symmetry

Article

Improving the Statistical Qualities of Pseudo Random
Number Generators

Rafael Alvarez *

check for
updates

Citation: Alvarez, R.; Martinez, F;
Zamora, A. Improving the Statistical
Qualities of Pseudo Random Number
Generators. Symmetry 2022, 14, 269.
https://doi.org/10.3390/
sym14020269

Academic Editor: Chin-Ling Chen

Received: 31 October 2021
Accepted: 16 December 2021
Published: 29 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Francisco Martinez

and Antonio Zamora

Department of Computer Science and Artificial Intelligence (DCCIA), University of Alicante,
03690 Alicante, Spain; fmartine@dccia.ua.es (F.M.); zamora@dccia.ua.es (A.Z.)
* Correspondence: ralvarez@dccia.ua.es

Abstract: Pseudo random and true random sequence generators are important components in many
scientific and technical fields, playing a fundamental role in the application of the Monte Carlo
methods and stochastic simulation. Unfortunately, the quality of the sequences produced by these
generators are not always ideal in terms of randomness for many applications. We present a new
nonlinear filter design that improves the output sequences of common pseudo random generators in
terms of statistical randomness. Taking inspiration from techniques employed in symmetric ciphers,
it is based on four seed-dependent substitution boxes, an evolving internal state register, and the
combination of different types of operations with the aim of diffusing nonrandom patterns in the
input sequence. For statistical analysis we employ a custom initial battery of tests and well-regarded
comprehensive packages such as TestU01 and PractRand. Analysis results show that our proposal
achieves excellent randomness characteristics and can even transform nonrandom sources (such as a
simple counter generator) into perfectly usable pseudo random sequences. Furthermore, performance
is excellent while storage consumption is moderate, enabling its implementation in embedded or low
power computational platforms.

Keywords: random; pseudorandom; nonlinear; filter; PRNG; s-box

1. Introduction

Random number and bit sequence generation is important in the development of
many fields in science and technology, such as physics [1], biology [2], computational
finance [3], nanostructures [4], semiconductors [5], security [6], data science [7], etc. It plays
a fundamental role in the application of the Monte Carlo methods in those environments
where a random behavior is apparent and stochastic simulation becomes essential [8-10].

Random number generators can produce number sequences based on sources of ran-
domness, which can be either internal or external to the computer implementing such
random generator. In the latter case, one or several natural physical phenomena can be sam-
pled, combined, and processed, including sources such as particle duration in radioactive
processes, thermal noise in an electrical resistor, noise from inactive microphones or cam-
eras, frequency instability in an oscillator, etc. When the source of randomness is contained
within the computer, resources such as the system clock, the frequency of key presses, the
contents of input/output buffers, operating system statistics including processor load or
memory usage, and even hard drive or network device latency are combined to distill
enough randomness [11].

Despite their name, true random generators can have some drawbacks, such as the
sequence being significantly skewed, having excessive autocorrelation and, especially, that
the generated sequence cannot be easily reproduced. In the case of stochastic simulation
and Monte Carlo methods, it is much more convenient to employ deterministic algorithms
that produce sequences that are, in practice, indistinguishable from true random sequences
and can be perfectly reproduced as a function of the input or seed; these are known as
pseudo random generators (or PRNGs) and, although the generated sequences are not
genuinely random, they behave as such for all practical purposes [12-14].

Symmetry 2022, 14, 269. https:/ /doi.org/10.3390/sym14020269

https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020269
https://doi.org/10.3390/sym14020269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8254-6255
https://orcid.org/0000-0002-0483-6302
https://orcid.org/0000-0003-0401-6440
https://doi.org/10.3390/sym14020269
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020269?type=check_update&version=1

Symmetry 2022, 14, 269

2 of 14

When employing pseudo random generators in simulation and Monte Carlo methods,
the sequences produced must present long periods and a good statistical distribution, to be
unpredictable. If an algebraic description of the properties of the sequences generated by a
pseudo random generator is not possible (which is a fairly common occurrence), we have to
resort to several statistical suites (batteries of tests) that can help detect possible uniformity
deviations or dependencies [15,16]. One of the most popular and complete libraries is
TestU01, that extends upon classical suites and includes several preconfigured groups of
tests called SmallCrush, Crush and BigCrush [17]. In a similar fashion, PracRand [18] is
also very popular and comprehensive.

The main contributions of this paper are based around the proposal of a new nonlinear
filter design that can significantly improve the randomness characteristics of the sequences
generated by common pseudo random generators. The results obtained by this new filter
are excellent, presenting negligible performance overhead and completely correcting all
defects present in the unfiltered sequences; even when using a simple counter (a completely
nonrandom source) as a pseudo random generator. Due to its evolving internal state, the
period of the filtered sequence is much longer than that of the input, which can be useful
in cases where very long sequences are required. Furthermore, although our main focus
in this paper are pseudo random sequences, the proposed filter can be also successfully
applied to true random sequences without any modification.

The proposed design, although nonlinear and complex in nature, remains symmetric
(balanced) in terms of the probability of each bit of the sequence, guaranteeing that all
output values are equally probable. Moreover, its design employs certain concepts bor-
rowed from symmetric ciphers [19], such as an initialization stage, seed (or key) dependent
construction and the combination of different types of operations.

The main motivation of the proposed filter design is improving the quality of pseudo
random sequences, not just in terms of statistical randomness, but also in terms of unpre-
dictability and nonlinearity, which are extremely important for applications in the fields
of cryptography and information security. There are known filtering algorithms that can
correct for simple statistics but introduce problems in higher order metrics (a problem
commonly described as resilience). The comprehensive testing performed ensures that
this does not happen with our proposal, improving on the unpredictability of simple (and
otherwise unsuitable in practice) generators by virtue of its highly nonlinear design.

Perhaps, the best known algorithm that employs random s-boxes is the RC4 stream
cipher, which showed some problems in recent years [20-22] in terms of certain statistical
biases. Our proposal differs from RC4 in several ways, mainly in its use of four 8 x 32
s-boxes that, once constructed, do not evolve with further filtering, unlike in RC4 that
employs a single 8 x 8 s-box that is constantly evolving. Furthermore, the output sequence
(keystream) generated by RC4 is directly sourced from its s-box values, while our proposal
filters an external sequence and its output is not the direct result of any of the four s-boxes.
Also, its internal structure is very different to RC4, with different operations and s-box
implementation, wider data paths, and additional registers and variables.

S-boxes and their applications are a current and very active field of research, compris-
ing an abundant body of related work, from which we can highlight the following research:

Regarding pseudo randomness, chaotic systems, and the construction of s-boxes,
Ozkaynak [23] has studied the relevance of chaotic systems on the construction of s-boxes,
proposing with Tanyildizi [24] an s-box construction method based on one-dimensional
chaotic maps. Hussain et al. [25] designed an alternative s-box for the Advanced Encryption
Standard [26] that is constructed from a chaotic logistic map. Lu et al. [27] proposed
an algorithm for the construction of s-boxes based on a new compound chaotic system,
together with an efficient image encryption scheme based on the LSS chaotic map [28].
Wang et al. [29] proposed a chaotic s-box construction method based on a memorable
simulated annealing algorithm. Jiang et al. [30] created an s-box with excellent properties
based on chaos theory and bent functions. Lambi [31] applied a discrete-space chaotic
map to s-box design. Zhou et al. [32] proposed a chaos-based random s-box generation
algorithm based on a 2D mixed pseudo random coupling PS map lattice.

Symmetry 2022, 14, 269

3of 14

S-boxes are also frequently linked to the subject of image encryption, with Yang et al. [33]
designing a 2D multiple collapse chaotic map with the aim of deriving an s-box and
diffusion map that improve efficiency and security. Haq et al. [34] proposed a 12 x 12 s-box
that is employed in color image encryption, improving statistical confusion. Zhang [35]
studied a fast image cryptosystem based on a piecewise linear chaotic map and a cubic
s-box, and Wang et al. [36] analyzed image encryption based on s-boxes constructed upon
a chaotic system without equilibrium.

Machine learning is an active field of research, with applications to s-boxes. More
specifically, Idris et al. [37] studied the prediction of active s-boxes on reduced General-
ized Feistel Ciphers employing deep learning techniques. Among others, Zu et al. [38],
Kim et al. [39], Mishra et al. [40], and Bolufé-Rohler et al. [41] also applied deep learning to
s-box cryptoanalysis, design, and optimization in different types of ciphers.

This paper is divided as follows: Section 2 introduces the concepts required to under-
stand the specific characteristics of the pseudo random generators employed to generate
the sequences to be filtered. Section 3 describes the design of the filter, including the initial-
ization and iteration (filtering) phases, and provides information regarding the motivation
for such design. Section 4 details the testing results and procedures in terms of randomness
and performance. Finally, some conclusions are given in Section 5.

2. Preliminaries

In the following, we detail the main characteristics of the three PRNGs that we tested
with our proposed filter.

2.1. Linear-Feedback Shift Registers

Sequences generated by Feedback Shift Registers are well known since the beginning
of electronics and are commonly employed in many disciplines, so there exists abundant
literature regarding the subject [19,42—44]. We can identify two components in this type of
generators: a shift register and a feedback function.

A Feedback Shift Register (FSR) is composed of an n-bit register, in which a sequential
ordering of the bits was established, obtaining a structure that is similar to a FIFO (first in,
first out) queue: when a new bit is introduced from the left to become the most significant
bit, the remaining bits are shifted one position to the right and the least significant bit is
extracted from the register as output. Also, the new bit that is introduced from the left is
obtained as the result of a feedback function that takes the current state of the register as
input. In this way, starting from an initial register value that acts as the seed and iterating
the feedback process, each successive extracted bit conforms the output binary sequence.

The FSR generators with best characteristics are those that employ a linear feedback
function and are known as Linear Feedback Shift Registers (LFSR). An n-bit LFSR can
be characterized by a polynomial of n — 1 degree in Z,[x], achieving the highest possible
period (2" — 1) when this polynomial is primitive.

Algorithms based on LFSRs are popular for generating pseudo random sequences
since they present the following desirable characteristics:

* They can be easily analyzed as they have known mathematical properties.

® Their hardware implementation is simple and efficient and, although not ideal, they
can also be adequately implemented in software.

* Aslong as the feedback function is chosen from a primitive polynomial, the period of
the sequence is guaranteed to be maximum.

* The generated sequences have very good randomness properties in terms of
basic statistics.

In our tests, we chose a 48-bit LFSR with a feedback function constructed from the
following primitive polynomial to obtain a maximal period for the given register length
(2*8 —1).

D T e R

and we show the corresponding LFSR diagram in Figure 1.

Symmetry 2022, 14, 269

4 of 14

D

X X X X X X X X X —OuUT—>

Figure 1. Schematic for the tested 48-bit LFSR generator.

2.2. Linear Congruential Generators

Introduced by Lehmer [45] in 1951, this algorithm is widely employed as it is used by
default in many programming languages. It is based on the following expression:

X411 = (aXy +¢) mod m,

where the previous value (X,,) is multiplied by a coefficient (1), an offset (c) is added to it
and the result modulo m constitutes the next value of the sequence (X;,41). The name linear
congruential refers to the expression of a line (linear) in modular arithmetic (congruential).

Despite generating sequences that, from the point of view of statistical randomness,
are quite good and can have a fairly long period if the parameters are chosen properly, it
is unsuitable for use in cryptography or security as it is predictable. Four values of the
sequence are enough to be able to determine the seed and the necessary parameters (a,
c and m) with which to reproduce the whole sequence. Unfortunately, because it is so
popular, it is often used by inexperienced programmers in security tasks, allowing relatively
simple attacks.

We chose a common 32-bit LCG implementation in many programming languages
and standard libraries, with the following values:

a = 69069,
c=1,
m=2%_1.

2.3. Simple Counters

A sequence generated by a simple counter is, obviously, neither random nor pseudo
random, quite the opposite. Nevertheless, the fact that it is a predictable sequence consti-
tutes a very challenging test for the proposed filter to successfully correct such an unsuitable
sequence and provide statistically acceptable results in terms of randomness.

Furthermore, counters have interesting properties when considered as part of PRNGs.
They have maximal periods for a given register size (2" possible values, being n the number
of bits) and provide every possible output value once and only once, exhibiting certain
statistical symmetry or output bit balance.

They are also very fast, providing a great baseline to establish maximum filter perfor-
mance. Moreover, a counter feeding a filter is a very similar construct to that employed in
the CTR (counter) mode of block ciphers [44].

For our testing, we have chosen a simple 32-bit counter (since that is a common
integer variable size in modern implementations) that is set to an initial value (seed) and
incremented accordingly:

Xo =1V
Xus1 = (Xp + 1) mod 232

Symmetry 2022, 14, 269

5o0f 14

3. Description

Substitution boxes (or s-boxes) can be thought of conceptually as lookup tables that
assign an output value for each possible input value. Although they vary in size, usually
they are 8 x 8 bits (input and output values are a byte) or 8 x 32 bits (input values are a byte
and output values are a four-byte word). They provide the required nonlinearity charac-
teristics in PRNG or cryptographic algorithms, introducing complexity while maintaining
high performance.

There are two main classes regarding their design:

e Static or constructed s-boxes. These are chosen carefully to achieve certain characteris-
tics but usually employ some kind of generator function. Their main advantage is that
they can achieve optimum values in certain metrics, but a weak point might be found
since their data or underlying structure can be analyzed offline.

¢ Dynamic or key-derived s-boxes. Unlike static s-boxes, the results obtained by random
s-boxes cannot be guaranteed to optimal in relevant metrics, but the fact they are not
based on any known underlying structure can be a definite advantage. Furthermore,
when pseudo random s-boxes are dynamically generated and derived from the seed
then different s-boxes can be used for each different sequence, possibly providing
even better results.

Our filter proposal is based on four 8 x 32 key-derived s-boxes that approximate a
complete 32 x 32 substitution box, which would be unfeasible for this application in terms of
computational and storage costs. This is a technique based on previous work [46,47]. It also
includes an additional 64-bit internal state that is sometimes used as two 32-bit registers.

It is composed of two distinct phases: an initialization phase where the different
s-boxes are constructed and a filtering phase where the input sequence is transformed into
the output sequence. Both of these phases are described in the following.

3.1. Initialization

To construct the set of four 8 x 32 s-boxes, the initialization algorithm is based on the
multiple states of a single 8 x 8 s-box that are concatenated to generate wider s-boxes. We
define this s-box as S = (S, Sy, ..., S255), with S; denoting the i-th position in S, and 0
being the first position and 255 the last (as per computing standards).

This s-box is evolved during initialization using a set of values called the keystream,
or K, that is a vector of 256 byte values that acts as the seed for the filter. This means that
there are 22048 different filter constructions possible and, since the initialization algorithm
is deterministic, for a given seed value of K = (K, Ky, .. ., K55) we always obtain the same
filter. As before, K; denotes the i-th position in K, with 0 being the first position and 255
the last.

The filter can be seeded either from an external source or directly from the first
256 bytes of the input sequence before generating any output. The latter technique is
employed throughout this paper.

For simplicity, we identify the byte values within K or S as the associated integer
numbers.

Initially, S and integers h and [are

S = 1,i=0,1,...,255,
h =0,
I = 0.

Then, S is evolved in terms of K following

Symmetry 2022, 14, 269

6 of 14

j = (h+S;) mod 256,
h = (l—l—Sj—FKi) mod 256,
I = I+i+Ky,

swap(S;, Sp)-

This process is repeated 256 times, swapping S; and Sy, values fori = 0,1, ...,255 to ob-
tain an evolution state of S. We denote these states by a superscript, S* = (S}, S}, ..., Shs5)
with 1 being the n-th evolution state of S and 0 the initial state of S. Therefore S} denotes
the i-th position of the n-th evolution state of S.

We can now define four 8 x 32 s-boxes, M7 = (Mg, M?, e, Mg55), g=0,1,2,3, where
M? represents the i-th position in MY, with 0 being the first position and 255 the last.

Notice that unlike S or K, positions in MY contain 32-bit values (or four byte words)
rather than bytes. These four s-boxes are constructed by the concatenation of four different
evolutions of each position of S:

3 4q+2 ~4q+1
MI = (§HHE gl ght2 glatly

i = 0,1,2,...,255.

This process is repeated for g = 0, 1,2, 3 to construct all four 8 x 32 s-boxes and requires
the S! to S'° evolution states of S. It is graphically represented in Figure 2.

For simplicity, we identify the 32-bit values (or four bytes) within M? as a vector
composed from the four integer numbers associated to these four bytes.

0 _ . 3 16 15 14 13
M)=| st | s3|s3|sh M3 =] st | st | sit | sh
M= s | 3| s |l M3 =| si6| sl>| sl* | P
My=| S§|S3|s3|Sh M3 =| sk | sy | syt s
MO =—| e M =—]

o | 3. | gle |gl5 [gla | c13
Mysy =| S35y | Sass | S2sa | Stsa Misy =| 234 | S84 | Sz51 | 52

0 _| o4 3 _ | qlé 15 14 13
M3ss =| S3s5 | S3s5 | S2s5 | Shss Miss = | 5385 | 535 | 5255 | Sass

Figure 2. Construction of MO to M3 taking byte values from S1 to §16 evolutions states of S.

3.2. Filtering

Besides the four M1 s-boxes, the filter also employs a single 64-bit value T = (T", T)
that can also be addressed as two 32-bit halves, T! (low 32-bit half) and T" (high 32-bit half).
Furthermore, we can also denote each byte of each half by subscript, with T/ denoting
the i-th byte of the high half of T, with 0 being the least significant byte and 3 the most
significant, this is T" = (T, T4, T}, T) and T! = (T}, T, T}, T).

Symmetry 2022, 14, 269

7 of 14

Since the filter is designed to process a 32-bit word at a time, we can define I as the
32-bit word corresponding to the filter input and O as the 32-bit word corresponding to the
filter output each iteration. So, for each 32 bits of input

™ = 1,

I 1 0 1 2 3
T = T@MT(,;@MT{,@MT%@MT%U
o = T,

T = 1‘0131(T).

With rols; (T) denoting the bitwise rotation of T 31 bits to the left, and @ the bitwise
exclusive-or between 32-bit operands.
Before filtering starts, T is initialized with Kj to K7

Til = K;
T} = Kis
i = 01,23

The component architecture for each filter iteration is shown in Figure 3. The storage
requirements of this design are only 4104 bytes (4KiB for the four 8 x 32 s-boxes and 8 bytes
for the 64-bit T register).

0
o M My
N 1 ML
1 M T}

O

2

T ¥ M? M Th @

1

3

e M My,

[
Th Tl
T

Figure 3. Filter iteration architecture.

3.3. Design Rationale

The proposed design presents several interesting aspects that are motivated in
the following.

Symmetry 2022, 14, 269

8 of 14

3.3.1. Data Dependent Construction

This filter follows a seed dependent construction, allowing for many different possible
filter constructions. Although this characteristic adds complexity and is not common since
most standard sequence filters are fixed or static, it provides better randomness results
and broadens the possible applications of the proposed filter not only to simulation, but
also to the fields of information security and cryptography. It is, in essence, inspired by
the underlying structure of symmetric encryption algorithms such as stream and block
ciphers [19].

3.3.2. Evolving Internal State

Although the construction is seed dependent, once the filter is constructed there is
no additional evolution within the sets of s-boxes M to M3. To avoid that repeating bit
patterns in the input generate similar output characteristics, the 64-bit register T acts as an
evolving internal state that diffuses and decorrelates the input patterns along the output
sequence, significantly improving results. As an additional benefit, it helps increase the
overall period of the sequence. The fact that this register is 64-bit, while the input and
output to the filter are 32-bit words, is also a technique inspired from symmetric ciphers.

3.3.3. Different Operation Types

The filter design involves different types of operations, like the exclusive-or that
combines the outputs of different s-boxes, the bitwise rotation of the T register, and the
additions to generate the indices in the filter initialization phase. The combination of
different types of operations further improves the nonlinearity of the proposed filter.

4. Results

We include analysis of the results of the three generators described (CTR, LCG and
LFSR) in terms of randomness and performance. Multiple byte units are expressed follow-
ing the IEC recommended guidelines (see [48]).

4.1. Randomness Testing

As shown in Table 1, we performed initial statistical testing using a custom suite ([49])
that comprises the following randomness tests extracted from [19]:

* Monobit, related to the frequency of 0 and 1 bits in the sequence.

* Serial, frequency analysis of pairs of bits (00, 01, 10, and 11) in the sequence.
® Poker8, analyzing the frequency of groups of 8 bits.

® Poker16, like Poker8 but analyzing groups of 16bits.

* Runs, considering groups of contiguous 0 bits (gaps) and 1 bits (runs).

In this initial suite, a test is considered as passed when its result is below the correction
value (with a significance level of & = 0.1).

Both LFSR and LCG are good PRNG in terms of basic statistics, so they pass all tests
regardless of filtering. Although this might lead to the belief that they are excellent PRNG
for all applications, they are still predictable and completely linear, therefore unsuitable for
cryptography or information security applications and will be deemed not random in the
more complex testing suites that follow.

The simple counter (CTR) is a very different case, since it is not a random algorithm, so
it performs very poorly in all tests until the proposed filter greatly improves the sequence
to much better results.

Symmetry 2022, 14, 269 9 of 14

Table 1. Initial statistical PRNG analysis.

Monobit Serial Poker8 Pokerlé6 Runs

LFSR (unf.) 0.23 0.44 245 65,632 20.9
LFSR (filt.) 0.36 2.28 220 65,376 25.8
LCG (unf.) 0.02 2.05 196 64,448 11.2
LCG (filt.) 0.01 0.58 254 64,896 10.8
CTR (unf.) 245 299 273,348 67,137,536 4151
CTR (filt.) 0.69 2.62 257 65,344 259
Correction 2.71 4.61 284 65,999 28.4

Further testing is performed with the TestU01 suite, specifically the included BigCrush
battery that is comprised of 160 statistics [17]; this is a much more stringent set of tests and
considered among the better tools for randomness testing, since it includes and further
expands on the tests proposed by NIST [15] and those by Marsaglia [16].

We can see in Table 2 that all three algorithms fail a certain number of tests, while the
proposed filter is able to correct the output and pass all tests; even in the extreme case of
the simple counter that failed all tests without filtering.

Table 2. PRNG analysis with TestUO01.

Total Failed

LESR (unf.) 160 30
LFSR (filt.) 160 All passed
LCG (unf.) 160 101
LCG (filt.) 160 All passed
CTR (unf.) 160 All failed
CTR (filt.) 160 All passed

Another well-regarded randomness testing suite is PractRand (see [18]). This is a more
modern set of tools than TestU01 but also comprehensive while supporting parallelism and
iterative testing, therefore making it significantly more convenient and efficient to use.

The results in Table 3 show that the unfiltered results are poor, with the LFSR generator
failing 18 tests out of a total of 130 after testing a sequence of 128 MiB; the LCG generator
failing 89 tests out of 103 after testing a sequence of 64 MiB; and the counter failing almost
all tests for a testing sequence of 32 MiB. The differing sequence lengths is due to the
fact that PractRand performs tests incrementally, presenting results for successive length
intervals, and stops testing when results are too poor to continue. This correlates with the
results obtained in the previous testing suites.

As before, filtering improves results dramatically, passing all tests for all three al-
gorithms even after testing a full terabyte (1 TiB) sequence, which exemplifies the great
qualities of the proposed filter even for longer sequences, being capable of significantly
extending the period of the original pseudo random sequences.

Table 3. PRNG analysis with PractRand.

Length Total Failed

LFSR (unf.) 128 MiB 130 18
LFSR (filt.) 1 TiB 290 All passed
LCG (unf.) 64 MiB 103 89
LCG (filt.) 1 TiB 290 All passed
CTR (unf.) 32 MiB 112 106

CTR (filt.) 1 TiB 290 All passed

Symmetry 2022, 14, 269

10 of 14

4.2. Performance

We include performance data for all three PRNG algorithms, both unfiltered and
processed with the proposed filter. These performance values were taken as the minimum
value of 10 runs generating a 10 GiB sequence, to minimize system variability; and were
performed on a Windows 10 64 bit computer with an Intel Core i7-5960X 3.5 GHz CPU and
32 GB of RAM. The implementation was in pure C programming language over a single
computing thread.

Figure 4 shows the time taken for all three PRNG to generate a sequence of the
aforementioned length (10 GiB) with and without filtering, while Figure 5 presents the
real-time bandwidth performance of each algorithm with and without filtering.

To properly interpret the performance results from Figures 4 and 5, we must consider
the significance of each of the tested PRNG algorithms.

Taking into account the randomness of the sequences generated, a counter (CTR
in our results) is not really a pseudo random generator since its sequences are always
increasing values, and therefore easily predictable, but it is used here as a benchmark for
the filtering capabilities of our proposal, that appear to be excellent since even a simple
counter sequence passes all randomness tests after proper filtering. A similar occurrence
happens with the linear congruential generator (LCG in our results), which is a well-known
and popular PRNG algorithm for its simplicity and efficiency and was therefore included
as the default basic PRNG in many programming languages, but it is predictable and
will be detected as nonrandom in any tests other than the most basic. Linear feedback
shift registers generators (LFSR in our results), albeit still simple algorithms, introduce
a bit more complexity and produce much higher quality output sequences in terms of
statistical randomness. Nevertheless, LFSRs have a very low linear complexity and are
easily predictable employing the Berlekamp-Massey algorithm (see [50]), failing in more
advanced randomness tests.

300.00

250.00

200.00

150.00

Time (s)

100.00

50.00

0.00 — - | -

CTR LCG LFSR
M Unfiltered 6.01 8.05 258.39
M Filtered 23.82 23.88 259.30

Figure 4. Time (in seconds) taken to generate a 10 GiB sequence.

Symmetry 2022, 14, 269

11 0f 14

1800.00
1600.00
1400.00
__ 1200.00
v
S~
«Q
= 1000.00
<
-+
S
= 800.00
©
c
@
600.00
400.00
200.00
CTR LCG LFSR
B Unfiltered 1703.11 1271.33 39.63
u Filtered 429.84 428.88 39.49

Figure 5. Bandwidth (in MiB/s) for each PRNG with and without filtering.

The perspective of time complexity regarding each algorithm is also important. The
CTR algorithm is just a simple increment instruction over a CPU register, so it is extremely
fast and mostly limited by memory bandwidth, procedure call overhead, etc. The LCG
algorithm is a bit slower since it requires and addition, a multiplication and a modulo
operation per iteration, with most implementations choosing values such that performance
is maximized while maintaining a good enough period; such is the case of the LCG tested
here. Traditionally, LFSR generators were chosen for their performance and simplicity
of implementation in hardware but are less ideally suited for software implementation
in modern CPUs since they are oriented to single bit manipulation, although this can be
optimized employing alternative implementations, like the Galois form (see [51]).

In terms of the possible applications of these algorithms, an unfiltered CTR is not
suitable by itself as a PRNG in any meaningful way for any application where randomness
is required. An unfiltered LCG is only barely adequate for applications where performance
is more important than statistical randomness, but it is a very poor option in any case where
the quality of the randomness matters. An unfiltered LFSR is a better option when higher
quality statistical randomness is required. It should be remarked that all these algorithms
are predictable, and therefore not valid in isolation for applications such as cryptography
or security protocols.

The filtering performance of our proposal enables the usage of these simple generators
even in stringent application such as information security or cryptographic protocols
because it improves randomness and the sequences pass all tests, but also introduces the
required nonlinearity so that the filtered generators are no longer predictable.

We can see in Figure 5 that proposed filter presents excellent performance, achieving
almost 430 MiB/s of bandwidth in software when filtering a simple counter. Considering
that it entails just a simple increment instruction, this can be taken as the raw real-time
performance of the proposed filter. To put this in context, a 1 gigabit network link has a
bandwidth of 125 MiB/s. Furthermore, the proposed filter overhead is negligible when
applied to proper generators (around 0.35% in the case of the LFSR), while being capable of
efficiently adding the required complexity to generate properly pseudo random sequences.

Symmetry 2022, 14, 269

12 of 14

These performance results are promising, enabling the application of the proposed filter in
different computational scenarios.

Since the filtering operation is constant for each iteration, the computational complex-
ity of the proposed algorithm is linear, O(n), with the length of the input sequence.

5. Conclusions

We presented a new random number sequence filter design with interesting appli-
cations in many scientific and technical fields, including stochastic simulation. It is also
applicable to information security and cryptography, considering that its design was moti-
vated and inspired by many of the techniques employed in symmetric ciphers.

We also analyzed our proposal in terms of randomness and performance, obtaining
excellent results. Our design was used to filter the output of different pseudo random
generators, and the resulting sequences were then processed with three different statistical
suites, including the well regarded TestU01 and PractRand packages. It manages to filter
any statistical randomness problems in the input sequence and can even completely correct
the many defects found in a nonrandom sequence, like those generated by a simple counter,
transforming it into a perfectly usable random number sequence in practice.

Regarding performance, when filtering a simple counter generator, the proposed filter
achieves approximately 430 MiB/s of bandwidth. This value can be taken as the nominal
performance of the filter since the impact of the counter is minimal. Conversely, when
filtering the output from a more complex generator, like the linear feedback shift register
instance that was tested, the difference between filtered and unfiltered performance is
negligible (0.35% in this case), so the performance impact of using the proposed filter on an
existing generator is extremely low.

Since it presents great performance and modest resource consumption, its implemen-
tation could be useful in embedded systems or other low power computational scenarios
such as transport or digital identity systems, etc., enabling high quality pseudo random se-
quences and improved security in many of these applications, considering that pseudo ran-
dom sequences are the basis of many cryptographic primitives such as keystream sequences
in Vernam style stream ciphers for encryption or random values in challenge/response
schemes for authentication, etc.

Author Contributions: Conceptualization, RA,EM. and A.Z.; methodology, RA.,EM. and A.Z.;
software, R.A., FM. and A.Z.; validation, R.A., EM. and A.Z.; formal analysis, R.A.,FEM.and A.Z.;
investigation, R.A., EM. and A.Z.; resources, R.A., EM. and A.Z.; data curation, R.A., FM. and A.Z.;
writing—original draft preparation, R.A,EM.and A.Z; writing—review and editing, R.A., FEM. and
A.Z.; visualization, R A.,, EM. and A.Z; supervision, RA.and A.Z; funding acquisition, R.A.and A.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Spanish Ministry of Science, Innovation and Universities
(MCIU), the State Research Agency (AEI), and the European Regional Development Fund (ERDF)
under project RT12018-097263-B-100 (ACTIS).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

FSR Feedback Shift Register

LFSR Linear Feedback Shift Register

LCG Linear Congruential Generator

CTR Counter

PRNG Pseudo Random Number Generator

IEC International Electrotechnical Commission

Symmetry 2022, 14, 269 13 of 14

References

1. Firk, F; Miller, S. Nuclei, primes and the random matrix connection. Symmetry 2009, 1, 64-105. [CrossRef]

2. Klueter, A.; Crandall, J.; Archer, E,; Teece, M.; Coffroth, M. Taxonomic and environmental variation of metabolite profiles in
marine dinoflagellates of the genus Symbiodinium. Metabolites 2015, 5, 74-99. [CrossRef]

3. Morokoff, WJ.; Caflisch, R.E. Quasi-Monte Carlo simulation of random walks in finance. In Monte Carlo and Quasi-Monte Carlo
Methods 1996; Springer: Berlin/Heidelberg, Germany, 1998; pp. 340-352.

4. Martins, E.R; Li, J.; Liu, Y.; Depauw, V.; Chen, Z.; Zhou, J.; Krauss, T.F. Deterministic quasi-random nanostructures for photon
control. Nat. Commun. 2013, 4, 2665. [CrossRef]

5. Cao, H.; Zhao, Y,; Ho, S.T.; Seelig, E.; Wang, Q.; Chang, R.P. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999,
82,2278. [CrossRef]

6. Alvarez, R.; Andrade, A.; Zamora, A. Optimizing a Password Hashing Function with Hardware-Accelerated Symmetric
Encryption. Symmetry 2018, 10, 705. [CrossRef]

7. Jantschi, L. A Test Detecting the Outliers for Continuous Distributions Based on the Cumulative Distribution Function of the
Data Being Tested. Symmetry 2019, 11, 835. [CrossRef]

8. Law, A. Simulation Modeling and Analysis, 5th ed.; Mcgraw-Hill: New York, NY, USA, 2014.

9. L’Ecuyer, P. Handbook of Computational Statistics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 35-71.

10. Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods; SIAM: Philadelphia, PA, USA, 1992.

11. Eastlake, D.; Crocker, S.; Schiller, J. Randomness Recommendations for Security; RFC, 1750; Network Working Group: Wilmington,
DE, USA, 1994.

12. Billinton, R.; Wang, P. Teaching distribution system reliability evaluation using Monte Carlo simulation. IEEE Trans. Power Syst.
1999, 14, 397-403. [CrossRef]

13. Kroese, D.P; Taimre, T.; Botev, Z.I. Handbook of Monte Carlo Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 706.

14. L’Ecuyer, P.; Munger, D.; Oreshkin, B.; Simard, R. Random numbers for parallel computers: Requirements and methods, with
emphasis on gpus. Math. Comput. Simul. 2017, 135, 3-17. [CrossRef]

15. Rukhin, A; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2000.

16. Marsaglia, G. DIEHARD: A Battery of Tests of Randomness; Technical Report; Florida State University: Tallahassee, FL, USA, 1996.

17. L’Ecuyer, P; Simard, R. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw.
(TOMS) 2007, 33, 22. [CrossRef]

18. Doty-Humphrey, C. Practically Random: C++ Library of Statistical Tests for RNGs. 2016. Available online: https:/ /sourceforge.
net/projects/pracrand/ (accessed on 31 October 2021).

19. Menezes, A J.; Van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 2018.

20. Fluhrer, S.; Mantin, I.; Shamir, A. Weaknesses in the key scheduling algorithm of RC4. In International Workshop on Selected Areas
in Cryptography; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1-24.

21. Klein, A. Attacks on the RC4 stream cipher. Des. Codes Cryptogr. 2008, 48, 269-286. [CrossRef]

22. Gupta, S.S.; Maitra, S.; Paul, G.; Sarkar, S. (Non-) random sequences from (non-) random permutations—Analysis of RC4 stream
cipher. J. Cryptol. 2014, 27, 67-108.

23. Ozkaynak, F. On the effect of chaotic system in performance characteristics of chaos based s-box designs. Phys. A Stat. Mech. Its
Appl. 2020, 550, 124072. [CrossRef]

24. Tanyildizi, E.; C)Zkaynak, F. A new chaotic S-box generation method using parameter optimization of one dimensional chaotic
maps. IEEE Access 2019, 7, 117829-117838. [CrossRef]

25. Hussain, I.; Anees, A.; Al-Maadeed, T.A.; Mustafa, M.T. Construction of s-box based on chaotic map and algebraic structures.
Symmetry 2019, 11, 351. [CrossRef]

26. Daemen, J.; Rijmen, V. The first 10 years of advanced encryption. IEEE Secur. Priv. 2010, 8, 72-74. [CrossRef]

27. Lu, Q.; Zhu, C.; Wang, G. A novel S-box design algorithm based on a new compound chaotic system. Entropy 2019, 21, 1004.
[CrossRef]

28. Lu, Q. Zhu, C; Deng, X. An efficient image encryption scheme based on the LSS chaotic map and single S-box. IEEE Access 2020,
8, 25664-25678. [CrossRef]

29. Wang, J.; Zhu, Y.;; Zhou, C.; Qi, Z. Construction method and performance analysis of chaotic S-box based on a memorable
simulated annealing algorithm. Symmetry 2020, 12, 2115. [CrossRef]

30. Jiang, Z.; Ding, Q. Construction of an S-Box Based on Chaotic and Bent Functions. Symmetry 2021, 13, 671. [CrossRef]

31. Lambi¢, D. A new discrete-space chaotic map based on the multiplication of integer numbers and its application in S-box design.
Nonlinear Dyn. 2020, 100, 699-711. [CrossRef]

32. Zhou, P; Du, J.,; Zhou, K.; Wei, S. 2D mixed pseudo-random coupling PS map lattice and its application in S-box generation.
Nonlinear Dyn. 2021, 103, 1151-1166. [CrossRef]

33. Yang, C.; Wei, X,; Wang, C. S-Box Design Based on 2D Multiple Collapse Chaotic Map and Their Application in Image Encryption.
Entropy 2021, 23, 1312. [CrossRef] [PubMed]

34. wulHagq, T,; Shah, T. 12 x 12 S-box design and its application to R GB image encryption. Optik 2020, 217, 164922. [CrossRef]

35. Zhang, Y. The unified image encryption algorithm based on chaos and cubic S-Box. Inf. Sci. 2018, 450, 361-377. [CrossRef]

http://doi.org/10.3390/sym1010064
http://dx.doi.org/10.3390/metabo5010074
http://dx.doi.org/10.1038/ncomms3665
http://dx.doi.org/10.1103/PhysRevLett.82.2278
http://dx.doi.org/10.3390/sym10120705
http://dx.doi.org/10.3390/sym11060835
http://dx.doi.org/10.1109/59.761856
http://dx.doi.org/10.1016/j.matcom.2016.05.005
http://dx.doi.org/10.1145/1268776.1268777
https://sourceforge.net/projects/pracrand/
https://sourceforge.net/projects/pracrand/
http://dx.doi.org/10.1007/s10623-008-9206-6
http://dx.doi.org/10.1016/j.physa.2019.124072
http://dx.doi.org/10.1109/ACCESS.2019.2936447
http://dx.doi.org/10.3390/sym11030351
http://dx.doi.org/10.1109/MSP.2010.193
http://dx.doi.org/10.3390/e21101004
http://dx.doi.org/10.1109/ACCESS.2020.2970806
http://dx.doi.org/10.3390/sym12122115
http://dx.doi.org/10.3390/sym13040671
http://dx.doi.org/10.1007/s11071-020-05503-y
http://dx.doi.org/10.1007/s11071-020-06098-0
http://dx.doi.org/10.3390/e23101312
http://www.ncbi.nlm.nih.gov/pubmed/34682036
http://dx.doi.org/10.1016/j.ijleo.2020.164922
http://dx.doi.org/10.1016/j.ins.2018.03.055

Symmetry 2022, 14, 269 14 of 14

36.

37.

38.

39.

40.

41.

42.
43.

44.
45.
46.

47.
48.

49.
50.

51.

Wang, X.; Cavusoglu, U.; Kacar, S.; Akgul, A; Pham, V.T,; Jafari, S.; Alsaadi, FE.; Nguyen, X.Q. S-box based image encryption
application using a chaotic system without equilibrium. Appl. Sci. 2019, 9, 781. [CrossRef]

Idris, M.E; Teh,].S.; Yan, J.L.S.; Yeoh, W.Z. A deep learning approach for active S-box prediction of lightweight generalized feistel
block ciphers. IEEE Access 2021, 9, 104205-104216. [CrossRef]

Zhu, S.; Han, Y.; Wu, X. Time Sequence based AES S-box Implementation Cryptoanalysis using Deep Learning Approaches. In
Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27-29 July 2020; IEEE: New York, NY, USA,
2020; pp. 7067-7072.

Kim, D.h,; Kim, S.; Hong, D.; Sung, J.; Hong, S. An Study on the Analysis of Design Criteria for S-Box Based on Deep Learning. J.
Korea Inst. Inf. Secur. Cryptol. 2020, 30, 337-347.

Mishra, G.; Krishna Murthy, S.; Pal, S. Dependency of lightweight block ciphers over S-boxes: A deep learning based analysis. J.
Discret. Math. Sci. Cryptogr. 2021, 24, 1-21. [CrossRef]

Bolufé-Rohler, A.; Tamayo-Vera, D. Machine learning based metaheuristic hybrids for S-box optimization. J. Ambient. Intell.
Humaniz. Comput. 2020, 11, 5139-5152. [CrossRef]

Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C; Wiley: Hoboken, NJ, USA, 2015.

Smeets, B. A note on sequences generated by clock controlled shift registers. In Workshop on the Theory and Application of of
Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1985; pp. 142-148.

Stallings, W. Cryptography and Network Security: Principles and Practice, 7th ed.; Pearson: London, UK, 2017.

Lehmer, D.H. Mathematical methods in large-scale computing units. Annu. Comput. Lab. Harvard Univ. 1951, 26, 141-146.
Alvarez, R.;; McGuire, G. S-Boxes, APN functions and related codes. In Enhancing Cryptographic Primitives with Techniques from
Error Correcting Codes; I0OS Press: Amsterdam, The Netherlands, 2009; pp. 49-62.

Alvarez, R.; Zamora, A. Randomness analysis and generation of key-derived s-boxes. Log. J. IGPL 2015, 24, 68-79. [CrossRef]
International Electrotechnical Commission. Letter Symbols to Be Used in Electrical Technology-Part 2: Telecommunications and
Electronics; Technical Report; International Electrotechnical Commission: Geneva, Switzerland, 2000.

Alvarez, R. RandTest. 2004. Available online: https://github.com/rias/randtest (accessed on 31 October 2021).

Ilani, I. Berlekamp-Massey Algorithm: Euclid in Disguise. In Proceedings of the 2018 IEEE International Conference on the
Science of Electrical Engineering in Israel (ICSEE), Eilat, Israel, 2-14 December 2018; IEEE: New York, NY, USA, 2018; pp. 1-5.
Borodzhieva, A.N. Computer-Based Education for Teaching the Topic “Galois Linear Feedback Shift Registers”. In Proceedings
of the 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME), Pitesti, Romania,
21-24 October 2020; IEEE: New York, NY, USA, 2020; pp. 291-294.

http://dx.doi.org/10.3390/app9040781
http://dx.doi.org/10.1109/ACCESS.2021.3099802
http://dx.doi.org/10.1080/09720529.2021.1932889
http://dx.doi.org/10.1007/s12652-020-01829-y
http://dx.doi.org/10.1093/jigpal/jzv044
https://github.com/rias/randtest

	Introduction
	Preliminaries
	Linear-Feedback Shift Registers
	Linear Congruential Generators
	Simple Counters

	Description
	Initialization
	Filtering
	Design Rationale
	Data Dependent Construction
	Evolving Internal State
	Different Operation Types

	Results
	Randomness Testing
	Performance

	Conclusions
	References

