sulfone 
activated Sepharose (if the molecule presented a free amino group) or in 
Sepharose via ethylene diamine spacer using carbodiimide reaction for 
molecules with blocked amino group but free carboxyl. Affinity chro-
matography of pepsin was carried out employing the previous supports, 
with excellent results. Pepsin could be later released just by increasing 
the ionic strength [297]. Later on, the same group reported the use of a 
synthetic heptapeptide containing D-amino acid residues coupled to 
glyoxal-activated magnetic agarose particles via the free peptide amino 
group to separate pepsins of different species. This technology can be 
useful in combination with mass spectrometry, for the enzyme detection 
and determination [298]. That way, this is more related to enzyme 
purification via strong interaction with the support that a real strategy to 
develop an industrial pepsin biocatalyst. 
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12. Some practical applications of immobilized pepsin 

12.1. Immobilized enzyme reactors (IMERs) 

Apart from the advantages that immobilization may present related 
to the protease itself (reusability, enhanced stability and avoidance of 
proteolysis among many others), it can provide other improvements to 
the reaction, such as an easier purification of the products or a reduced 
reaction time due to the high enzyme concentration on the support. 
These advantages take a special relevance in the field of proteomics, 
where an undefined protein mixture has to be hydrolyzed and the 
peptides analyzed afterwards [299]. This is where the immobilized 
enzyme reactors (IMERs) take a major relevance, especially because 
they can be coupled with other analyzing technologies like mass spec-
trometry (MS), capillary electrophoresis or high performance liquid 
chromatography (HPLC) and provide a continuous, online digestion 
[300]. Pepsin has proven to be a good alternative to trypsin in the 
protein digestion on IMERs since it is less specific. Thus, a pepsin 
microreactor was employed to analyze myoglobin sequence coverage, 
which was accomplished in a thousandth the time of solution digestion 
[301]. 

A bioinspired proteolytic membrane was built via layered immobi-
lization of pepsin forming a bilayer structure (polydopamine coating 
and polyethyleneimine grafting) to produce peptides from food proteins. 
The proteolytic membrane exhibited great pepsin immobilization 
amount and substrate accessibility to pepsin, and excellent filtration 
performance (permeate flux = 6.5 L m2/h bar and DH = 45.7%) during 
long-term tests at optimized operation condition (transmembrane 
pressure = 3 bar and pepsin concentration = 0.5 mg/mL. [302]. A high- 
surface monolithic support made of thiol-ene was employed to immo-
bilize pepsin via covalent linkage with ascorbic acid, to produce a 
microfluidic chip combined with an enzyme microreactor capable of 
separating and collecting the peptidic fragments in a single step. The 
online coupling of this all- thiol-ene-based system demonstrates its po-
tential for avoiding tedious and time-consuming sample transfer, 
decreasing incubation time compared with traditional enzymatic 
approach, minimizing sample volume consumption, and allowing 
repeated usage. [303]. 

The specific enzyme-inhibitor bonding can be employed to detect 
potential pepsin inhibitory molecules, as proved by Cancilla et al. 
(2000). Enzyme immobilization was carried out using Aminolink 
coupling gel. They used immobilized pepsin and employed electrospray 
ionization ion cyclotron resonance mass spectrometry to detect what 
molecules from a library expressed a pepsin inhibitor activity by being 
attached to the immobilized enzyme upon incubation. The enzyme was 
recycled for continuous screening of new libraries [304]. This strategy 
permitted to identify strong binding targets from complex mixtures, 
being able to differentiate strong and weak binding ligands from a pool 
of potential target compounds. In another research, an IMER was 
fabricated by immobilizing pepsin onto an organic polymer monolith 
using glutaraldehyde as crosslinking agent [305] Immobilized pepsin 
maintained >95% of the initial activity after 40 cycles. The preparation 
could be stored at 4 ◦C and retaining around 85% of the initial activity 
after 36 days. The system was employed in the screening of pepsin in-
hibitors [305]. 

Bonichon et al. (2016) developed a pepsin-based immobilized 
enzyme microreactor, using CNBr-sepharose gels, coupled to nano-
LC–MS/MS for the faster hydrolysis of human butyrylcholinesterase in 
order to detect exposure to toxic organophosphorus compounds [306]. 
Later on, the same group, used the same methodology to develop a fast, 
selective and sensitive on-line set-up for the analysis of human butyr-
ylcholinesterase from plasma based on immunoextraction by anti- 
HuBuChE antibodies [307]. This idea was improved even further, 
being able to detect sarin and soman adducts in plasma, by means of 
three different monoclonal antibodies, covalently grafted on Sepharose 
to achieve the extraction of the enzyme [308]. In all of the studies, 

immobilized pepsin was used to digest the samples [308]. 
Möller et al. (2019) compared the use of pepsin with other aspartic 

proteases on the hydrolysis of four integral membrane proteins immo-
bilized on-column and coupled to hydrogen/deuterium exchange mass 
spectrometry [309]. Pepsin provided the highest coverage for two of the 
proteins with 82.2 and 33.2% of the sequence respectively. However, 
the other proteases provided a better coverage for assayed other pro-
teins. These results highlight the importance of using different proteases 
to optimize the digestion for mass spectrometry analysis. 

A polymer microfluidic chip-based enzyme reactor, coupled to LC- 
MS, was developed by immobilization of pepsin via thiol-ene chemis-
try on a monolithic stationary phase to improve the sample handling, 
and reduce cost and preparation time of peptide mapping on protein 
analytical research. Chip-immobilized pepsin show virtually identical 
apparent activity to the commercially available agarose packing mate-
rial, but with a 70× higher surface coverage, the result of which is an 
almost 3× higher activity per volume of solid phase at the tested con-
ditions. [310]. In another study, human serum albumin or pepsin were 
chosen as chiral selectors, and were immobilized on graphene oxide- 
modified affinity capillary monoliths. The effect of three spacer arms 
(ammonium hydroxide, ethanediamine and polyethyleneimine) on the 
chiral recognition of nine pairs of enantiomers was studied. Unfortu-
nately, pepsin- graphene oxide-polyethyleneimine-based affinity capil-
lary monoliths possessed the highest protein digestion capacity, which 
was different from the effect of amino donors on enantiorecognition 
[311]. 

A pepsin IMER was employed to analyze the proteome of cellular 
membranes coupled to microflow reversed-phase liquid chromatog-
raphy with electrospray ionization tandem mass spectrometry, being 
able to identify 235 unique proteins [312]. In another work a pepsin 
IMER was coupled on-line to a selective immunoextraction step, using 
specific antibodies covalently immobilized, to analyze a target protein 
from a plasma sample. The whole on-line device (immunosorbent-IMER- 
LC-MS/MS) allowed the quantification of cytochrome c from 8.5 pmol to 
1.7 nmol in buffer medium [313]. 

The milk and cheese industry has also taken advantage of the strat-
egy of immobilizing pepsin on a continuous reactor. In this case, the 
objective is the milk coagulation, that has been accomplished in 
different ways, like immobilizing pepsin on porous glass beads [314], on 
porous glass in a fluidized bed reactor [315], pepsin immobilized on 
glass on a column configuration [316] or on porous, alkylamine glass 
and incorporated into a fluidized-bed continuous coagulation scheme 
[317]. 

Ticu et al. (2005) designed a continuous stirred tank reactor using 
immobilized pepsin. The immobilization was performed on acidic 
alumina treated with 2-ethanolamine-O-phosphate. This biocatalyst was 
employed in the preparation of two pure transient and hydrophobic 
opioid peptides (LVV-haemorphin-7 and VV-haemorphin-7) together 
with other peptides of interest obtained from the hydrolysis of bovine 
haemoglobin [318]. Later on, the same group, prepared an IMER by 
immobilizing pepsin on A568 Duolite resin to perform the continuous 
hydrolysis of bovine haemoglobin in order to prepare the same two 
peptides from the previous work in one step [319]. On a subsequent 
research, the same group immobilized pepsin also on a Duolite resin 
column for the continuous hydrolysis of bovine haemoglobin. The 
resulting peptides were simultaneously extracted by adsorption on an 
aluminum oxide column and the eluted with a volatile ethanolamine 
solution [320]. 

On another work, pepsin was covalently immobilized on dextran- 
modified fused-silica capillaries to carry out the on-line digestion of 
proteins under acidic conditions [321]. The digested samples were 
analyzed by high performance liquid chromatography (HPLC) coupled 
to tandem mass spectrometry (MS/MS). The reactor was stable for at 
least 40 days of continuous use [321]. 

A pepsin microreactor, where pepsin was immobilized on poly 
(methyl methacrylate) activated with water soluble carbodiimide and 
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NHS (N-hydroxysuccinimide), was prepared. Enzyme immobilized with 
water soluble carbodiimide decreased over a period of days, whereas the 
enzyme immobilized with both water soluble carbodiimide and N- 
hydroxysuccinimide remained active even after a month of use [322]. 
Ethyl-bridged hybrid particles in columns were used to immobilize 
pepsin, and then the system was evaluated in terms of its digestion 
performance in a completely online format, with the specific intent of 
using the particles for hydrogen‑deuterium exchange mass spectrometry 
(HDX MS) analysis. Prototype columns made with the ethyl-bridged 
hybrid pepsin particles exhibited robust performance, and deuterium 
back-exchange was similar to that of other immobilized pepsin particles 
[323]. The use of open tubular capillary pepsin and trypsin reactors for 
rapid digestion, coupled on-line to capillary electrophoresis and mass 
spectrometry for the rapid protein digestion was reported. It was found 
that complete on-line digestion can be performed in a matter of seconds, 
basically without adding any extra time to the MS analysis [324]. Other 
examples where immobilized pepsin is used in a reactor for diverse 
protein hydrolysis are the extraction of gluten peptides with foaming 
properties by continuous hydrolysis in a pepsin bioreactor system 
employing porous chitosan beads as support [325] and pepsin and 
trypsin immobilized on hydrogels in digital microfluidic systems, on a 
shape of cylindrical agarose discs bearing the enzymes, coupled to mass 
spectrometry analysis of the products [326]. 

12.2. Production of drugs and peptides with industrial biological interest 

Pepsin has also been employed on pharmaceutical studies for the 
discovery and development of new drugs. The interest of the enzyme 
immobilization in these cases is associated to the simplification of the 
purification process of the products from the enzyme, which also avoids 
an excessive proteolysis of the substrate (permitting to optimize the 
duration of the process) [327]. The fact of having the enzyme immobi-
lized onto a column or on a continuous reactors, permits the coupling 
with the chosen analysis method (mass spectrometry for instance). 

Immobilized pepsin was employed for the digestion of Rituximab to 
obtain different fragments as radioimmunoscintigraphic agents for the 
treatment of Non-Hodgkin's Lymphoma [327,328]. IgG1 monoclonal 
antibody fragments were also obtained using immobilized pepsin and 
purified by affinity chromatography to use them as targets for phage 
display [329]. 

Lysobactin is a cyclic peptide with great antibiotic activity against 
Gram-positive aerobic and anaerobic bacteria. Some immobilized 
gastric and intestinal proteases, including pepsin, were used to verify its 
resistance to degradation after oral administration. In the study it was 
shown that Lysobactin was not directly hydrolyzed by immobilized 
pepsin, chymotrypsin, trypsin, nor mucosal peptidases [330]. The same 
methodology has been used on other fields, as is the cellular biology, 
represented in this study, where immobilized pepsin was employed to 
study binding domains of antibodies to annexin-A1, a phospholipid- 
binding protein involved on process like cell proliferation, apoptosis, 
metastasis, and the inflammatory response, by means of hydro-
gen–deuterium exchange mass spectrometry. With this work it was 
demonstrated that even cryptic and flexible binding regions can be 
studied by HDX-MS, allowing a fast and efficient determination of the 
binding sites of antibodies which will help to define a mode of action 
profile for their use in therapy [331]. 

Rémigy et al. (1997) characterized, by mass spectrometry, the hy-
drolysis peptides of ferredoxin from the cyanobacterium Anabaena sp., 
obtained by digestion with immobilized pepsin [332]. Although this 
study is more focused on the method of analysis than on pepsin diges-
tion, this is one more study in which the versatility and usefulness of this 
enzyme can be appreciated. 

A more industrial application was given to pepsin, employed in a 
different approach where lucerne leaf protein, a protein-rich concen-
trate of high nutritive value, was hydrolyzed by pepsin immobilized on 
parafilm wax to modify its unfavorable organoleptic properties [333]. 

13. Future trends 

The examples given in this review show the great interest in the 
immobilization of pepsin, even though it is a very difficult task to get the 
covalent immobilization, it is not complex to get the ion exchange 
thanks to the great density of anionic groups on its surface (Figs. 5 and 
6). The reported stabilizations may be consequence of the prevention of 
intermolecular phenomena discussed in introduction, more than due to 
multipoint covalent immobilization. 

In this regard, we would like to remark two different possibilities to 
increase the prospects of getting an intense multipoint immobilization of 
pepsin, which to our understanding has not been tried with this enzyme. 

The first one is to increase the number of primary amino groups, 
chemically (aminating the carboxylic acids) (Fig. 5) or genetically, in 
order to increase the possibilities of achieving an intense multipoint 
covalent [53]. The potential of this strategy has already been showed 
with some other enzymes, and in this instance it may permit to give a 
qualitative leap regarding the final rigidification of the enzyme 
considering the high density of carboxylic groups on the enzyme surface 
[105,334–337]. 

The second is the use of supports with active groups able to react 
with other groups different to the primary amino groups, such as Tyr 
(Fig. 7). Although epoxy supports have been tested with this enzyme, 
and they may involve many groups of the enzyme surface [184], the 
utilized protocols are not adequate to achieve an optimized multipoint 
covalent immobilization of the enzyme [284,338]. Alternatively, sup-
ports activated with vinyl sulfone have been regarded as very suitable 
ones to give intense multipoint covalent immobilization [44,186]. 

Considering that the utilized methodologies have already permitted 
to prepare pepsin biocatalysts with improved performance, it is not 
difficult to foresee the improvements in the processes development that 
advances in the pepsin immobilization may produce. 
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[34] G. Kiss, N. Çelebi-Ölçüm, R. Moretti, D. Baker, K.N. Houk, Computational enzyme 
design, Angew. Chem. Int. Ed. 52 (2013) 5700–5725, https://doi.org/10.1002/ 
anie.201204077. 

[35] S.R. Amin, S. Erdin, R.M. Ward, R.C. Lua, O. Lichtarge, Prediction and 
experimental validation of enzyme substrate specificity in protein structures, 
Proc. Natl. Acad. Sci. 110 (2013) E4195–E4202, https://doi.org/10.1073/ 
pnas.1305162110. 

[36] M. Martínez-Martínez, C. Coscolín, G. Santiago, J. Chow, P.J. Stogios, R. Bargiela, 
C. Gertler, J. Navarro-Fernández, A. Bollinger, S. Thies, C. Méndez-García, 
A. Popovic, G. Brown, T.N. Chernikova, A. García-Moyano, G.E.K. Bjerga, 
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R. Fernandez-Lafuente, Amination of enzymes to improve biocatalyst 
performance: coupling genetic modification and physicochemical tools, RSC Adv. 
4 (2014) 38350–38374, https://doi.org/10.1039/c4ra04625k. 
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[89] O. Barbosa, C. Ortiz, Á. Berenguer-Murcia, R. Torres, R.C. Rodrigues, 
R. Fernandez-Lafuente, Strategies for the one-step immobilization-purification of 
enzymes as industrial biocatalysts, Biotechnol. Adv. 33 (2015) 435–456, https:// 
doi.org/10.1016/j.biotechadv.2015.03.006. 

[90] O. Barbosa, R. Torres, C. Ortiz, Á. Berenguer-Murcia, R.C. Rodrigues, 
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Murcia, R. Fernandez-Lafuente, Use of Alcalase in the production of bioactive 
peptides: a review, Int. J. Biol. Macromol. 165 (2020) 2143–2196, https://doi. 
org/10.1016/j.ijbiomac.2020.10.060. 

[103] R. Morellon-Sterling, H. El-Siar, O.L. Tavano, Á. Berenguer-Murcia, R. Fernández- 
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[184] J. Turková, K. Bláha, M. Malaníková, D. Vančurová, F. Švec, J. Kálal, 
Methacrylate gels with epoxide groups as supports for immobilization of enzymes 
in pH range 3–12, Biochim. Biophys. Acta - Enzymol. 524 (1978) 162–169, 
https://doi.org/10.1016/0005-2744(78)90114-6. 

[185] C. Mateo, G. Fernández-Lorente, O. Abian, R. Fernández-Lafuente, J.M. Guisán, 
Multifunctional epoxy supports: a new tool to improve the covalent 
immobilization of proteins. The promotion of physical adsorptions of proteins on 
the supports before their covalent linkage, Biomacromolecules 1 (2000) 739–745, 
https://doi.org/10.1021/bm000071q. 

[186] J.C.S. Dos Santos, N. Rueda, O. Barbosa, J.F. Fernández-Sánchez, A.L. Medina- 
Castillo, T. Ramón-Márquez, M.C. Arias-Martos, M.C. Millán-Linares, J. Pedroche, 
M.D.M. Yust, L.R.B. Gonçalves, R. Fernandez-Lafuente, Characterization of 
supports activated with divinyl sulfone as a tool to immobilize and stabilize 
enzymes via multipoint covalent attachment. Application to chymotrypsin, RSC 
Adv. 5 (2015) 20639–20649, https://doi.org/10.1039/c4ra16926c. 

[187] J.C.S. Dos Santos, N. Rueda, O. Barbosa, M.D.C. Millán-Linares, J. Pedroche, 
M. Del Mar Yuste, L.R.B. Gonçalves, R. Fernandez-Lafuente, Bovine trypsin 
immobilization on agarose activated with divinylsulfone: improved activity and 
stability via multipoint covalent attachment, J. Mol. Catal. B Enzym. 117 (2015) 
38–44, https://doi.org/10.1016/j.molcatb.2015.04.008. 

[188] M. Ortega-Muñoz, J. Morales-Sanfrutos, A. Megia-Fernandez, F.J. Lopez- 
Jaramillo, F. Hernandez-Mateo, F. Santoyo-Gonzalez, Vinyl sulfone 
functionalized silica: a “ready to use” pre-activated material for immobilization of 
biomolecules, J. Mater. Chem. 20 (2010) 7189, https://doi.org/10.1039/ 
c0jm00720j. 

[189] A.L. Medina-Castillo, J. Morales-Sanfrutos, A. Megia-Fernandez, J.F. Fernandez- 
Sanchez, F. Santoyo-Gonzalez, A. Fernandez-Gutierrez, Novel synthetic route for 
covalent coupling of biomolecules on super-paramagnetic hybrid nanoparticles, 
J. Polym. Sci. Part A Polym. Chem. 50 (2012) 3944–3953, https://doi.org/ 
10.1002/pola.26203. 

R. Morellon-Sterling et al.                                                                                                                                                                                                                     

https://doi.org/10.1007/s12010-021-03570-4
https://doi.org/10.1007/s12010-021-03570-4
https://doi.org/10.1002/ardp.18581430135
https://doi.org/10.1002/ardp.18581430135
https://doi.org/10.1007/BF01430015
https://doi.org/10.1038/003168f0
https://doi.org/10.1016/S0140-6736(02)61772-6
https://doi.org/10.1016/S0140-6736(02)61772-6
https://doi.org/10.1086/340729
https://doi.org/10.1126/science.69.1796.580
https://doi.org/10.1085/jgp.13.6.739
https://doi.org/10.1085/jgp.13.6.767
https://doi.org/10.1085/jgp.13.6.767
https://doi.org/10.1085/jgp.14.6.713
https://doi.org/10.1085/jgp.14.6.713
https://doi.org/10.1126/science.73.1897.494
https://doi.org/10.1002/pro.5560020903
https://doi.org/10.1177/15.11.688
https://doi.org/10.1002/jmv.1890110102
https://doi.org/10.1002/jmv.1890110102
http://refhub.elsevier.com/S0141-8130(22)00947-3/rf0775
http://refhub.elsevier.com/S0141-8130(22)00947-3/rf0775
http://refhub.elsevier.com/S0141-8130(22)00947-3/rf0775
http://refhub.elsevier.com/S0141-8130(22)00947-3/rf0775
https://doi.org/10.1046/j.1537-2995.1996.361097017171.x
https://doi.org/10.1046/j.1537-2995.1996.361097017171.x
https://doi.org/10.1074/jbc.M002095200
https://doi.org/10.1186/s12876-017-0675-9
https://doi.org/10.1159/000481399
https://doi.org/10.1016/j.foodchem.2022.132183
https://doi.org/10.1016/j.foodchem.2021.131385
https://doi.org/10.1007/s00217-021-03876-x
https://doi.org/10.1007/s00217-021-03876-x
https://doi.org/10.1016/0377-8401(89)90096-5
https://doi.org/10.1016/0377-8401(89)90096-5
https://doi.org/10.3390/antiox10111722
https://doi.org/10.1016/j.foodchem.2021.129951
https://doi.org/10.1111/jfpp.15834
https://doi.org/10.1016/j.foodchem.2020.128461
https://doi.org/10.1016/j.foodchem.2020.128461
https://doi.org/10.1159/000506945
https://doi.org/10.1186/s13601-018-0216-9
https://doi.org/10.1186/s13601-018-0216-9
https://doi.org/10.1111/cea.12989
https://doi.org/10.1371/journal.pone.0171926
https://doi.org/10.1371/journal.pone.0171926
https://doi.org/10.1016/j.aller.2019.08.001
https://doi.org/10.1016/j.aller.2019.08.001
https://doi.org/10.1108/NFS-11-2017-0250
https://doi.org/10.23822/EurAnnACI.1764-1489.60
https://doi.org/10.23822/EurAnnACI.1764-1489.60
https://doi.org/10.1289/ehp.5812
https://doi.org/10.1289/ehp.5812
https://doi.org/10.1016/j.tox.2013.04.011
https://doi.org/10.21037/aoe-20-95
https://doi.org/10.21037/aoe-20-95
https://doi.org/10.1016/0022-2836(90)90153-D
https://doi.org/10.1016/0022-2836(90)90153-D
https://doi.org/10.1093/protein/14.9.669
https://doi.org/10.1093/protein/14.9.669
https://doi.org/10.1016/j.foodchem.2018.06.042
https://doi.org/10.1016/0022-2836(90)90156-G
https://doi.org/10.1016/0022-2836(90)90156-G
https://doi.org/10.1039/c3ra45991h
https://doi.org/10.1016/0005-2744(78)90114-6
https://doi.org/10.1021/bm000071q
https://doi.org/10.1039/c4ra16926c
https://doi.org/10.1016/j.molcatb.2015.04.008
https://doi.org/10.1039/c0jm00720j
https://doi.org/10.1039/c0jm00720j
https://doi.org/10.1002/pola.26203
https://doi.org/10.1002/pola.26203


International Journal of Biological Macromolecules 210 (2022) 682–702

699

[190] J. Bryjak, J. Liesiene, B.N. Kolarz, Application and properties of butyl acrylate/ 
pentaerythrite triacrylate copolymers and cellulose-based Granocel as carriers for 
trypsin immobilization, Colloids Surf. B Biointerfaces 61 (2008) 66–74, https:// 
doi.org/10.1016/j.colsurfb.2007.07.006. 

[191] J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Muñoz, A. Megia-Fernandez, 
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