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Abstract: Distant Supervision is frequently used for addressing Relation Extrac-
tion. The evaluation of Distant Supervision in Relation Extraction has been at-
tempted through Precision-Recall curves and/or calculation of Precision at N ele-
ments. However, such evaluation is challenging because the labeling of the instances
results from an automatic process that can introduce noise into the labels. Conse-
quently, the labels are not necessarily correct, affecting the learning process and the
interpretation of the evaluation results. Therefore, this research aims to show that
the performance of the methods measured with the mentioned evaluation strategies
varies significantly if the correct labels are used during the evaluation. Besides,
based on the preceding, the current interpretation of the results of these measures
is questioned. To this end, we manually labeled a subset of a well-known data
set and evaluated the performance of 6 traditional Distant Supervision approaches.
We demonstrate quantitative differences in the evaluation scores when considering
manually versus automatically labeled subsets. Consequently, the ranking of perfor-
mance among distant supervision methods is different with both labeled.
Keywords: Relation Extraction. Distant Supervision evaluation. Precision-Recall
curves. Precision at N.

Resumen: La Supervisión Distante se utiliza con frecuencia para abordar la ex-
tracción de relaciones. La evaluación de la Supervisión Distante en la Extracción
de Relaciones se ha realizado mediante curvas de Precisión-Cobertura y/o el cálculo
de la Precisión en N elementos. Sin embargo, dicha evaluación es un desaf́ıo porque
el etiquetado de las instancias es el resultado de un proceso automático. En conse-
cuencia, las etiquetas no son necesariamente correctas, afectando no solo el proceso
de aprendizaje sino también la interpretación de los resultados de la evaluación. El
objetivo de esta investigación es mostrar que el desempeño de los métodos medido
con las estrategias de evaluación mencionadas vaŕıa de manera significativa si se uti-
lizan las etiquetas correctas durante la evaluación. Además, basado en lo anterior,
se cuestiona la interpretación actual de los resultados de estas medidas. Con este
fin, etiquetamos manualmente un subconjunto de un conjunto de datos y evaluamos
el desempeño de 6 enfoques tradicionales de Supervisión Distante. Demostramos
diferencias cuantitativas en los puntajes de evaluación al considerar subconjuntos
etiquetados manualmente versus automáticamente. En consecuencia, el orden de
desempeño entre los métodos de Supervisión Distante es diferente con ambos eti-
quetados.
Palabras clave: Extracción de Relaciones. evaluación de la Supervisión Distante.
curvas de Precisión-Cobertura. Precisión en N.
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1 Introduction

Relation Extraction (RE) is concerned with
detecting and classifying predefined relations
between entities identified in text (Piskorski
and Yangarber, 2013). The traditional RE
approach uses a supervised method to cre-
ate the classifier(s) necessary to identify rela-
tions between pairs of named entities (Hearst,
1992; Agichtein and Gravano, 2000; Bunescu
and Mooney, 2005). However, this process is
slow and expensive; hence an alternative is
the use of Distant Supervision (DS).

DS consists of automatically labeling the
relations between each pair of named entities
in a text using some pre-existing Knowledge
Base (KB) (Mintz et al., 2009). For the au-
tomatic annotation of the data set with la-
beled relations, Mintz et al. (2009) assumed
that given two entities that participate in a
relation, all sentences in the data set that
include these two entities express that rela-
tion (see Figure 1). However, it is common
that a pair of entities in a sentence does not
necessarily express a relation or may express
several relations (see Figure 1). Hence, the
assumtion proposed by Mintz et al. (2009)
is too strong and often introduces false pos-
itives (which basically is noise in the labels)
in the train and test sets. Later, Riedel et
al. (2010) relaxed this assumption, assuming
that “if two entities participate in a relation,
at least one sentence that mentions these two
entities might express that relation”. This re-
laxation alleviates the problem of false pos-
itives in the automatically generated labels,
but it does not fully fix it.

Figure 1: In this example, two sentences with
the same pair of entities are automatically
labeled with the same relation. Considering
the founders relation, the first one will be cor-
rectly labeled while the second will not (Zeng
et al., 2015).

Unfortunately, the evaluation of DS meth-
ods is complicated because there is no
set correctly labeled to check their perfor-
mance. Considering this, alternative evalu-
ation methods have been proposed, such as

the Precision-Recall (PR) curves or Precision
at N (P@N) elements (Mintz et al., 2009).
However, these measures are calculated using
data labeled with the same automatic pro-
cess; that is, the labels are not necessarily
correct, impairing the calculation of the eval-
uation results.

This paper1 aims to analyze the use of
these evaluation measures showing that when
the methods are evaluated using a correctly
labeled set, the performance of the algo-
rithms for DS reported so far varies substan-
tially, thus questioning the current interpre-
tation of the evaluation methods. We as-
sessed the performance of 6 DS algorithms
with PR curves and P@N analysis, with
a correctly labeled set and with automati-
cally generated labels, and compared the out-
comes.

Our contributions can be summarized as
follows:

• PR curves and P@N performance mea-
sures are critically revisited under com-
peting scenarios of manual and automatic
labeling.

• All sentences with a relation other
than NA from the New York Times
(NYT2010)2 data set proposed by (Riedel,
Yao, and McCallum, 2010) was crowd-
labeled using MTurk3. So far, the man-
ually annotated datasets for the task do
not include all these sentences, which is a
strength of this research. We argued that
this affords better guarantees over the per-
formance assessment in this task.

• We show that under current practice, per-
formance measures for DS in RE may be
misinterpreted when evaluation is carried
out over automatic potentially noisy label-
ing.

In general, these contributions can posi-
tively impact the DS task evaluation. So far,
the evaluation of this task is performed on au-
tomatically labeled partitions that may intro-
duce incorrect labels. With the manual re-
view of the test partition of well-known data
set in DS, the performance comparisons of
different methods are more reliable. In ad-
dition, precision, recall and F1 measures can

1Source available at
https://github.com/juanluis17/distant-supervision-
dataset-evaluation

2http://iesl.cs.umass.edu/riedel/ecml/
3Mechanical Turk, MTurk, is a human annotation

service provided by Amazon.
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be incorporated.

2 Related Work

The state-of-the-art in DS includes several
solutions using different Deep Learning ar-
chitectures. One of the first networks was
the Piecewise Convolutional Neural Networks
(PCNN) proposed by Zeng et al. (2015)
based on Convolutional Neural Networks
(CNN) (Zeng et al., 2014). This network in-
corporates bags of sentences to handle the
noise on the labels. A bag of sentences con-
tains sentences that have the same entities
pair. Also, it includes a piecewise max-
pooling layer “to capture structural informa-
tion between two entities”. Later, different
attention mechanisms were incorporated into
CNN and PCNN. In (Lin et al., 2016; Ji et al.,
2017) an attention mechanism at sentences
level (CNN ATT and PCNN ATT) in mul-
tiple instances was proposed to use the in-
formation of all sentences in the bag. Also,
in (Ji et al., 2017) description about entities
was included. Zhou et al. (2018) select from
the bag several instances related to the label
to predict the relations and use a word-level
attention mechanism to highlight essential
parts of the sentence dynamically. Besides,
in (Jat, Khandelwal, and Talukdar, 2018),
the Bidirectional Gated Recurrent Unit ar-
chitecture was proposed with an attention
mechanism over words to identify which key
phrases are used (BGWA). Ye and Ling (Ye
and Ling, 2019) used intra-bag and inter-bag
attention mechanisms while in (Lin et al.,
2016; Ji et al., 2017) it is only performed
intra-bag, which ignores when all sentences
in the bag are false positives. Moreover,
Vashishth et al. (2018) propose to RESIDE
that uses knowledge base information such as
the entity type and relations alias to predict
the correct relation. In addition, Convolu-
tional Graph Networks (Defferrard, Bresson,
and Vandergheynst, 2016) are used over de-
pendency tree for modeling the syntactic in-
formation and capturing long-range depen-
dencies. This information and the words and
positions embeddings are used to encode the
entire sentence. Finally, Bastos et al. (2021)
proposed a method using an aggregator that
obtains a homogeneous representation with
a Graph Neural Network. This representa-
tion merges information from the sentence,
relation, and the two entities (considering at-
tributes like entity label, entity alias, entity

description and the entity type).

Many of these methods have been evalu-
ated with the test partition of the NYT2010
data set. This partition was automatically
labeled under some heuristics, and conse-
quently, some instances have been associated
with an incorrect label. Given the absence of
an adequate gold standard, precision, recall,
and F1 measures have not been used to evalu-
ate these methods. Mintz et al. (2009) used,
for the first time, the PR Curves and P@N
measures in an attempt to evaluate the DS
task. These authors stated that PR curves
“gives a rough measure of precision without
requiring expensive human evaluation, mak-
ing it useful for parameter setting”. In such
a case, “rough” is not an accurate statement.
Therefore, performance measured with PR
curves is dependent on the amount and dis-
tribution of noise in the labels. These curves
constructed from automatic labels are a sim-
ple approximation of the performance of DS
methods. Despite this problem, several au-
thors continued using PR curves to evalu-
ate and compare the performance of the pro-
posed DS methods, probably leading to mis-
interpretations (Surdeanu et al., 2012; Zeng
et al., 2015; Lin et al., 2016; Jat, Khandelwal,
and Talukdar, 2018; Vashishth et al., 2018;
Wu, Fan, and Zhang, 2019; Xu and Barbosa,
2019; Ye and Ling, 2019; Bastos et al., 2021;
Nadgeri et al., 2021). In addition, P@N has
been used in DS with 10, 30, 100, 200, 300,
and 500 as the value of N . In P@N, the first
N elements represent the most reliable an-
swers of the classifier based on the ranking
score. Lin et al. (2016), and Liu et al. (2017)
reported P@100, P@200, and P@300 by ran-
domly extracting one sentence for each pair of
entities, two sentences or using them all. This
evaluation, like in (Mintz et al., 2009), must
be done manually on each execution because
of the noise inherent to the automatic labels.
Unfortunately, many works did not explicitly
report whether and how the review was done
manually (Lin et al., 2016; Liu et al., 2017;
Wu, Fan, and Zhang, 2019; Vashishth et al.,
2018; Ye and Ling, 2019).

Because of the noise that automatic label-
ing introduces, several efforts have been made
to build a gold standard to evaluate the DS
task. First, Mintz et al. (2009) used MTurk
service for manual evaluation of P@N. The
first 100 instances of each of the top 10 re-
lations were sent to MTurk. Hoffmann et al.
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(2011) manually labeled 1000 sentences from
the NYT2010 data set to report the results
of their method. These authors stated that
“These results provide a good approximation
to the true precision but can overestimate
the actual recall since we did not manually
check the much larger set of sentences where
no approach predicted extractions”. Based
on these 1000 annotated instances, in (Ren
et al., 2017) 395 were used as test partition.
However, in these instances, there is no more
than one sentence per entity pair (Jia et al.,
2019). Later, Jiang et al. (2018) label 2040
randomly chosen instances of the NYT2010
data set, including the relation NA. In (Jiang
et al., 2018), the performance of 4 DS meth-
ods is compared with the automatically an-
notated NYT2010 data set and the manually
annotated data sets proposed by Hoffmann
et al. (2011) and Jiang et al. (2018). How-
ever, a disadvantage of these data sets is that
they do not include the entire NYT2010 test
partition. Furthermore, in these papers, the
measures of the DS task (i.e., PR curves and
P@N) were not studied except for [1], which
includes PR curves only. Besides, statistical
validations were not carried out, nor were the
selection criteria of the instances expressed.
Finally, precision, recall, and F1 measures
were not reported in most DS papers. Only
Hoffmann et al. (2011) reported these mea-
sures on the 1000 annotated instances.

3 Background

3.1 Precision-Recall curves

PR curves are frequently used in binary clas-
sification (Davis and Goadrich, 2006) and,
within this generic problem, in Information
Retrieval (IR) (Manning, Raghavan, and
Schütze, 2008). PR curves plot precision ver-
sus recall for a varying decision threshold pa-
rameter in binary classification (Keilwagen,
Grosse, and Grau, 2014). These curves are
calculated from the (assumed) true label and
a score given by the classifier. This analy-
sis is closely related to the Receiver-Operator
Curve (ROC) analysis (Davis and Goadrich,
2006) widely used in statistics. However con-
veniently, for IR purposes, the PR curves can
be built without the true negatives (TN). To
get a scalar score, the area under PR curves
(AUC) can be calculated by using the com-
posite trapezoidal method (Davis and Goad-
rich, 2006).

Let Γ be a threshold set defined over clas-

sifier scores, and Ψ be a vector of descend-
ing ordered scores given by a classifier. The
Precision and Recall for a threshold γ ∈ Γ
are calculated using the equations 1 and 2
respectively ∀ψ ∈ Ψ | ψ > γ.

Pγ =
TPγ

TPγ + FPγ
γ ∈ Γ (1)

Rγ =
TPγ

TPγ + FNγ
γ ∈ Γ (2)

where TP are positive examples correctly
labeled as positives, FP are negative exam-
ples mislabelled as positives and FN are posi-
tive examples incorrectly labeled as negative.

To obtain the set of pairs (Rγ , Pγ) in the
PR curve, we iterate over Γ as per Equa-
tion 3:

PR Curve(γ) = {(Rγ , Pγ) : γ ∈ Γ} (3)

3.2 Precision at N

The P@N in Equation 4 measures the number
of correct elements in a window ofN elements
(Manning, Raghavan, and Schütze, 2008).

P@N =
|TP ∩RN |

N
(4)

The TP (positive examples correctly la-
beled as positives) is calculated by manual
evaluation. The P@N is frequently used in
IR to measure the precision in a subset of re-
trieved elements RN , with N the cardinality
of the set. According to (Manning, Ragha-
van, and Schütze, 2008), it has the advan-
tage of not requiring any estimate of the size
of the set of relevant elements. P@N has been
used in DS by multiple authors, but in most
cases, this has been on the automatically la-
beled data set (with noisy labels) (Zeng et
al., 2015; Lin et al., 2016; Ji et al., 2017; He
et al., 2018; Wang et al., 2018; Wu, Fan, and
Zhang, 2019; Ye and Ling, 2019; Bastos et
al., 2021; Nadgeri et al., 2021).

4 Methodology

4.1 Dataset preparation

In order to establish whether there are risks
of misinterpreting the evaluation measures,
we compared the performance of 6 DS meth-
ods assessed over manually-generated labels
and automatically-generated labels. We de-
part from the NYT2010 data set for the DS
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task. This data set includes 53 relations
types, including NA, when there is no rela-
tion. Originally, this data set was labeled au-
tomatically. The train partition has 522611
instances (sentence that may or may not con-
tain a relation), 279226 unique entity pairs
and 154929 instances with a relation other
than NA. We use this training partition,
with the automatically generated labels, to
train the algorithms. In turn, the test parti-
tion has 172448 instances, 96678 unique en-
tity pairs and 6444 instances with a relation
other than NA. From this last partition, two
test partitions with manual labels were built
and used in this work.

In the first test partition, 430 instances
were selected for manual revision. The in-
stances selection to be reviewed was made by
choosing one instance from each relation at
random during 20 iterations. During man-
ual revision, 88 duplicate instances and 18
that have unclear relations were found and
removed. Thus, the remaining 324 instances
were revised manually and constitute our
first test partition (named test 1 ). Consider-
ing the 324 instances of the test 1 partition,
158 (48.8%) changed their automatic label af-
ter their/the review, i.e., they were consid-
ered by a human to hold incorrect labels.

In the second test partition, the complete
6444 instances different from the relationNA
were selected for manual revision. First, we
curated the 6444 instances by removing in-
valid instances. An instance is considered in-
valid when the defined entities are not found
in the sentence. A total of 6431 were found
valid. Then, from the 6431 valid instances,
we further eliminated 579 duplicate instances
(containing the same sentence, entity pair,
and relation). We publish the remaining 5852
instances on the MTurk for review by three
reviewers. The reviewers only determined
whether the sentence explicitly expressed the
associated relation.

Finally, we consider an instance as noisy if
at least two of the three judges decided that
the relations were not expressed. 4801 in-
stances did not vary their automatic label but
1051 did (17.9%). This partition was named
test 2.

4.2 Selection of DS methods for
comparison

The following DS methods were compared in
their performance:

• PCNN (Zeng et al., 2015) and CNN: The
authors used both PR curves and P@N
for evaluation, and the labeling was per-
formed manually. This was one of the first
architectures to be used in DS.

• PCNN ATT (Lin et al., 2016) and
CNN ATT: The authors incorporated an
attention mechanism over instances. They
used PR curves to determine the perfor-
mance of the attention mechanism com-
pared to other methods. Finally, P@N
was calculated on automatically generated
automatic labels.

• BGWA (Jat, Khandelwal, and Talukdar,
2018): It incorporates an attention mecha-
nism over words and entities. Only the PR
curves were used as a measure to compare
the performance of BGWA concerning the
rest.

• RESIDE (Vashishth et al., 2018): It com-
bines syntactic information with entity
types and relations aliases. Like (Lin et
al., 2016), P@N was calculated automati-
cally on automatic labels.

These methods were chosen because they
use three different architectures. On the one
hand, CNN and PCNN use a convolutional
architecture to which an attention mecha-
nism is then incorporated (CNN ATT and
PCNN ATT). On the other hand, RESIDE
uses Graph Convolution Networks and Bidi-
rectional Gated Recurrent Unit (the latter
used by BGWA) and incorporates informa-
tion about entities and relations. The execu-
tion of these methods was done in the same
way as defined in Github4 without using the
gradient descent optimizer. To compare the
evaluation measures, we trained these meth-
ods with the NYT2010 train partition pro-
posed by (Riedel, Yao, and McCallum, 2010).
Then, we evaluate them with the test 1 and
test 2 partitions on the automatic and man-
ual labels (see Figure 2).

4.3 Experimental design

In order to fairly evaluate the performance
obtained, replications are necessary to en-
sure that chance does not play a role in our
results. The number of replications (sam-
ple size) was determined using power anal-
ysis. Power analysis refers to the estima-
tion of the probability of correctly rejecting
a false null hypothesis when a particular al-
ternative hypothesis is true (Howell, 2012).

4https://github.com/malllabiisc/RESIDE
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Train partition 

Methods

- CNN

- PCNN

- CNN_ATT

- PCNN_ATT

- BGWA

- RESIDE

New test partition

42 models 

trained per 

method

Anova One

Way Test

Heuristics

- AUC

- P@N

Manuals

- AUC

- P@N

Friedman Test

Anova One

Way Test

Figure 2: This diagram depicts the methodology followed in the current research. The top box
illustrates the experiment design. The bottom box summarizes the statistical hypothesis testing
followed.

The analysis depends on four factors: sta-
tistical significance, effect size, sample size
and the statistical power itself. Fixing any
three, yields the fourth for a given hypoth-
esis model. The power analysis was esti-
mated using the ANOVA One Way test for
a desired significance level of 0.05, statisti-
cal power of β = 0.95 and assuming an effect
size of Cohen’s d = 0.4. As a result, 42 rep-
etitions per treatment (i.e., algorithm to be
compared) was obtained as the required sam-
ple size. The samples number here represents
the number of executions for each method,
that is, the replications required to detect an
effect of the assumed size in the experiment.

From the results of the replications, the
Friedman test was used to determine if there
were differences in the ranking of the meth-
ods using automatic labels concerning man-
ual labels. First, the Friedman test is used for
one-way repeated measures analysis of vari-
ance by ranks (Friedman, 1940). This test
only considers the number that each method
occupies in the ranking and not the measure
values. This is because the measure values
are only used to determine ranking. Then,
the ANOVA One Way test is applied on au-
tomatic and manual labels to know if there
are significant differences between the results
achieved by the methods. The ANOVA One
Way test is used to test for differences among
at least three groups, with the two-group
case covered by the simpler t-test (Student,
1908; Howell, 2012). Finally, if there were
significant differences, pairwise comparisons

were made to observe which pair of methods
showed differences. The two-by-two compar-
isons were made with t-test and Holm Correc-
tion (Holm, 1979). The significance threshold
was set at p < 0.05.

5 Experiments

5.1 Precision-Recall curves

Performance on test 1 partition
The Table 1 summarizes the AUC of the

tested methods PR curves with automatic
and manual labels on test 1. All methods
increased their AUC with the manual la-
bels with regards to their performances us-
ing the automatic ones, pointing to a sys-
tematic overall underestimation. Further,
and more critically here, the order of the
methods in terms of their performance var-
ied significantly (Friedman: χ2(2) = 373.46,
p < 2.2e−16), i.e., they are all underesti-
mated but not in the same extent. This sug-
gests that using PR curves with automatic
labels might not conferring the direct mes-
sage one would expect otherwise in the DS
evaluation task, and that for this scenario,
such bias has to be considered during in-
terpretation. Besides, significant differences
were found with either automatics (ANOVA:
F (5, 246) = 746.9, p < 2e−16) and manual la-
bels (ANOVA: F (5, 246) = 520.8, p < 2e−16).
In the case of pairwise comparisons, BGWA
presents significant differences from the other
methods for both labels.

The Figures 3a and 3b show the PR
curves obtained by BGWA, RESIDE, PCNN,

Juan-Luis García-Mendoza, Luis Villaseñor-Pineda, Felipe Orihuela-Espina

76



Automatic labels Manual labels
Model AUC Model AUC
BGWA 0.412± 0.026a BGWA 0.440± 0.023a

CNN ATT 0.194± 0.022b CNN ATT 0.239± 0.031b

CNN 0.193± 0.027b CNN 0.235± 0.027c

RESIDE 0.191± 0.013b PCNN 0.209± 0.028d

PCNN 0.158± 0.023c RESIDE 0.199± 0.020d

PCNN ATT 0.151± 0.025d PCNN ATT 0.197± 0.029d

adifferences with rest of methods***. adifferences with rest of methods***.
bdifferences with BGWA***, PCNN*** and PCNN ATT***. bdifferences with rest of methods*** except CNN.
cdifferences with rest of methods*** except PCNN ATT.) cdifferences with rest of methods*** except CNN ATT.
ddifferences with rest of methods*** except PCNN. ddifferences with BGWA***, CNN*** and CNN ATT***.
*, **, *** to indicate p < 0.05, p < 0.01 and p < 0.001 respectively.

Table 1: AUC of the PR curves after 42 replications with automatic and manual labels on test 1.

PCNN ATT, CNN and CNN ATT in one ex-
ecution made with automatic and manual la-
bels respectively on test 1. It can be appreci-
ated that the ordering of the algorithms ac-
cording to their performance in terms of AUC
varies when using the manual labels con-
cerning the automatic ones (previously val-
idated with Friedman test and multiples ex-
ecutions).
Performance on test 2 partition

As with the test 1 partition, the AUC
values of the PR curves with automatic
and manual labels on test 2 were obtained
(see Table 2). In these tables, similar val-
ues are observed with both labels. How-
ever, as in test 1, the order of the meth-
ods varied significantly (Friedman: χ2(2) =
785.37, p < 2.2e−16. Similarly, signifi-
cant differences were found with automat-
ics labels (ANOVA: F (5, 246) = 2097, p <
2e−16). Analogously, significant differences
were found (ANOVA: F (5, 246) = 1553, p <
2e−16) onmanual labels. As in test 1, BGWA
presents significant differences from the other
methods for both labels in pairwise compar-
isons. However, there were no differences be-
tween PCNN ATT, CNN ATT and PCNN
for automatic labels. Besides, no differences
were found in the manual labels between
PCNN ATT and PCNN methods.

The Figures 4a and 4b show the PR curves
in one execution made with automatic and
manual labels respectively on test 2.

5.2 Precision at N

Performance on test 1 partition
The P@25 and P@50 subsets from the

test 1 partition were established in addition
to all the instances (P@All). Table 3 shows
that the order of the models remains the same

(a) Automatic labels

(b) Manual labels

Figure 3: PR curves corresponding to evalu-
ation of the DS algorithms over test 1 (one
execution) set pick for verification in (a) au-
tomatic labels and (b) manual labels. The
AUC of the PR curves is indicated beside
each label in the legend.

for the first three models by increasingN , un-
like the last three positions. The same hap-
pens with Table 4 where, in this case, the first
two models are kept. The order of the mod-
els, as with the AUC, varied significantly for
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Automatic labels Manual labels
Model AUC Model AUC
BGWA 0.339± 0.016a BGWA 0.345± 0.021a

PCNN ATT 0.112± 0.015b PCNN ATT 0.118± 0.017b

CNN ATT 0.105± 0.017c PCNN 0.109± 0.020c

PCNN 0.105± 0.018c CNN ATT 0.106± 0.018d

CNN 0.098± 0.016d CNN 0.098± 0.017e

RESIDE 0.021± 0.006c RESIDE 0.028± 0.011f

adifferences with rest of methods***. adifferences with rest of methods***.
bdifferences with BGWA*** and CNN***. bdifferences with CNN*** and CNN ATT*.
cdifferences with BGWA***. cdifferences with BGWA*** and CNN*.
ddifferences with BGWA*** and PCNN ATT***. ddifferences with BGWA*** and PCNN ATT***.

edifferences with BGWA***, PCNN ATT*** and PCNN*.
fdifferences with BGWA***

*, **, *** to indicate p < 0.05, p < 0.01 and p < 0.001 respectively.

Table 2: AUC of the PR curves after 42 replications with automatic and manual labels on test 2.

(a) Automatic labels

(b) Manual labels

Figure 4: PR curves corresponding to evalu-
ation of the DS algorithms over test 2 (one
execution) set pick for verification in (a) au-
tomatic labels and (b) manual labels. The
AUC of the PR curves is indicated beside
each label in the legend.

the automatic and manual labels on P@All
(Friedman: χ2(2) = 382.28, p < 2.2e−16).
Similarly, there are significant differences in
the performance of methods with automatic

(ANOVA: F (5, 246) = 210.8, p < 2e−16) and
manual (ANOVA: F (5, 246) = 255.6, p <
2e−16) labels. Then, two-by-two comparisons
with Holm Correction (Holm, 1979) show
significant differences with automatic labels
between the BGWA and RESIDE models
and the rest. Similarly, two-by-two compar-
isons show significant differences with man-
ual labels between the BGWA model and the
rest. In addition, PCNN ATT has signifi-
cant differences with the other models ex-
cept for PCNN (in reverse order, it also hap-
pens). In this case, RESIDE only shows sig-
nificant differences with BGWA, PCNN and
PCNN ATT.

Performance on test 2 partition

In the same way as with test 1, the subsets
P@25 and P@50 were established together
with P@All, which includes the entire set.
With both labeled, only two methods did not
vary their order in the three subsets, BGWA
and RESIDE (see Tables 5 and 6). In ad-
dition, the order of the methods using the
P@All results varied significantly concern-
ing the automatic and manual labels (Fried-
man: χ2(2) = 369.55, p < 2.2e−16)5. Simi-
larly, significant differences were found in the
performance of the methods with automatic
(ANOVA: F (5, 246) = 1610, p < 2e−16) and
manual (ANOVA: F (5, 246) = 1265, p <
2e−16) labels. Then, in two-by-two com-
parisons with Holm Correction (Holm, 1979)
there are no significant differences only be-
tween the CNN and CNN ATT and PCNN
and PCNN ATT methods with both labeled.

5It should be noted that in all cases the Friedman
test is used on the ranking of each execution, not only
on the final results.
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Model P@25 Model P@50 Model P@All
BGWA 0.819±0.062 BGWA 0.730±0.041 BGWA 0.558±0.029
CNN 0.587±0.087 CNN 0.489±0.062 CNN 0.386±0.036
CNN ATT 0.580±0.089 CNN ATT 0.486±0.064 CNN ATT 0.375±0.045
PCNN 0.554±0.087 PCNN ATT 0.461±0.055 PCNN 0.362±0.037
RESIDE 0.552±0.074 PCNN 0.459±0.060 PCNN ATT 0.351±0.040
PCNN ATT 0.550±0.079 RESIDE 0.433±0.054 RESIDE 0.325±0.035

Table 3: P@25, P@50 and P@All after 42 replications with automatic labels on test 1.

Model P@25 Model P@50 Model P@All
BGWA 0.715±0.079 BGWA 0.677±0.044 BGWA 0.585±0.033
RESIDE 0.555±0.075 RESIDE 0.489±0.043 RESIDE 0.376±0.037
CNN 0.551±0.089 CNN ATT 0.465±0.061 CNN 0.370±0.035
CNN ATT 0.544±0.089 CNN 0.459±0.059 CNN ATT 0.370±0.044
PCNN 0.486±0.093 PCNN 0.401±0.062 PCNN 0.328±0.044
PCNN ATT 0.458±0.096 PCNN ATT 0.399±0.066 PCNN ATT 0.325±0.041

Table 4: P@25, P@50 and P@All after 42 replications with manual labels on test 1.

6 Discussion

Our results indicate that the ranking of the
methods, in terms of the AUC of the PR
curves on test 1 and test 2 partition, differ
depending on the labeling. This justifies our
claim that the interpretation of the PR curves
must be reconsidered when used for evaluat-
ing DS algorithms. PR curves using auto-
matic labels as a reference is not an optimal
way to compare methods performance in DS
because it breaks a premise of the PR curves
construction; that true labels are available.
Several authors have based the comparison of
their method on the PR curves on these la-
bels (Riedel, Yao, and McCallum, 2010; Hoff-
mann et al., 2011; Surdeanu et al., 2012; Zeng
et al., 2015; Lin et al., 2016; Jiang et al.,
2016; Liu et al., 2017; Vashishth et al., 2018;
Ru et al., 2018; Zhou et al., 2018; Wang et al.,
2018; Jat, Khandelwal, and Talukdar, 2018;
Wu, Fan, and Zhang, 2019; Xu and Barbosa,
2019; Ye and Ling, 2019; Bastos et al., 2021;
Nadgeri et al., 2021). The classical inter-
pretation does not provide guarantees as to
which method is performing better or which
one is more tolerant to noise in the labels.

The Section 5.2 has also confirmed that
P@N is not being interpreted correctly in DS
either. This is critical for the task at hand
considering the unbalance in the data sets,
variability among the relations, selection cri-
teria, among others. There is no clear se-
lection criterion that guarantees to choose
the same instances for evaluating each of the
methods. In other words, it is not guaranteed

that the first instances chosen to evaluate one
method are the same for another method. If
the selection is based on the classifier’s score,
it varies from one execution to another. The
same happens if the selection is random. For
example, the first N instances can be of the
same relation for a method. This indicates
how good this method is for that relation.
However, for the rest, its performance is not
known. Also, sometimes, the P@N is cal-
culated over automatic labels, whereas some
works do it over manual labels. This is the
case of the 6 methods used in this work. This
further confuses P@N’s interpretation. Fur-
thermore, dispersion values are not reported
in the previous works, which mathematically
renders those works uninformative.

What was expressed above shows that PR
curves and P@N measures are not currently
being interpreted properly in DS due to the
presence of noisy labels. Currently, we be-
lieve there are no reliable statistics regard-
ing the actual performance of the DS meth-
ods. While the community agrees on a math-
ematically correct interpretation in this con-
text, or new statistics are proposed for eval-
uating the performance of DS methods, a
possible strategy to circumvent the dead-
lock is what was done here. That is, se-
lecting multiple instances of the evaluation
data set while maintaining its distribution
(test 1 partition). Then, perform a man-
ual review of these instances using multiple
raters. The main limitations of test 1 parti-
tion are the instances number selected. This
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Model P@25 Model P@50 Model P@All
BGWA 0.804± 0.082 BGWA 0.762± 0.064 BGWA 0.019± 0.000
CNNATT 0.360± 0.112 CNN 0.357± 0.084 CNN 0.015± 0.000
CNN 0.346± 0.111 CNNATT 0.341± 0.087 CNNATT 0.015± 0.000
PCNNATT 0.273± 0.089 PCNNATT 0.268± 0.067 PCNN 0.014± 0.000
PCNN 0.252± 0.106 PCNN 0.233± 0.070 PCNNATT 0.014± 0.000
RESIDE 0.115± 0.095 RESIDE 0.129± 0.076 RESIDE 0.010± 0.000

Table 5: P@25, P@50 and P@All after 42 replications with automatic labels on test 2.

Model P@25 Model P@50 Model P@All
BGWA 0.017± 0.000 BGWA 0.795± 0.083 BGWA 0.0168± 0.000
CNN 0.014± 0.000 CNNATT 0.343± 0.120 CNN 0.0137± 0.000
CNNATT 0.014± 0.000 CNN 0.320± 0.117 CNNATT 0.0135± 0.000
PCNN 0.013± 0.000 PCNNATT 0.255± 0.104 PCNN 0.0130± 0.000
PCNNATT 0.013± 0.000 PCNN 0.230± 0.099 PCNNATT 0.0129± 0.000
RESIDE 0.010± 0.000 RESIDE 0.150± 0.094 RESIDE 0.0103± 0.000

Table 6: P@25, P@50 and P@All after 42 replications with manual labels on test 2.

is why the test 2 partition was labeled with
multiple raters using MTurk. The advan-
tage of this partition concerning test 1 and
those proposed by (Hoffmann et al., 2011),
(Ren et al., 2017) and (Jiang et al., 2018) is
that it is made up of all the instances of the
NYT2010 data set test partition (only those
different from NA were labeled with MTurk).
From the test 2 partition, the methods can
be compared with precision, recall and F1 us-
ing the traditional interpretation. Besides,
in (Jiang et al., 2018), although the per-
formance of the CNN, PCNNN, CNN ATT
and PCNNN ATT methods are analyzed,
the P@N measure, the BGWA and RESIDE
methods and statistical validations are not
included. One limitation of this evaluation
alternative is that manual labeling of the test
partition is expensive but only done once. In
addition, experts in the area are needed for
this labeling in most cases. However, in this
work, it has been shown that the performance
of the methods using automatic labeling can
be misinterpreted.

7 Conclusions

Significant differences were found in the rank-
ing of the methods regarding their perfor-
mances when the performance is established
according to the AUC of the PR curves be-
tween the evaluation using the automatic la-
bels and the same data set with the manual
labels. The largest AUCs were obtained us-
ing manual labels which speaks well of the
capacity of the DS methods to handle noisy

data as it is their core intention. Our results
suggest that PR curves are currently not be-
ing interpreted correctly in DS. Furthermore,
they suggest that the PR curves calculated
using the automatically labeled data should
not be used to compare the performance of
DS methods. In addition, manual evalua-
tion of the first N instances (P@N) does not
cover the entire data set. The existing se-
lection criteria for the instances to be manu-
ally reviewed are not deterministic, suggest-
ing multiple executions of the method and
the dispersion report. Besides, as they are
being used, these measures are inconclusive
as to the performance of those methods. Fi-
nally, we provided a partition that allows you
to evaluate this task using labels manually
reviewed by multiple raters. This partition
also allows the use of precision, recall and
F1 measures and will be available for use by
the area community. In future work, we will
analyze various DS methods using these two
partitions and the traditional precision, re-
call, and F1 measures. In addition, we will
continue to work on the DS evaluation meth-
ods.
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CyT/México (scholarship 937210 and grant
CB-2015-01-257383). Additionally, the au-
thors thank CONACYT for the computer re-
sources provided through the INAOE Super-
computing Laboratory’s Deep Learning Plat-
form for Language Technologies.

Juan-Luis García-Mendoza, Luis Villaseñor-Pineda, Felipe Orihuela-Espina

80



References

Agichtein, E. and L. Gravano. 2000. Snow-
ball: Extracting Relations from large
Plain-Text Collections. In Proceedings of
the fifth ACM conference on Digital li-
braries, pages 85–94. ACM.

Bastos, A., A. Nadgeri, K. Singh, I. O.
Mulang’, S. Shekarpour, J. Hoffart, and
M. Kaul. 2021. RECON: Relation Ex-
traction using Knowledge Graph Context
in a Graph Neural Network. In Proceed-
ings of the Web Conference 2021, pages
1673–1685, Ljubljana.

Bunescu, R. C. and R. J. Mooney. 2005.
A Shortest Path Dependency Kernel
for Relation Extraction. In Proceed-
ings of Human Language Technology Con-
ference and Conference on Empirical
Methods in Natural Language Processing
(HLT/EMNLP), pages 724–731, Vancou-
ver,. Association for Computational Lin-
guistics.

Davis, J. and M. Goadrich. 2006. The re-
lationship between Precision-Recall and
ROC curves. In Proceedings of the
23rd International Conference on Ma-
chine Learning - ICML ’06, pages 233–
240, Pittsburgh, Pennsylvania, USA.
ACM Press.

Defferrard, M., X. Bresson, and P. Van-
dergheynst. 2016. Convolutional Neural
Networks on Graphs with Fast Localized
Spectral Filtering. In Advances in neu-
ral information processing systems, pages
3844–3852.

Friedman, M. 1940. A comparison of alter-
native tests of significance for the problem
of m rankings. The Annals of Mathemat-
ical Statistics, 11(1):86–92.

He, Z., W. Chen, Z. Li, M. Zhang, W. Zhang,
and M. Zhang. 2018. SEE: Syntax-
Aware Entity Embedding for Neural Re-
lation Extraction. In The Thirty-Second
AAAI Conference on Artificial Intelli-
gence (AAAI-18), pages 5795–5802. Asso-
ciation for the Advancement of Artificial
Intelligence.

Hearst, M. A. 1992. Automatic Acquisition
of Hyponyms from Large Text Corpora.
In Proceedings of the 14th Conference on
Computational Linguistics (COLING-92),
pages 539–545, Nantes.

Hoffmann, R., C. Zhang, X. Ling, L. Zettle-
moyer, and D. S. Weld. 2011. Knowledge-
based weak supervision for information
extraction of overlapping relations. In
Proceedings of the 49th Annual Meeting
ofthe Association for Computational Lin-
guistics, pages 541–550, Portland, Ore-
gon. Association for Computational Lin-
guistics.

Holm, S. 1979. A Simple Sequentially Rejec-
tive Multiple Test Procedure. Scandina-
vian Journal of Statistics, 6(2):65–70.

Howell, D. C. 2012. Statistical Methods for
Psychology. Cengage Learning ALL.

Jat, S., S. Khandelwal, and P. Taluk-
dar. 2018. Improving Distantly Su-
pervised Relation Extraction using Word
and Entity Based Attention. arXiv,
[cs.CL](1804.06987v1), apr.

Ji, G., K. Liu, S. He, and J. Zhao. 2017.
Distant Supervision for Relation Extrac-
tion with Sentence-Level Attention and
Entity Descriptions. In Proceedings of the
Thirty-First AAAI Conference on Artifi-
cial Intelligence (AAAI-17), pages 3060–
3066.

Jia, W., D. Dai, X. Xiao, and H. Wu. 2019.
ARNOR: Attention Regularization based
Noise Reduction for Distant Supervision
Relation Classification. In Proceedings
of the 57th Annual Meeting of the As-
sociation for Computational Linguistics,
pages 1399–1408, Florence. Association
for Computational Linguistics.

Jiang, T., J. Liu, C.-Y. Lin, and Z. Sui.
2018. Revisiting distant supervision
for relation extraction. In Proceedings
of the Eleventh International Conference
on Language Resources and Evaluation
(LREC 2018).

Jiang, X., Q. Wang, P. Li, and B. Wang.
2016. Relation extraction with multi-
instance multi-label convolutional neu-
ral networks. In Proceedings of the
26th International Conference on Com-
putational Linguistics: Technical Papers,
pages 1471–1480, Osaka.

Keilwagen, J., I. Grosse, and J. Grau. 2014.
Area under Precision-Recall Curves for
Weighted and Unweighted Data. PLoS
ONE, 9(3):e92209, mar.

Risks of misinterpretation in the evaluation of Distant Supervision for Relation Extraction

81



Lin, Y., S. Shen, Z. Liu, H. Luan, and
M. Sun. 2016. Neural relation extraction
with selective attention over instances. In
Proceedings of the 54th Annual Meeting
ofthe Association for Computational Lin-
guistics, pages 2124–2133, Berlin, Ger-
many. Association for Computational Lin-
guistics.

Liu, T., K. Wang, B. Chang, and Z. Sui.
2017. A Soft-label Method for Noise-
tolerant Distantly Supervised Relation
Extraction. In Proceedings of the 2017
Conference on Empirical Methods in Nat-
ural Language Processing, pages 1790–
1795, Copenhagen, Denmark.

Manning, C. D., P. Raghavan, and
H. Schütze. 2008. Introduction to
information retrieval. Cambridge Univer-
sity Press.

Mintz, M., S. Bills, R. Snow, and D. Juraf-
sky. 2009. Distant supervision for rela-
tion extraction without labeled data. In
Proceedings of the 47th Annual Meeting of
the ACL, pages 1003–1011, Suntec, Singa-
pore.

Nadgeri, A., A. Bastos, K. Singh, I. O.
Mulang’, J. Hoffart, S. Shekarpour, and
V. Saraswat. 2021. KGPool: Dynamic
Knowledge Graph Context Selection for
Relation Extraction. arXiv, 2106.00459,
jun.

Piskorski, J. and R. Yangarber. 2013. Infor-
mation extraction: Past, Present and Fu-
ture. In Multi-source, Multilingual Infor-
mation Extraction and Summarization 11.
Springer-Verlag Berlin Heidelberg, pages
23–49.

Ren, X., Z. Wu, W. He, M. Qu, C. R. Voss,
H. Ji, T. F. Abdelzaher, and J. Han.
2017. CoType. In Proceedings of the 26th
International Conference on World Wide
Web, pages 1015–1024, Perth, apr. In-
ternational World Wide Web Conferences
Steering Committee.

Riedel, S., L. Yao, and A. McCallum. 2010.
Modeling relations and their mentions
without labeled text. In Joint Euro-
pean Conference on Machine Learning
and Knowledge Discovery in Databases,
pages 148–163, Berlin. Springer.

Ru, C., J. Tang, S. Li, S. Xie, and T. Wang.
2018. Using semantic similarity to reduce

wrong labels in distant supervision for re-
lation extraction. Information Processing
Management, 54(4):593–608, jul.

Student. 1908. The Probable Error of a
Mean. Biometrika, 6(1):1–25.

Surdeanu, M., J. Tibshirani, R. Nallapati,
and C. D. Manning. 2012. Multi-instance
multi-label learning for relation extrac-
tion. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Nat-
ural Language Processing and Computa-
tional Natural Language Learning, pages
455–465, Jeju Island, Korea. Association
for Computational Linguistics.

Vashishth, S., R. Joshi, S. S. Prayaga,
C. Bhattacharyya, and P. Talukdar. 2018.
Reside: Improving Distantly-Supervised
Neural Relation Extraction using Side In-
formation. In Proceedings of the 2018
Conference on Empirical Methods in Nat-
ural Language Processing, pages 1257–
1266, Brussels, Belgium. Association for
Computational Linguistics.

Wang, G., W. Zhang, R. Wang, Y. Zhou,
L. Chen, W. Zhang, H. Zhu, and H. Chen.
2018. Label-free distant supervision for
relation extraction via knowledge graph
embedding. In Proceedings of the Con-
ference on Empirical Methods in Natural
Language Processing, pages 2246–2255.

Wu, S., K. Fan, and Q. Zhang. 2019. Im-
proving Distantly Supervised Relation Ex-
traction with Neural Noise Converter and
Conditional Optimal Selector. In Proceed-
ings of the AAAI Conference on Artificial
Intelligence, pages 7273–7280, nov.

Xu, P. and D. Barbosa. 2019. Connecting
Language and Knowledge with Heteroge-
neous Representations for Neural Relation
Extraction. In Proceedings of the 2019
Conference of the North American Chap-
ter of the Association for Computational
Linguistics: Human Language Technolo-
gies, pages 3201–3206, Minneapolis, Min-
nesota. Association for Computational
Linguistics.

Ye, Z.-X. and Z.-H. Ling. 2019. Distant Su-
pervision Relation Extraction with Intra-
Bag and Inter-Bag Attentions. In Pro-
ceedings of the 2019 Conference of the
North American Chapter of the Associa-
tion for Computational Linguistics: Hu-

Juan-Luis García-Mendoza, Luis Villaseñor-Pineda, Felipe Orihuela-Espina

82



man Language Technologies, pages 2810–
2819, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Zeng, D., K. Liu, Y. Chen, and J. Zhao.
2015. Distant Supervision for Relation
Extraction via Piecewise Convolutional
Neural Networks. In Proceedings of the
2015 Conference on Empirical Methods in
Natural Language Processing, pages 1753–
1762, Lisbon, Portugal. Association for
Computational Linguistics.

Zeng, D., K. Liu, S. Lai, G. Zhou, and
J. Zhao. 2014. Relation classification
via convolutional deep neural network.
In Proceedings of COLING 2014, the
25th International Conference on Com-
putational Linguistics: Technical Papers,
pages 2335–2344, Dublin, Ireland.

Zhou, P., J. Xu, Z. Qi, H. Bao, Z. Chen, and
B. Xu. 2018. Distant supervision for rela-
tion extraction with hierarchical selective
attention. Neural Networks, 108:240–247.

Risks of misinterpretation in the evaluation of Distant Supervision for Relation Extraction

83




