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Abstract—The ability to predict, anticipate and reason about future outcomes is a key component of intelligent decision-making
systems. In light of the success of deep learning in computer vision, deep-learning-based video prediction emerged as a promising
research direction. Defined as a self-supervised learning task, video prediction represents a suitable framework for representation
learning, as it demonstrated potential capabilities for extracting meaningful representations of the underlying patterns in natural videos.
Motivated by the increasing interest in this task, we provide a review on the deep learning methods for prediction in video sequences.
We firstly define the video prediction fundamentals, as well as mandatory background concepts and the most used datasets. Next, we
carefully analyze existing video prediction models organized according to a proposed taxonomy, highlighting their contributions and
their significance in the field. The summary of the datasets and methods is accompanied with experimental results that facilitate the
assessment of the state of the art on a quantitative basis. The paper is summarized by drawing some general conclusions, identifying
open research challenges and by pointing out future research directions.

Index Terms—Video prediction, future frame prediction, deep learning, representation learning, self-supervised learning
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1 INTRODUCTION

W ILL the car hit the pedestrian? That might be one
of the questions that comes to our minds when we

observe Figure 1. Answering this question might be in
principle a hard task; however, if we take a careful look
into the image sequence we may notice subtle clues that
can help us predicting into the future, e.g., the person’s
body indicates that he is running fast enough so he will
be able to escape the car’s trajectory. This example is just
one situation among many others in which predicting future
frames in video is useful. In general terms, the prediction
and anticipation of future events is a key component of
intelligent decision-making systems. Despite the fact that
we, humans, solve this problem quite easily and effortlessly,
it is extremely challenging from a machine’s point of view.
Some of the factors that contribute to such complexity are
occlusions, camera movement, lighting conditions, clutter,
or object deformations. Even so, video prediction models
are able to extract rich spatio-temporal features from natural
videos in a self-supervised fashion. This was fostered by the
great strides deep learning has made in different research
fields such as human action recognition and prediction [1],
semantic segmentation [2], and registration [3], to name
a few. Because of their ability to learn adequate repre-
sentations from high-dimensional data [4], deep learning-
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Ŷt+1

Predicted Frames
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Fig. 1. A pedestrian appeared from behind the white car with the
intention of crossing the street. The autonomous car must make a
call: hit the emergency braking routine or not. This all comes down to
predict the next frames (Ŷt+1, . . . , Ŷt+m) given a sequence of context
frames (Xt−n, . . . , Xt), where n and m denote the number of context
and predicted frames, respectively. From these predictions at a rep-
resentation level (RGB, high-level semantics, etc.) a decision-making
system would make the car avoid the collision.

based models fit perfectly into the learning by prediction
paradigm.

1.1 Application Domains
Video prediction methods have been successfully applied
in a broad range of application domains such as robotics,
autonomous driving, action anticipation, and more. Relying
on action-conditioned video prediction, robots were able to
successfully manipulate previously unseen objects [5]. In
the same domain, video prediction has facilitated decision
making in vision-based robotic control [6] and motion plan-
ning [7], [8] and has provided accurate world models, of
high-dimensional environments, to model-based Reinforce-
ment Learning (RL) approaches. For instance, video predic-
tion has enabled planning in unknown environments [9],
[10]. This has helped model-based RL to achieve similar
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or better results compared to model-free approaches, with
fewer interactions and improved generalization capabilities.

Regarding self-driving cars, the trajectory prediction in
traffic of pedestrians [11] or generic agents [12] is extremely
useful to anticipate future events. Furthermore, the proba-
bilistic prediction of multi-modal futures [13] demonstrated
great success when it comes to traffic uncertainty. Likewise,
the synergy between video prediction and action anticipa-
tion was successfully proven with the prediction of visual
embeddings [14] and motion representations [15]. Some
other tasks in which video prediction has been applied suc-
cessfully are: prediction of instance/semantic segmentation
maps [16], [17], [18], anomaly detection [19], precipitation
nowcasting [20], [21], and video interpolation [22].

1.2 Review Scope and Terminology
In this review, we put our focus on deep learning techniques
and how they have been extended or applied to video pre-
diction. We limit this review to the future video prediction
given the context of a sequence of previous frames, leaving
aside methods that predict future from a static image. In this
context, the terms video prediction, future frame prediction,
next video frame prediction, future frame forecasting, and
future frame generation are used interchangeably. To the
best of our knowledge, this is the first review in the liter-
ature that focuses on video prediction using deep learning
techniques.

2 VIDEO PREDICTION

Besides its biological roots, video prediction draws inspi-
ration from computational models of the predictive coding
paradigm [23], [24], [25], [26]. Predictive coding states that
human brain builds complex mental representations of the
physical and causal rules that govern the world. This arises
from the conceptual acquisition and the accumulation of
background knowledge from early ages, primarily through
observation and interaction [27], [28], [29]. From a brain
processing perspective, these mental representations are
continuously updated through the prediction of raw sensory
inputs. The brain refines the already understood world
models from the mismatch between its predictions and the
actual sensory input [30].

2.1 Problem Definition
Video prediction closely captures the essence of the pre-
dictive coding paradigm. On this basis, video prediction
is defined as the task of inferring the subsequent frames
in a video, based on a sequence of previous frames used
as a context. Let Xt ∈ Rw×h×c be the t-th frame in the
video sequence X = (Xt−n, . . . , Xt−1, Xt) with n frames,
where w, h, and c denote width, height, and number of
channels, respectively. The target is to predict the next m
frames Y = (Ŷt+1, Ŷt+2, . . . , Ŷt+m) from the input X.

Different from video generation that is mostly uncon-
ditioned, video prediction is conditioned on a previously
learned representation from a sequence of input frames. At
a first glance, and in the context of learning paradigms, one
can think about the video prediction task as a supervised
learning approach because the target frame acts as a label.

However, as this information is already available in the
input video sequence, no extra labels or human supervi-
sion is needed. Therefore, learning by prediction is a self-
supervised task, filling the gap between supervised and
unsupervised learning.

Under the assumption that good predictions can only be
the result of accurate representations, learning by prediction
is a feasible approach to verify how accurately the system
has learned the underlying patterns in the input data. In
other words, it represents a suitable framework for rep-
resentation learning [31], [32]. Furthermore, because of its
potential to extract meaningful representations from video
sequences, video prediction is an excellent intermediate step
between natural videos and decision-making.

2.2 Exploiting the Time Dimension of Videos
Unlike static images, videos provide complex transforma-
tions and motion patterns ordered in the time dimension.
Focusing on a small image patch in the same spatial location
through consecutive time steps, a wide range of visually
similar local deformations are identified due to the temporal
coherence. In contrast, when looking at the big picture, the
consecutive frames are visually different but semantically
coherent. The variability in the visual appearance of a video
at different scales, is mainly due to occlusions, changes in
the lighting conditions, and camera motion, among other
factors. From this source of temporally ordered visual cues,
predictive models are able to extract representative spatio-
temporal correlations depicting the dynamics in a video
sequence. For instance, Agrawal et al. [33] established a
direct link between vision and motion, attempting to reduce
supervision efforts when training deep predictive models.

The importance of the time dimension in video under-
standing models has been well studied [34]. The implicit
temporal ordering in videos, also known as the arrow of
time, indicates whether a video sequence is playing forward
or backward. Using this temporal direction as a supervisory
signal [35], [36], [37] further encouraged predictive models
to implicitly or explicitly model spatio-temporal correlations
of a video sequence to understand the dynamics of a scene.
The time dimension of a video reduces the supervision effort
and makes the prediction task self-supervised.

2.3 Dealing with Stochasticity
Predicting how a square is moving, could be extremely
challenging even in a deterministic environment such as
the one represented in Figure 2. The lack of contextual
information and the multiple equally probable outcomes
hinder the prediction task. But, what if we use two con-
secutive frames as context? Under this configuration and
assuming a physically perfect environment, the square will
be indefinitely moving in the same direction. This represents
a deterministic outcome, an assumption that many authors
made in order to deal with future uncertainty. Assuming a
deterministic outcome would narrow the prediction space to
a unique solution. However, this assumption is not suitable
for natural videos. The future is by nature multimodal, since
the probability distribution defining all the possible future
outcomes in a context has multiple modes, i.e. there are mul-
tiple equally probable and valid outcomes. Furthermore, on
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Fig. 2. At top, a deterministic environment where a geometric object, e.g.
a black square, starts moving following a random direction. At bottom,
probabilistic outcome. Darker areas correspond to higher probability
outcomes. As uncertainty is introduced, probabilities get blurry and
averaged. Figure inspired by [38].

the basis of a deterministic universe, we indirectly assume
that all possible outcomes are reflected in the input data.
These assumptions make the prediction under uncertainty
an extremely challenging task.

Most of the existing deep learning-based models in the
literature are deterministic. Although the future is uncertain,
a deterministic prediction would suffice some easily pre-
dictable situations. For instance, most of the movement of a
car is largely deterministic, while only a small part is uncer-
tain. However, when multiple predictions are equally prob-
able, a deterministic model will learn to average between all
the possible outcomes. This averaging effect depends on the
loss function and is visually represented in predictions as
blurriness, specially on long time horizons. However, it can
be mitigated by constructing a loss function that does not
lead to averaging. As deterministic models are unable to
handle real-world settings characterized by chaotic dynam-
ics, authors considered that incorporating uncertainty to the
model is a crucial aspect. Probabilistic approaches dealing
with these issues are discussed in Section 4.6.

2.4 The Devil is in the Loss Function
The design and selection of the loss function for the video
prediction task is of utmost importance. Pixel-wise losses,
e.g. `2, `1 and Mean-Squared Error (MSE), are widely used
in both unstructured and structured predictions. Although
leading to plausible predictions in deterministic scenarios,
such as synthetic datasets and video games, they struggle
with the inherent uncertainty of natural videos. In a prob-
abilistic environment, with different equally probable out-
comes, pixel-wise losses aim to accommodate uncertainty
by blurring the prediction, as we can observe in Figure 2. In
other words, the deterministic loss functions average out
multiple equally plausible outcomes in a single, blurred
prediction. In the pixel space, these losses are unstable
to slight deformations and fail to capture discriminative
representations to efficiently regress the broad range of
possible outcomes. This makes difficult to draw predictions
maintaining the consistency with our visual similarity no-
tion. A recent study [39] performed an in-depth analysis
of the generalization capabilities of different loss functions
for the video prediction task. Besides video prediciton, the
impact of different loss functions was analyzed in image

restoration restoration [40], classification [41], camera pose
regression [42] and structured prediction [43], among others.
This fosters reasoning about the importance of the loss
function, particularly when making long-term predictions
in high-dimensional and multimodal natural videos.

Most of distance-based loss functions, such as based on
`p norm, come from the assumption that data is drawn
from a Gaussian distribution. But, how these loss func-
tions address multimodal distributions? Assuming that
a pixel is drawn from a bimodal distribution with two
equally likely modes Mo1 and Mo2, the mean value
Mo = (Mo1 +Mo2)/2 would minimize the `p-based losses
over the data, even if Mo has very low probability [44]. This
suggests that the average of two equally probable outcomes
would minimize distance-based losses such as, the MSE
loss. However, this applies to a lesser extent when using
`1 norm as the pixel values would be the median of the two
equally likely modes in the distribution. In contrast to the `2
norm that emphasizes outliers with the squaring term, the `1
promotes sparsity thus making it more suitable for predic-
tion in high-dimensional data [44]. Based on the `2 norm,
the MSE is also commonly used in the training of video
prediction models. However, it produces low reconstruction
errors by merely averaging all the possible outcomes in
a blurry prediction as uncertainty is introduced. In other
words, the mean image would minimize the MSE error as
it is the global optimum, thus avoiding finer details such
as facial features and subtle movements as they are noise
for the model. Most of the video prediction approaches
rely on pixel-wise loss functions, obtaining roughly accurate
predictions in easily predictable datasets.

One of the ultimate goals of many video prediction ap-
proaches is to palliate the blurry predictions when it comes
to uncertainty. For this purpose, authors broadly focused on:
directly improving the loss functions; exploring adversarial
training; alleviating the training process by reformulating
the problem in a higher-level space; or exploring proba-
bilistic alternatives. Some promising results were reported
by combining the loss functions with sophisticated regular-
ization terms, e.g. the Gradient Difference Loss (GDL) to
enhance prediction sharpness [44] and the Total Variation
(TV) regularization to reduce visual artifacts and enforce
coherence [22]. Perceptual losses were also used to further
improve the visual quality of the predictions [45], [46], [47],
[48], [49]. However, in light of the success of the Gener-
ative Adversarial Networks (GANs), adversarial training
emerged as a promising alternative to disambiguate be-
tween multiple equally probable modes. It was widely used
in conjunction with different distance-based losses such as:
MSE [50], `2 [51], [52], [53], or a combination of them [44],
[54], [55], [56], [57], [58]. To alleviate the training process,
many authors reformulated the optimization process in
a higher-level space (see Section 4.5). While great strides
have been made to mitigate blurriness, most of the existing
approaches still rely on distance-based loss functions. As
a consequence, the regress-to-the-mean problem remains an
open issue. This has further encouraged authors to reformu-
late existing deterministic models in a probabilistic fashion.
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TABLE 1
Summary of the most widely used datasets for video prediction (S/R: Synthetic/Real, st: stereo, de: depth, ss: semantic segmentation,

is: instance segmentation, sem: semantic, I/O: Indoor/Outdoor environment, bb: bounding box, Act: Action label, ann: annotated,
env: environment, ToF: Time of Flight, vp: camera viewpoints respect human).

provided data and ground-truth

name1 year S/R #videos #frames #ann. frames resolution #classes RGB st de ss is other annotations env.

Action and human pose recognition datasets

KTH [59] 2004 R 2391 250 0002 0 160× 120 6 (action) X 7 7 7 7 Act. O
Weizmann [60] 2007 R 90 90002 0 180× 144 10 (action) X 7 7 7 7 Act. O
HMDB-51 [61] 2011 R 6766 639 300 0 var × 240 51 (action) X 7 7 7 7 Act., vp I/O
UCF101 [62] 2012 R 13 320 2 000 0002 0 320× 240 101 (action) X 7 7 7 7 Act. I/O
Penn Action D. [63] 2013 R 2326 163 841 0 480× 270 15 (action) X 7 7 7 7 Act., Human poses, vp I/O
Human3.6M [64] 2014 SR 40002 3 600 000 0 1000x1000 15 (action) X 7 ToF 7 7 Act., Human poses & meshes I/O
THUMOS-15 [65] 2017 R 18 404 3 000 0002 0 320× 240 101 (action) X 7 7 7 7 Act., Time span I/O

Driving and urban scene understanding datasets

Camvid [66] 2008 R 5 18 202 701 (ss) 960× 720 32 (sem) X 7 7 X 7 7 O
CalTech Pedest. [67] 2009 R 137 1 000 0002 250 000 (bb) 640× 480 - X 7 7 7 7 Pedestrian bb & occlusions O
Kitti [68] 2013 R 151 48 791 200 (ss) 1392× 512 30 (sem) X X LiDAR X X Odometry O
Cityscapes [69] 2016 R 50 7 000 0002 25 000 (ss) 2048× 1024 30 (sem) X X stereo X X Odometry, temp, GPS O
Comma.ai [70] 2016 R 11 522 0002 0 160× 320 - X 7 7 7 7 Steering angles & speed O
Apolloscape [71] 2018 R 4 200 000 146 997 (ss) 3384× 2710 25 (sem) X X LiDAR X X Odometry, GPS O
nuScenes [72] 2019 R 1000 1 400 000 40 000 (bb, ss) 1600× 900 32 (sem) X 7 LiDAR X 7 Radar, Odometry, GPS O
Waymo Open D. [73] 2020 R 1950 200 000 200 000 (bb) 1920× 1280 4 (sem) X 7 LiDAR 7 7 Odometry, 2D/3D bb O

Object and video classification datasets

Sports1m [74] 2014 R 1 133 158 n/a 0 640× 360 (var.) 487 (sport) X 7 7 7 7 Sport label I/O
YouTube8M [75] 2016 R 8 200 000 n/a 0 variable 1000 (topic) X 7 7 7 7 Topic label, Segment info I/O
YFCC100M [76] 2016 SR 8000 n/a 0 variable - X 7 7 7 7 User tags, Localization I/O

Video prediction datasets

Bouncing balls [77] 2008 S 4000 20 000 0 150× 150 - X 7 7 7 7 7 -
Van Hateren [78] 2012 R 56 3584 0 128× 128 - X 7 7 7 7 7 I/O
NORBvideos [79] 2013 R 110 560 552 800 All (is) 640× 480 5 (object) X 7 7 7 X 7 I
Moving MNIST [80] 2015 SR custom3 custom3 0 64× 64 - X 7 7 7 7 7 -
Robotic Pushing [5] 2016 R 57 000 1 500 0002 0 640× 512 - X 7 7 7 7 Arm pose I
BAIR Robot [81] 2017 R 45 000 n/a 0 n/a - X 7 7 7 7 Arm pose I
RoboNet [82] 2019 R 161 000 15 000 000 0 variable - X 7 7 7 7 Arm pose I

Other-purpose and multi-purpose datasets

ViSOR [83] 2010 R 1529 1 360 0002 0 variable - X 7 7 7 7 User tags, human bb I/O
PROST [84] 2010 R 4 (10) 4936 (9296) All (bb) variable - X 7 7 7 7 Object bb I
Arcade Learning [85] 2013 S custom3 custom3 0 210× 160 - X 7 7 7 7 7 -
Inria 3DMovie v2 [86] 2016 R 27 2476 235 (is) 960× 540 - X X 7 7 X Human poses, bb I/O
Robotrix [87] 2018 S 67 3 039 252 All (ss) 1920× 1080 39 (sem) X 7 X X X Normal maps, 6D poses I
UASOL [88] 2019 R 33 165 365 0 2280× 1282 - X X stereo 7 7 7 O
1 some dataset names have been abbreviated to enhance table’s readability.
2 values estimated based on the framerate and the total number of frames or videos, as the original values are not provided by the authors.
3 custom indicates that as many frames as needed can be generated. This is related to datasets generated from a game, algorithm or simulation, involving interaction or randomness.

3 DATASETS

As video prediction models are mostly self-supervised, they
need video sequences as input data. However, some video
prediction methods rely on extra supervisory signals, e.g.
segmentation maps, and human poses. This makes out-of-
domain video datasets perfectly suitable for video predic-
tion. Table 1 shows an overview of the most used datasets
for video prediction. Detailed descriptions for each one of
them can be found in the supplementary material.

4 VIDEO PREDICTION METHODS

In the video prediction literature we find a broad range of
different methods and approaches. Early models focused
on directly predicting raw pixel intensities, by implicitly
modeling scene dynamics and low-level details (Section 4.1).
However, extracting a meaningful and robust representa-
tion from raw videos is challenging, since the pixel space
is highly dimensional and extremely variable. From this
point, reducing the supervision effort and the representation
dimensionality emerged as a natural evolution. On the one

hand, the authors aimed to disentangle the factors of vari-
ation from the visual content, i.e. factoring the prediction
space. For this purpose, they: (1) formulated the prediction
problem into an intermediate transformation space by ex-
plicitly modeling the source of variability as transforma-
tions between frames (Section 4.2); (2) separated motion
from the visual content with a two-stream computation
(Section 4.3). On the other hand, some models narrowed
the output space by conditioning the predictions on extra
variables (Section 4.4), or reformulating the problem in a
higher-level space (Section 4.5). High-level representations
are increasingly more attractive for intelligent systems to
support their decision making. For instance, the semantic
segmentation space is easily interpretable as the pixels are
categorical, in contrast to unprocessed videos where pixels
represent raw intensities. Besides simplifying the prediction
task, some other works addressed the future uncertainty
in predictions. As the vast majority of video prediction
models are deterministic, they are unable to manage proba-
bilistic environments. To address this issue, several authors
proposed modeling future uncertainty with probabilistic
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Fig. 3. Classification of video prediction models.

models (Section 4.6).
So far in the literature, there is no specific taxonomy

that classifies video prediction models. In this review, we
have classified the existing methods according to the video
prediction problem they addressed and following the clas-
sification illustrated in Figure 3. For simplicity, each sub-
section extends directly the last level in the taxonomy.
The taxonomy is not mutually exclusive, as some methods
can be classified into several categories since they address
multiple goals. For instance, [17], [55], [89] are probabilistic
models making predictions in a high-level space as they
address both the future uncertainty and high dimension-
ality in videos. The category of these models was specified
according to their main contribution.

The most relevant methods, ordered in a chronologi-
cal order, are summarized in Table 2 containing low-level
details. From these details such as, the backbone architec-
ture and loss functions, we could easily identify whether
a model is probabilistic or deterministic. Furthermore, to
better understand the foundations of such methods, we
have included a section on backbone deep learning architec-
tures in the supplementary material. Prediction is a widely
discussed topic in different fields and at different levels
of abstraction. For instance, the future prediction from a
static image [90], [91], [92], [93], [94], [95], human action
prediction [1], and model-based RL [9], [10], [96] are a
different but inspiring research fields.

Although related, the aforementioned topics are outside
the scope of this particular review, as it focuses purely on
the video prediction methods using a sequence of previous
frames as context.

4.1 Direct Pixel Synthesis
Initial video prediction models attempted to directly predict
future pixel intensities without any explicit modeling of
the scene dynamics. Ranzato et al. [97] discretized video
frames in patch clusters using k-means. They assumed that
non-overlapping patches are equally different in a k-means
discretized space, yet similarities can be found between
patches. The method is a convolutional extension of a
Recurrent Neural Network (RNN)-based model [98] mak-
ing short-term predictions at the patch-level using Cross
Entropy (CE) loss. As the full-resolution frame is a com-
position of the predicted patches, some tilling effect can
be noticed. Predictions of large and fast-moving objects
are accurate, however, when it comes to small and slow-
moving objects there is still room for improvement. These

are common issues for most methods making predictions
at the patch-level. Addressing longer-term predictions, Sri-
vastava et al. [80] proposed several Autoencoder (AE)-
based approaches incorporating Long Short-Term Mem-
ory (LSTM) units to model the temporal coherence. Using
convolutional [99] and flow [100] percepts alongside RGB
image patches, authors tested the models on multi-domain
tasks and considered both unconditioned and conditioned
decoder versions. The latter only marginally improved the
prediction accuracy. Replacing the fully connected LSTMs
with convolutional LSTMs, Shi et al. proposed an end-to-end
model efficiently exploiting spatial correlations [20]. This
enhanced prediction accuracy and reduced the number of
parameters.

Inspired by adversarial training: Building on the recent
success of the Laplacian Generative Adversarial Networks
(LAPGANs), Mathieu et al. proposed the first multi-scale
architecture for video prediction that was trained in an
adversarial fashion [44]. Their novel GDL regularization
combined with `1-based reconstruction and adversarial
training represented a leap over the previous state-of-the-
art models [80], [97] in terms of prediction sharpness. How-
ever, it was outperformed by the Predictive Coding Net-
work (PredNet) [70] which stacked several convolutional
LSTMs (ConvLSTMs) vertically connected by a bottom-
up propagation of the local `1 error computed at each
level. Previously to PredNet, the same authors proposed the
Predictive Generative Network (PGN) [50], an end-to-end
model trained with a weighted combination of adversarial
loss and MSE on synthetic data. Using a similar training
strategy as [44], Zhou et al. used a convolutional AE to learn
long-term dependencies from time-lapse videos [101]. Built
on Progressively Growing GANs (PGGANs) [102], Aigner et
al. proposed the FutureGAN [103], a three-dimensional (3d)
convolutional Encoder-decoder (ED)-based model. They
used the Wasserstein GAN with gradient penalty (WGAN-
GP) loss [104] and conducted experiments on increasingly
complex datasets. Extending [20], Zhang et al. proposed
a novel LSTM-based architecture where hidden states are
updated along a z-order curve [105]. Dealing with distortion
and temporal inconsistency in predictions and inspired by
the Human Visual System (HVS), Jin et al. [106] first incorpo-
rated multi-frequency analysis into the video prediction task
to decompose images into low and high frequency bands.
High-fidelity and temporally consistent predictions with the
ground truth were reported outperforming state of the art.
Distortion and blurriness are further accentuated when it
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comes to predict under fast camera motions. To this end,
Shouno [107] implemented a hierarchical residual network
with top-down connections. Leveraging parallel prediction
at multiple scales, authors reported finer details and textures
under fast and large camera motion.

Bidirectional flow: Under the assumption that video se-
quences are symmetric in time, Kwon et al. [108] explored a
retrospective prediction scheme training a generator also on
reversed input sequences. Their cycle GAN-based approach
ensures the consistency of bidirectional prediction through
retrospective cycle constraints. Similarly, Hu et al. [58] pro-
posed a novel cycle-consistency loss used to train a GAN-
based approach (VPGAN). Future frames are generated
from a sequence of context frames and their variation in
time, denoted as Z . Under the assumption that Z is sym-
metric in the encoding space, it is manipulated to generate
desirable moving directions. In the same spirit, other works
focused on both, forward and backward predictions [36],
[109]. Enabling state sharing between the encoder and de-
coder, Oliu et al. proposed the folded Recurrent Neural
Network (fRNN) [110], a recurrent AE architecture featuring
Gated Recurrent Units (GRUs) that implement a bidirec-
tional flow of the information. The model demonstrated a
stratified representation, which makes the topology more
explainable, as well as efficient compared to regular AEs in
terms or memory consumption and computational require-
ments.

Exploiting 3D convolutions: for modeling short-term fea-
tures, Wang et al. [111] integrated them into a recurrent net-
work demonstrating state-of-the-art results on both video
prediction and early activity recognition. While 3D convo-
lutions efficiently preserves local dynamics, RNNs enables
long-range video reasoning. Their eidetic 3d LSTM (E3d-
LSTM) network features a gated-controlled self-attention
module, i.e. eidetic 3D memory, that effectively manages
historical memory records across multiple time steps. Out-
performing previous works, Yu et al. proposed the Condi-
tionally Reversible Network (CrevNet) [112] consisting of
two modules, an invertible AE and a Reversible Predictive
Model (RPM). While the bijective two-way AE ensures no
information loss and reduces the memory consumption, the
RPM extends the reversibility from spatial to temporal do-
main. Some other works used 3D convolutional operations
to model the time dimension [103].

Analyzing the previous works, Byeon et al. [113] identi-
fied a lack of spatial-temporal context in the representations,
fact that leads to blurry results when dealing with uncer-
tainty. Although authors addressed this contextual limita-
tion with dilated convolutions and multi-scale architectures,
the context representation progressively vanishes in long-
term predictions. To address this issue, they proposed a
context-aware model that efficiently aggregates per-pixel
contextual information at each layer and in multiple direc-
tions. The core of their proposal is a context-aware layer
consisting of two blocks, one aggregating the information
from multiple directions and the other blending them into a
unified context.

It It+1

It+1(x, y) = f(It(x+ u, y + v))

(x, y)

(x+ u, y + v)

(a)

It It+1

(x, y) (x, y)

It+1(x, y) = K(x, y) ∗ P (x, y)

P (x, y)

(b)

Fig. 4. Representation of transformation-based approaches. (a) Vector-
based with a bilinear interpolation. (b) Kernel-based applying transfor-
mations as a convolutional operation. Figure inspired by [114].

4.2 Using Explicit Transformations
Let X = (Xt−n, . . . , Xt−1, Xt) be a video sequence of n
frames, where t denotes time. Instead of learning the vi-
sual appearance, transformation-based approaches assume
that visual information is already available in the input
sequence. To deal with the strong similarity and pixel redun-
dancy between successive frames, these methods explicitly
model the transformations that takes a frame at time t to the
frame at t+1. These models are formally defined as follows:

Yt+1 = T (G (Xt−n:t) ,Xt−n:t) , (1)

where G is a learned function that outputs future trans-
formation parameters, which applied to the last observed
frame Xt using the function T , generates the future frame
prediction Yt+1. According to the classification of Reda
et al. [114], T function can be defined as a vector-based
resampling such as bilinear sampling, or adaptive kernel-
based resampling, e.g. using convolutional operations. For
instance, a bilinear sampling operation is defined as:

Yt+1(x, y) = f (Xt(x+ u, y + v)) , (2)

where f is a bilinear interpolator such as [22], [115], [116],
(u, v) is a motion vector predicted by G, and Xt(x, y)
is a pixel value at (x,y) in the last observed frame Xt.
Approaches following this formulation are categorized as
vector-based resampling operations and are depicted in
Figure 4a. On the other side, in the kernel-based resampling,
the G function predicts the kernel K(x, y) which is applied
as a convolution operation using T , as depicted in Figure 4b
and is mathematically represented as follows:

Yt+1(x, y) = K(x, y) ∗Pt(x, y), (3)

where K(x, y) ∈ RNxN is the 2D kernel predicted by the
function G and Pt(x, y) is an N×N patch centered at (x, y).

Combining kernel and vector-based resampling into a
hybrid solution, Reda et al. [114] proposed the Spatially
Displaced Convolution (SDC) module that synthesizes high-
resolution images applying a learned per-pixel motion vec-
tor and kernel at a displaced location in the source image.
Their 3D Convolutional Neural Network (CNN) model
trained on synthetic data and featuring the SDC modules,
reported promising predictions of a high-fidelity.

4.2.1 Vector-based Resampling
Bilinear models use multiplicative interactions to extract
transformations from pairs of observations in order to relate
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images, such as Gated Autoencoders (GAEs) [117]. Inspired
by these models, Michalski et al. proposed the Predictive
Gating Pyramid (PGP) [118] consisting of a recurrent pyra-
mid of stacked GAEs. To the best of our knowledge, this
was the first attempt to predict future frames in the affine
transform space. Multiple GAEs are stacked to represent a
hierarchy of transformations and capture higher-order de-
pendencies. From the experiments on predicting frequency
modulated sin-waves, authors stated that standard RNNs
were outperformed in terms of accuracy. However, no per-
formance comparison was conducted on videos.
Based on the Spatial Transformer (ST) module [119]:
To provide spatial transformation capabilities to existing
CNNs, Jaderberg et al. [119] proposed the ST module. It
regresses different affine transformation parameters for each
input, to be applied as a single transformation to the whole
feature map(s) or image(s). Moreover, it can be incorporated
at any part of the CNNs and it is fully differentiable. The
ST module is the essence of vector-based resampling ap-
proaches for video prediction. As an extension, Patraucean
et al. [66] modified the grid generator to consider per-
pixel transformations instead of a single dense transfor-
mation map for the entire image. They nested a LSTM-
based temporal encoder into a spatial AE, proposing the
AE-convLSTM-flow architecture. The prediction is gener-
ated by resampling the current frame with the flow-based
predicted transformation. Using the components of the AE-
convLSTM-flow architecture, Lu et al. [120] assembled an ex-
trapolation module which is unfolded in time for multi-step
prediction. Their Flexible Spatio-semporal Network (FSTN)
features a novel loss function using the DeePSiM perceptual
loss [45] in order to mitigate blurriness. An exhaustive
experimentation and ablation study was carried out, testing
multiple combinations of loss functions. Also inspired by
the ST module for the volume sampling layer, Liu et al.
proposed the Deep Voxel Flow (DVF) architecture [22]. It
consists of a multi-scale flow-based ED model originally
designed for the video frame interpolation task, but also
evaluated on a predictive basis reporting sharp results.
Liang et al. [56] use a flow-warping layer based on a bilinear
interpolation. Finn et al. proposed the Spatial Transformer
Predictor (STP) motion-based model [5] producing 2D affine
transformations for bilinear sampling. Pursuing efficiency,
Amersfoort et al. [121] proposed a CNN designed to predict
local affine transformations of overlapping image patches.
Unlike the ST module, authors estimated transformations
of input frames off-line and at a patch level. As the model
is parameter-efficient, it was unfolded in time for multi-
step prediction. This resembles RNNs as the parameters are
shared over time and the local affine transforms play the
role of recurrent states.

4.2.2 Kernel-based Resampling
As a promising alternative to the vector-based resampling,
recent approaches synthesize pixels by convolving input
patches with a predicted kernel. However, convolutional
operations are limited in learning spatial invariant repre-
sentations of complex transformations. Moreover, due to
their local receptive fields, global spatial information is not
fully preserved. Using larger kernels would help to pre-
serve global features, but in exchange for a higher memory

consumption. Pooling layers are another alternative, but
loosing spatial resolution. Preserving spatial resolution at
a low computational cost is still an open challenge for
future video frame prediction task. Transformation layers
used in vector-based resampling [22], [66], [119] enabled
CNNs to be spatially invariant and also inspired kernel-
based architectures.

Inspired by the Convolutional Dynamic Neural Advec-
tion (CDNA) module [5]: In addition to the STP vector-
based model, Finn et al. [5] proposed two different kernel-
based motion prediction modules outperforming previous
approaches [44], [122], (1) the Dynamic Neural Advection
(DNA) module predicting different distributions for each
pixel and (2) the CDNA module that instead of predicting
different distributions for each pixel, it predicts multiple
discrete distributions that are convolutionally applied to
the input. While, CDNA and STP mask out objects that are
moving in consistent directions, the DNA module produces
per-pixel motion. Similar to the CDNA module, Klein et
al. proposed the Dynamic Convolutional Layer (DCL) [123]
for short-range weather prediction. Likewise, Brabandere
et al. [124] proposed the Dynamic Filter Networks (DFN)
generating sample (for each image) and position-specific
(for each pixel) kernels. This enabled sophisticated and
local filtering operations in comparison with the ST module,
that is limited to global spatial transformations. Different
to the CDNA model, the DFN uses a softmax layer to
filter values of greater magnitude, thus obtaining sharper
predictions. Moreover, temporal correlations are exploited
using a parameter-efficient recurrent layer, much simpler
than [20], [80]. Exploiting adversarial training, Vondrick et
al. proposed a conditional Generative Adversarial Network
(cGAN)-based model [125] consisting of a discriminator
similar to [126], and a CNN generator featuring a trans-
former module inspired by the CDNA model. Different from
the CDNA model, transformations are not applied recur-
rently on a per-frame basis. To deal with in-the-wild videos
and make predictions invariant to camera motion, authors
stabilized the input videos. However, no performance com-
parison with previous works has been conducted. Improv-
ing [127], Luc et al. [128] proposed the Transformation-based
& TrIple Video Discriminator GAN (TrIVD-GAN-FP) fea-
turing a novel recurrent unit that computes the parameters
of a transformation used to warp previous hidden states
without any supervision. These Transformation-based Spa-
tial Recurrent Units (TSRUs) are generic modules and can
replace any traditional recurrent unit in currently existent
video prediction approaches.

Object-centric representation: Instead of focusing on the
whole input, Chen et al. [51] modeled individual motion of
local objects, i.e. object-centered representations. Based on
the ST module and a pyramid-like sampling [129], authors
implemented an attention mechanism for object selection.
Moreover, transformation kernels were generated dynami-
cally as in the DFN, to then apply them to the last patch
containing an object. Although object-centered predictions
is novel, performance drops when dealing with multiple
objects and occlusions as the attention module fails to dis-
tinguish them correctly.
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4.3 Explicit Motion from Content Separation
Drawing inspiration from two-stream architectures for ac-
tion recognition [130], and unconditioned video generation
[131], authors decided to factorize the video into content
and motion to process each on a separate pathway. By
factoring videos, the prediction is performed on a lower-
dimensional temporal dynamics separately from the spatial
layout. Although this makes end-to-end training difficult,
splitting the prediction task into more tractable problems
demonstrated good results.

The Motion-content Network (MCnet) [132] was the first
end-to-end model in disentangling scene dynamics from
the visual appearance, i.e. motion-content factorization. It
proved better generalization capabilities and stable long-
term predictions compared to [44], [80]. In a similar fashion,
yet working in a higher-level pose space, Denton et al. pro-
posed Disentangled-representation Net (DRNET) [133] us-
ing a novel adversarial loss —it isolates the scene dynamics
from the visual content, considered as the discriminative
component— to completely disentangle motion dynam-
ics from content. Outperforming [44], [132], the DRNET
demonstrated a clean motion from content separation by
reporting plausible long-term predictions on both synthetic
and natural videos. To improve prediction variability, Liang
et al. [56] fused the future-frame and future-flow predic-
tion into a unified architecture with a shared probabilistic
motion encoder. Aiming to mitigate the ghosting effect in
disoccluded regions, Gae et al. [134] proposed a two-staged
approach consisting of a separate computation of flow and
pixel predictions. As they focused on inpainting occluded
regions of the image using flow information, they improved
results on disoccluded areas avoiding undesirable artifacts
and enhancing sharpness. Wu et al. [135] proposed a two-
staged architecture that firstly predicts the static background
to then, using this information, predict the moving objects in
the foreground. Final output is generated through composi-
tion and by means of a video inpainting module. Reported
predictions are quite accurate, yet performance was not
contrasted with the latest video prediction models.

Although previous approaches disentangled motion
from content, they have not performed an explicit de-
composition of videos into primitive object representations.
Addressing this issue, Hsieh et al. proposed the Decomposi-
tional Disentangled Predictive Autoencoder (DDPAE) [136]
that decomposes videos into components featuring low-
dimensional temporal dynamics. For instance, on the Mov-
ing MNIST dataset, DDPAE first decomposes images into
individual digits. After that, each digit is factorized into
its visual appearance and spatial location, being the latter
easier to predict. Although experiments were performed
only on synthetic data, this model is a promising baseline
encouraging predictive models to explore visual representa-
tion decomposition [137], [138], [139].

4.4 Conditioned on Extra Variables
Conditioning the prediction on extra variables such as ve-
hicle odometry or robot state, among others, would narrow
the prediction space. These variables have a direct influence
on the dynamics of the scene, providing valuable informa-
tion that facilitates the prediction task. For instance, the

motion captured by a camera placed on the dashboard of
an autonomous vehicle is directly influenced by the wheel-
steering and acceleration. Without explicitly exploiting this
information, we rely blindly on the model’s capabilities
to correlate the wheel-steering and acceleration with the
perceived motion.

Following this paradigm, Oh et al. first performed long-
term video predictions conditioned by control inputs from
Atari games [122]. Although the proposed ED-based models
reported very long-term predictions (+100), performance
drops when dealing with small objects (e.g. bullets in Space
Invaders) and uncertainty. However, `2 loss leads to accu-
rate and long-term predictions for deterministic synthetic
videos, such as those extracted from Atari video games.
Built on [122], Chiappa et al. [140] proposed alternative
architectures and training schemes alongside an in-depth
performance analysis for both short and long-term pre-
diction. Similar to [122], Kaiser et al. [10] recently used a
convolutional ED to learn a world model of Atari games in
a self-supervised fashion. This is part of their model-based
RL approach called Simulated Policy Learning (SimPLe)
focused on learning to play Atari games. In the experi-
ments, SimPLe outperforms previous model-free algorithms
requiring only 1-2 hours of in-game interactions. Similar
model-based control from visual inputs performed well in
restricted scenarios [141], but was inadequate for uncon-
strained environments.

Deterministic approaches are unable to deal with natural
videos in the absence of control variables. To address this
limitation, the models proposed by Finn et al. [5] success-
fully made predictions on natural images, conditioned on
the robot state and robot-object interactions performed in a
controlled scenario. These models predict per-pixel trans-
formations conditioned by the previous frame, to finally
combine them using a composition mask. They outper-
formed [44], [122] on both conditioned and unconditioned
predictions, however the quality of long-term predictions
degrades over time because of the blurriness caused by
the MSE loss function. Furthermore, Dosovitskiy et al. [142]
proposed a sensorimotor control model which enables in-
teraction in complex and dynamic 3d environments. The
approach is a RL-based technique, with the difference
that instead of building upon a monolithic state and a
scalar reward, the authors consider high-dimensional input
streams, such as raw visual input, alongside a stream of
measurements or player statistics. Although the outputs
are future measurements instead of visual predictions, it
was proven that using multivariate data benefits decision-
making over conventional scalar reward approaches. The
synergy between model-based RL [9], [10], [96] and video
prediction is well defined as the latter aims to model an
accurate representation of high-dimensional environments,
while the former uses the learned world models as a context
for decision-making.

4.5 In the High-level Feature Space

Despite the vast work on video prediction models, there
is still room for improvement in natural video prediction.
To deal with the curse of dimensionality, authors reduced
the prediction space to higher-level representations, such
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as semantic and instance segmentation, and human pose.
Since the pixels are categorical, the semantic space greatly
simplifies the prediction task, yet unexpected deformations
in semantic maps and disocclusions, i.e. initially occluded
scene entities become visible, induce uncertainty. However,
high-level prediction spaces are more tractable and consti-
tute good intermediate representations. By bypassing the
prediction in the raw pixel space, models reported longer-
term and more accurate predictions.

4.5.1 Semantic Segmentation
By decomposing the visual scene into semantic entities, such
as pedestrians, vehicles and obstacles, the output space is
narrowed to high-level scene properties. This intermediate
representation represents a more tractable space as pixel
values of a semantic map are categorical. In other words,
scene dynamics are modeled at the semantic entity level.
This has encouraged authors to (1) leverage future predic-
tion to improve parsing results [52] and (2) directly predict
segmentation maps into the future [16], [57], [143].

Exploring the scene parsing in future frames, Jin et al.
proposed the Parsing with prEdictive feAtuRe Learning
(PEARL) framework [52] which was the first to explore the
potential of a GAN-based predictive model to improve per-
pixel segmentation. Specifically, this framework conducts
two complementary predictive learning tasks. Firstly, it cap-
tures the temporal context from input data by using a single-
frame prediction network. Then, these temporal features
are embedded into a frame parsing network through a
transform layer for generating per-pixel future segmenta-
tions. Although the prediction model was not compared
with existing approaches, PEARL outperforms the tradi-
tional parsing methods by generating temporally consistent
segmentations. In a similar fashion, Luc et al. [57] extended
the msCNN model of [44] to the novel task of predicting
semantic segmentations of future frames, using softmax pre-
activations instead of raw pixels as input. The use of inter-
mediate features or higher-level data as input is a common
practice in the video prediction performed in the high-level
feature space. Some authors refer to this type or input data
as percepts. Luc et al. explored different combinations of
loss functions, inputs (using RGB information alongside
percepts), and outputs (autoregressive and batch models).
Results on short, medium and long-term predictions are
sound, however, the models are not end-to-end and they
do not capture explicitly the temporal continuity across
frames. To address this limitation and extending [52], Jin
et al. first proposed a model for jointly predicting motion
flow and scene parsing [144]. Flow-based representations
implicitly draw temporal correlations from the input data,
thus producing temporally consistent segmentations. Per-
pixel accuracy improved when segmenting small objects,
e.g. pedestrians and traffic signs, which are more likely to
vanish in long-term predictions. Similarly, except that time
dimension is modeled with a LSTMs instead of motion flow
estimation, Nabavi et al. proposed a simple bidirectional ED-
LSTM [145] using segmentation masks as input. Although
the literature on knowledge distillation [146], [147] stated
that softmax pre-activations carry more information than
class labels, this model outperforms [57], [144] on short-term
predictions.

Using motion flow estimation alongside LSTM-based
temporal modeling, Terwilliger et al. [18] proposed a novel
method performing a LSTM-based feature-flow aggrega-
tion. Authors further simplify the semantic space by disen-
tangling motion from semantic entities [132], achieving low
overhead and efficiency. Therefore, they segment the current
frame and perform future optical flow prediction, which
are finally combined with a novel end-to-end warp layer.
An improvement on short-term predictions was reported
over previous works [57], [144], yet performing worse on
mid-term predictions. Similar to [18], F2MF model [148]
predict semantic segmented frames by wrapping past con-
volutional features into the future using a regressed dense
displacement field. To deal with disocclusions, authors
complemented the main model with a classical feature-to-
feature forecast module similar to [16], [149]. F2MF outper-
formed previous works on the CityScapes dataset without
using structure information [150] or precomputed optical
flow [18].

A different approach was proposed by Vora et al. [150]
which first incorporated structure information to predict
future 3D segmented point clouds. Their geometry-based
model consists of several derivable sub-modules: (1) the
pixel-wise segmentation and depth estimation modules
which are jointly used to generate the 3d segmented point
cloud of the current RGB frame; and (2) an LSTM-based
module trained to predict future camera ego-motion trajec-
tories. The future 3d segmented point clouds are obtained
by transforming the previous point clouds with the pre-
dicted ego-motion. Their short-term predictions improved
the results of [57], however, the use of structure information
for longer-term predictions is not clear.

The main disadvantage of two-staged, i.e. not end-to-
end, approaches [18], [57], [144], [145], [150] is that their per-
formance is constrained by external supervisory signals, e.g.
optical flow [151], segmentation [152] and intermediate fea-
tures or percepts [153]. Breaking this trend, Chiu et al. [149]
first solved both the semantic segmentation and forecasting
problems in a single end-to-end trainable model by using
raw pixels as input. This ED architecture is based on two
networks: the student, performing the forecasting task, and
the teacher guiding the student using a novel knowledge
distillation loss. An in-depth ablation study was performed,
validating the performance of the ED architectures as well
as the 3D convolution used for capturing the temporal scale
instead of a LSTM or ConvLSTM, as in previous works.

Avoiding the flood of deterministic models, Bhat-
tacharyya et al. proposed a Bayesian formulation of the
ResNet model in a novel architecture to capture model and
observation uncertainty [17]. As a main contribution, their
dropout-based Bayesian approach leverages synthetic likeli-
hoods [154] to encourage prediction diversity and deal with
multi-modal outcomes. Since Cityscapes sequences have
been recorded in the frame of reference of a moving vehicle,
authors conditioned the predictions on vehicle odometry.

4.5.2 Instance Segmentation

While great strides have been made in predicting future
segmentation maps, the authors attempted to make predic-
tions at a semantically richer level, i.e. future prediction of
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semantic instances. Predicting future instance-level segmen-
tations is a challenging and weakly unexplored task. This
is because instance labels are inconsistent and variable in
number across the frames in a video sequence. Since the
representation of semantic segmentation prediction models
is of fixed-size, they cannot directly address semantics at the
instance level.

To overcome this limitation and introducing the novel
task of predicting instance segmentations, Luc et al. [16]
predict fixed-sized feature pyramids, i.e. features at multiple
scales, used by the Mask R-CNN [155] network. The com-
bination of dilated convolutions and multi-scale, efficiently
preserve high-resolution details improving the results over
previous methods [57]. To further improve predictions, Sun
et al. [156] focused on modeling not only the spatio-temporal
correlations between the pyramids, but also the intrinsic
relations among the feature layers inside them. That is,
enriching the contextual information using the proposed
Context Pyramid ConvLSTMs (CP-ConvLSTMs). Although
the authors have not shown any long-term predictions
nor compared with semantic segmentation models, their
approach is the state of the art in the task of predicting
instance segmentations.

4.5.3 Other High-level Spaces
Although semantic and instance segmentation spaces were
the most used in video prediction, other high-level spaces
such as human pose and keypoints, represent a promising
avenue.
Human Pose: As the human pose is a low-dimensional
and interpretable structure, it represents a cheap supervi-
sory signal for predictive models. This has fostered pose-
guided prediction methods, in which pixel-level predictions
are conditioned by intermediate representations of human
poses. However, most of these methods are limited to videos
with human presence.

From a supervised prediction of human poses, Villegas et
al. [54] regress future frames through analogy making [157].
Although background is not considered in the prediction,
authors compared the model against [20], [44] reporting
long-term results. To make the model unsupervised on the
human pose, Wichers et al. [53] adopted different training
strategies: end-to-end prediction minimizing the `2 loss,
and through analogy making, constraining the predicted
features to be close to the outputs of the future encoder.
Different from [54], predictions are made in the feature
space. As a probabilistic alternative, Walker et al. [55] fused
a conditioned Variational Autoencoder (cVAE)-based prob-
abilistic pose predictor with a GAN. While the probabilistic
predictor enhances the diversity in the predicted poses,
the adversarial network ensures prediction realism. As this
model struggles with long-term predictions, Fushishita et
al. [158] addressed long-term video prediction of multiple
outcomes avoiding the error accumulation and vanishing
gradients by using a unidimensional CNN trained in an
adversarial fashion. To enable multiple predictions, they
have used additional inputs ensuring trajectory and behav-
ior variability at a human pose level. To better preserve the
visual appearance in the predictions than [54], [132], [159],
Tang et al. [160] firstly predict human poses using a LSTM-
based model to then synthesize pose-conditioned future

frames using a combination of different networks: a global
GAN modeling the time-invariant background alongside
a coarse human pose, a local GAN refining the coarse-
predicted human pose, and a 3D-AE to ensure temporal
consistency across frames.
Keypoint-based representations: The keypoint coordinate
space is a meaningful, tractable and structured represen-
tation for prediction, ensuring stable learning. It enforces
model’s internal representation to contain object-level in-
formation. This leads to better results on tasks requiring
object-level understanding such as, trajectory prediction,
action recognition and reward prediction. As keypoints are
a natural representation of dynamic objects, Minderer et
al. [89] reformulated the prediction task in the keypoint
coordinate space. They proposed an AE architecture with
a bottleneck consisting of a Variational Recurrent Neural
Network (VRNN) that predicts dynamics in the keypoint
space. Although this model qualitatively outperforms the
Stochastic Video Generation (SVG) [161], Stochastic Adver-
sarial Video Prediction (SAVP) [159] and Encoder Predictor
with Visual Analogy (EPVA) [53] models, the quantitative
evaluation reported similar results.

4.6 Incorporating Uncertainty

Although high-level representations significantly reduce the
prediction space, the underlying distribution still has mul-
tiple modes. In other words, different plausible outcomes
would be equally probable for the same input. Addressing
multimodal distributions is not straightforward for regres-
sion and classification approaches, as they regress to the
mean and aim to discretize a continuous high-dimensional
space, respectively. To deal with the inherent unpredictabil-
ity of natural videos, some works introduced latent vari-
ables into existing deterministic models or directly relied on
generative models such as GANs and Variational Autoen-
coders (VAEs).

Inspired by DVF, Xue et al. [186] proposed a cVAE-
based [187], [188] multi-scale model featuring a novel cross
convolutional layer trained to regress the difference image
or Eulerian motion [189]. Background on natural videos is
not uniform, however the model implicitly assumes that the
difference image would accurately capture the movement
in foreground objects. Introducing latent variables into a
convolutional AE, Goroshin et al. [175] proposed a proba-
bilistic model for learning linearized feature representations
to linearly extrapolate the predicted frame in a feature space.
Uncertainty is introduced to the loss by using a cosine
distance as an explicit curvature penalty. Authors focused
on evaluating the linearization properties, yet the model
was not contrasted to previous works. Extending [92],
[186], Fragkiadaki et al. [177] proposed several architectural
changes and training schemes to handle marginalization
over stochastic variables, such as sampling from the prior
and variational inference. Their stochastic ED architecture
predicts future optical flow, i.e., dense pixel motion field,
used to spatially transform the current frame into the next
frame prediction. To introduce uncertainty in predictions,
the authors proposed the k-best-sample-loss (MCbest) that
draws K outcomes penalizing those similar to the ground-
truth.
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TABLE 2
Summary of video prediction models (c: convolutional; r: recurrent; v: variational; ms: multi-scale; st: stacked; bi: bidirectional; P: Percepts; M:

Motion; PL: Perceptual Loss; AL: Adversarial Loss; S/R: using Synthetic/Real datasets; SS: Semantic Segmentation; D: Depth; S: State; Po:
Pose; O: Odometry; IS: Instance Segmentation; MS: Multi-Step prediction; npf: num. of predicted frames, ? 1-5, ? ? 5-10, ? ? ? 10-100, ? ? ? ?

over 100 frames; ood: tested on out-of-domain tasks).

details evaluation

method year architecture datasets (train, valid, test) input output MS loss function S/R npf ood code

Direct Pixel Synthesis

Ranzato et al. [97] 2014 rCNN [62], [78] RGB RGB 7 CE R ? 7 7

Srivastava et al. [80] 2015 LSTM-AE [61], [62], [74], [80] RGB,P RGB X CE, `2 SR ? ? ? X X
PGN [50] 2015 LSTM-cED [77] RGB RGB 7 MSE,AL S ? 7 7

Shi et al. [20] 2015 cLSTM [80] RGB RGB 7 CE S ? ? ? X 7

BeyondMSE [44] 2016 msCNN [62], [74] RGB RGB X `1, GDL,AL R ? ? 7 X
PredNet [70] 2017 stLSTMs [64], [67], [68], [162] RGB RGB X `1,`2 SR ? ? X X
ContextVP [113] 2018 MD-LSTM [62], [64], [67], [68] RGB RGB X `1, GDL R ? ? 7 7

fRNN [110] 2018 cGRU-AE [59], [62], [80] RGB RGB X `1 SR ? ? ? 7 X
E3d-LSTM [111] 2019 r3D-CNN [59], [80], [163], [164] RGB RGB X `1, `2, CE SR ? ? ? X X
Kwon et al. [108] 2019 cycleGAN [62], [67], [68], [165], [166] RGB RGB X `1, LoG,AL R ? ? ? 7 7

Znet [105] 2019 cLSTM [59], [80] RGB RGB X `2, BCE,AL SR ? ? ? 7 7

VPGAN [58] 2019 GAN [59], [81] RGB,Z RGB X `1, Lcycle, AL R ? ? ? 7 7

Jin et al. [106] 2020 cED-GAN [59], [67], [68], [81] RGB RGB X `2, GDL,AL R ? ? ? 7 7

Shouno et al. [107] 2020 GAN [67], [68] RGB RGB X Lp, AL, PL R ? ? ? 7 7

CrevNet [112] 2020 3d-cED [67], [68], [80], [167] RGB RGB X MSE SR ? ? ? X X

Using Explicit Transformations

PGP [118] 2014 st-rGAEs [77], [79] RGB RGB X `2 SR ? 7 7

Patraucean et al. [66] 2015 LSTM-cAE [61], [80], [83], [84] RGB RGB 7 `2, `δ SR ? X X
DFN [124] 2016 r-cED [62], [80] RGB RGB X BCE SR ? ? ? X X
Amersfoort et al. [121] 2017 CNN [62], [80] RGB RGB X MSE SR ? ? 7 7

FSTN [120] 2017 LSTM-cED [62], [74], [80], [83], [84] RGB RGB X `2, `δ, PL SR ? ? ? 7 7

Vondrick et al. [125] 2017 cGAN [76] RGB RGB X CE,AL R ? ? ? X 7

Chen et al. [51] 2017 rCNN-ED [62], [80] RGB RGB X CE, `2, GDL,AL SR ? ? 7 7

DVF [22] 2017 ms-cED [62], [65] RGB RGB X `1, TV R ? X X
SDC-Net [114] 2018 CNN [67], [75] RGB,M RGB X `1, PL SR ? ? X 7

TrIVD-GAN-FP [128] 2020 DVD-GAN [62], [81], [168] RGB RGB X Lhinge [56] R ? ? ? 7 7

Explicit Motion from Content Separation

MCnet [132] 2017 LSTM-cED [59], [60], [62], [74] RGB RGB X `p, GDL,AL R ? ? ? 7 X
Dual-GAN [56] 2017 VAE-GAN [62], [65], [67], [68] RGB RGB X `1,KL,AL R ? ? 7 7

DRNET [133] 2017 LSTM-ED [59], [80], [169], [170] RGB RGB X `2, CE,AL SR ? ? ? ? X X
DPG [134] 2019 cED [67], [171], [172] RGB RGB X `p, TV, PL,CE SR ? ? 7 7

Conditioned on Extra Variables

Oh et al. [122] 2015 rED [85] RGB,A RGB X `2 S ? ? ? ? X X
Finn et al. [5] 2016 st-cLSTMs [5], [64] RGB,A,S RGB X `2 R ? ? ? 7 X

In the High-level Feature Space

Villegas et al. [54] 2017 LSTM-cED [63], [64] RGB,Po RGB,Po X `2, PL,AL [45] R ? ? ? ? X 7

PEARL [52] 2017 cED [69], [173] RGB SS 7 `2, AL R ? X 7

S2S [57] 2017 msCNN [69], [173] P SS X `1, GDL,AL R ? ? ? 7 X
Walker et al. [55] 2017 cVAE [62], [63] RGB,Po RGB X `2, CE,KL,AL R ? ? ? X 7

Jin et al. [144] 2017 cED [69], [162] RGB,P SS,M X `1, GDL,CE R ? ? ? X 7

EPVA [53] 2018 LSTM-ED [64] RGB RGB X `2, AL SR ? ? ? ? X X
Nabavi et al. [145] 2018 biLSTM-cED [69] P SS X CE R ? ? 7 7

F2F et al. [16] 2018 st-msCNN [69] P P,SS,IS X `2 R ? ? ? X X
Vora et al. [150] 2018 LSTM [69] ego-M ego-M 7 `1 R ? X 7

Chiu et al. [149] 2019 3D-cED [69], [71] RGB SS 7 CE,MSE R ? ? 7 7

Bayes-WD-SL [17] 2019 bayesResNet [69] SS,O SS X KL SR ? ? ? X X
Sun et al. [156] 2019 st-ms-cLSTM [69], [86] P P,IS X `2, [155] R ? ? 7 7

Terwilliger et al. [18] 2019 M-cLSTM [69] RGB,P SS X CE, `1 R ? ? ? 7 X
Struct-VRNN [89] 2019 cVRNN [64], [174] RGB RGB X `2,KL SR ? ? X X
F2MF [148] 2020 [18] [69] RGB RGB X `2 R ? ? 7 7

Incorporating Uncertainty

Goroshin et al. [175] 2015 cAE [169], [176] RGB RGB 7 `2, penalty SR ? 7 7

Fragkiadaki et al. [177] 2017 vED [64], [178] RGB RGB 7 KL,MCbest R ? X 7

EEN [179] 2017 vED [180], [181], [182] RGB RGB X `1, `2 SR ? ? 7 X
SV2P [38] 2018 CDNA [5], [64], [81] RGB RGB X `p,KL SR ? ? ? 7 X
SVG [161] 2018 LSTM-cED [59], [80], [81] RGB RGB X `2,KL SR ? ? ? ? 7 X
Castrejon et al. [183] 2019 vRNN [69], [80], [81] RGB RGB X KL SR ? ? ? 7 7

Hu et al. [13] 2020 cED [69], [71], [184], [185] RGB SS,D,M X CE, `δ, Ld, Lc, Lp R ? ? ? X 7
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Incorporating latent variables into the deterministic
CDNA architecture for the first time, Babaeizadeh et
al. proposed the Stochastic Variational Video Prediction
(SV2P) [38] model handling natural videos. Their time-
invariant posterior distribution is approximated from the
entire input video sequence. Moreover, with the explicit
modeling of uncertainty using latent variables, the de-
terministic CDNA model is outperformed. By combin-
ing a standard deterministic architecture (LSTM-ED) with
stochastic latent variables, Denton et al. proposed the SVG
network [161]. Different from SV2P, the prior is sam-
pled from a time-varying posterior distribution, i.e. it is a
learned-prior instead of fixed-prior sampled from the same
distribution. Most of the VAEs use a fixed Gaussian as
a prior, sampling randomly at each time step. Exploiting
the temporal dependencies, a learned-prior predicts high
variance in uncertain situations, and a low variance when
a deterministic prediction suffices. The SVG model is easier
to train and reported sharper predictions in contrast to [38].
Built upon SVG, Villegas et al. [190] implemented a baseline
to perform an in-depth empirical study on the importance
of the inductive bias, stochasticity, and model’s capacity
in the video prediction task. Different from previous ap-
proaches, Henaff et al. proposed the Error Encoding Net-
work (EEN) [179] that incorporates uncertainty by feeding
back the residual error —the difference between the ground
truth and the deterministic prediction— encoded as a low-
dimensional latent variable. In this way, the model implicitly
separates the input video into deterministic and stochastic
components.

On the one hand, latent variable-based approaches cover
the space of possible outcomes, yet predictions lack of
realism. On the other hand, GANs struggle with uncertainty,
but predictions are more realistic. Searching for a trade-off
between VAEs and GANs, Lee et al. [159] proposed the
SAVP model. It was the first to combine latent variable
models with GANs to improve variability in video pre-
dictions, while maintaining realism. Under the assumption
that blurry predictions of VAEs are a sign of underfit-
ting, Castrejon et al. extended the VRNNs to leverage a
hierarchy of latent variables and better approximate data
likelihood [183]. Although the backpropagation through a
hierarchy of conditioned latents is not straightforward, sev-
eral techniques alleviated this issue such as, KL beta warm-
up, dense connectivity pattern between inputs and latents,
and Ladder Variational Autoencoders (LVAEs) [191]. As
most of the probabilistic approaches fail in approximating
the true distribution of future frames, Pottorff et al. [192]
reformulated the video prediction task without making any
assumption about the data distribution. They proposed the
Invertible Linear Embedding (ILE) that enables exact maxi-
mum likelihood learning of video sequences, by combining
an invertible neural network [193], also known as reversible
flows, and a linear time-invariant dynamic system. The ILE
handles nonlinear motion in the pixel space and scales
better to longer-term predictions compared to adversarial
models [44]. Also based on Glow model [193] and shar-
ing goals with [192], VideoFlow [194] approaches exact
likelihood maximization using normalized flows through
invertible transformations. These flow-based architectures
present several advantages such as, exact log-likelihood

evaluation and faster sampling than autoregressive models,
while still producing high-quality long-term and stochastic
predictions.

While previous variational approaches [159], [161] fo-
cused on predicting a single frame of low resolution in
restricted, predictable or simulated datasets, Hu et al. [13]
jointly predict full-frame ego-motion, static scene, and object
dynamics on complex real-world urban driving. Featuring
a novel spatio-temporal module, their five-component ar-
chitecture learns rich representations that incorporate both
local and global spatio-temporal context. The model outper-
formed existing spatio-temporal architectures, by predicting
semantic segmentation, depth and optical flow. However, no
performance comparison with [159], [161] has been carried
out.

5 PERFORMANCE EVALUATION

This section presents the results of the previously analyzed
video prediction models on the most popular datasets on
the basis of the metrics described below.

5.1 Metrics and Evaluation Protocols
For a fair evaluation of video prediction systems, multiple
aspects of prediction need to be addressed such as whether
the predicted sequences look realistic, are plausible and
cover all possible outcomes. To the best of our knowledge,
there are no evaluation protocols and metrics that evaluate
predictions by fulfilling all these aspects simultaneously.

The most widely used evaluation protocols for video
prediction rely on image similarity-based metrics such
as, Mean-Squared Error (MSE), Structural Similarity Index
Measure (SSIM) [195], and Peak Signal to Noise Ratio
(PSNR). However, evaluating a prediction according to the
mismatch between its visual appearance and the ground
truth is not always reliable. In practice, these metrics pe-
nalize all predictions that deviate from the ground truth.
In other words, they prefer blurry predictions nearly ac-
commodating the exact ground truth than sharper and
plausible but imperfect generations [159], [183], [196]. Pixel-
wise metrics do not always reflect how accurately a model
has captured the dynamic features and their temporal vari-
ability in a video. In addition, the precision of a metric is
influenced by the loss function used to train the model. For
instance, models minimizing the MSE loss function would
blindly perform well on the PSNR metric as it is based on
MSE. Suffering from similar problems, SSIM measures the
similarity between two images, from −1 (very dissimilar)
to +1 (the same image). As a difference, it measures simi-
larities on image patches instead of performing pixel-wise
comparison. These metrics are easily fooled by learning to
match the background in predictions. To address this issue,
some methods [18], [44], [57], [148] also evaluated predic-
tions only on the dynamic parts of the sequence avoiding
the background influence.

As the pixel space is multimodal and high-dimensional,
it is challenging to evaluate how accurately a predicted
sequence covers the full distribution of possible outcomes.
Addressing this issue, some probabilistic approaches [159],
[161], [183] assessed prediction coverage by sampling mul-
tiple random predictions; to then search for the best match
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with the ground truth sequence using common metrics. This
is the most widely used evaluation protocol in probabilistic
models. Other methods [106], [107], [183] also reported their
results using perceptual metrics such as: Learned Percep-
tual Image Patch Similarity (LPIPS) [196] which is a linear
weighted `2 distance between deep features of images,
Fréchet Video Distance (FVD) [197] measuring prediction
realism at a distribution level using a 3D CNN to capture
the temporal coherence across a video sequence, and DeeP-
SiM [45]. Moreover, Lee et al. [159] used the VGG Cosine
Similarity metric that performs cosine similarity to the fea-
tures extracted by VGG network [99] from the predictions.

Among other metrics we have the Inception Score
(IS) [198] introduced to deal with GANs mode collapse
problem by measuring the diversity of generated samples;
measuring sharpness based on difference of gradients [44];
Parzen window [199], yet deficient for high-dimensional im-
ages; and the Laplacian of Gaussians (LoG) [200], [201] used
in [108]. In the semantic segmentation space, authors used
the popular Intersection over Union (IoU) metric. IS was
also widely used to report results on different methods [55],
[126], [132], [133]. Differently, on the basis of the EPVA
model [53] a quantitative evaluation was performed, based
on the confidence of an external method trained to identify
whether the generated video contains a recognizable person.
To support quantitative evaluation, a qualitative assessment
based on a visual inspection could be carried out via Ama-
zon Mechanical Turk (AMT) workers.

5.2 Results

In this section we report the quantitative results of the
most relevant methods reviewed in the previous sections.
To achieve a wide comparison, we limited the quantitative
results to the most common metrics and datasets. We have
distributed the results in different tables, given the large
variation in the evaluation protocols of the video prediction
models.

Many authors evaluated their methods on the Moving
MNIST synthetic environment. Although it represents a
restricted and quasi-deterministic scenario, long-term pre-
dictions are still challenging. The black and homogeneous
background induce methods to accurately extrapolate black
frames and vanish the predicted digits in the long-term hori-
zon. Under this configuration, the CrevNet model demon-
strated a leap over the previous state of the art. As the
second best, the E3d-LSTM network reported stable errors
in both short-term and longer-term predictions showing
the advantages of their memory attention mechanism. It
also reported the second best results on the KTH dataset,
after [106] which achieved the best overall performance and
demonstrated quality predictions on natural videos.

Performing short-term predictions on the KTH dataset,
the Recurrent Ladder Network (RLN) outperformed MCnet
and fRNN by a slight margin. The RLN architecture draws
similarities with fRNN, except that while the former uses
bridge connections, the latter relies on state sharing that im-
proves memory consumption. On the Moving MNIST and
UCF-101 datasets, fRNN outperformed RLN. Other inter-
esting methods to highlight are PredRNN and PredRNN++,
both providing close results to E3d-LSTM. State-of-the-art

TABLE 3
Results on M-MNIST (Moving MNIST). Predicting the next y frames

from x context frames (x→ y). † results reported by Oliu et al. [110], ‡
results reported by Wang et al. [111], ∗ results reported by Wang et al.
[202], / results reported by Wang et al. [203]. MSE represents per-pixel

average MSE (10−3). MSE� represents per-frame error.

M-MNIST M-MNIST
(10→ 10) (10→ 30)

method MSE↓ MSE�↓ SSIM↑ PSNR↑ CE↓ MSE�↓ SSIM↑

BeyondMSE [44] 27.48† 122.6∗ 0.713∗ 15.969† - - -
Srivastava et al. [80] 17.37† 118.3∗ 0.690∗ 18.183† 341.2 180.1/ 0.583/

Shi et al. [20] - 96.5‡ 0.713‡ - 367.2∗ 156.2/ 0.597/

DFN [124] - 89.0‡ 0.726‡ - 285.2 149.5/ 0.601/

CDNA [5] - 84.2‡ 0.728‡ - 346.6∗ 142.3/ 0.609/

VLN [204] - - - - 187.7

Patraucean et al. [66] 43.9 - - - 179.8 - -
MCnet [132]† 42.54 - - 13.857 - - -
RLN [205]† 42.54 - - 13.857 - - -
PredNet [70]† 41.61 - - 13.968 - - -
fRNN [110] 9.47 68.4‡ 0.819‡ 21.386 - - -
PredRNN [202] - 56.8 0.867 - 97.0 - -
VPN [206] - 64.1‡ 0.870‡ - 87.6 129.6/ 0.620/

Znet [105] - 50.5 0.877 - - - -
PredRNN++ [203] - 46.5 0.898 - - 91.1 0.733

E3d-LSTM [111] - 41.3 0.910 - - - -
CrevNet [112] - 22.3 0.949 - - - -

TABLE 4
Results on KTH dataset. Predicting the next y frames from x context

frames (x→ y). † results reported by Oliu et al. [110], ‡ results
reported by Wang et al. [111], ∗ results reported by Zhang et al. [105],
/ results reported by Jin et al. [106]. Per-pixel average MSE (10−3).

Best results are represented in bold.

KTH KTH KTH
(10→ 10) (10→ 20) (10→ 40)

method MSE↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑

Srivastava et al. [80]† 9.95 21.22 - - - -
PredNet [70]† 3.09 28.42 - - - -
BeyondMSE [44]† 1.80 29.34 - - - -
fRNN [110] 1.75 29.299 0.771/ 26.12/ 0.678/ 23.77/

MCnet [132] 1.65† 30.95† 0.804‡ 25.95‡ 0.73/ 23.89/

RLN [205]† 1.39 31.27 - - - -
Shi et al. [20]‡ - - 0.712 23.58 0.639 22.85

SAVP [159]/ - - 0.746 25.38 0.701 23.97

VPN [206]∗ - - 0.746 23.76 - -
DFN [124]‡ - - 0.794 27.26 0.652 23.01

fRNN [110]‡ - - 0.771 26.12 0.678 23.77

Znet [105] - - 0.817 27.58 - -
SV2P invariant [38]/ - - 0.826 27.56 0.778 25.92

SV2P variant [38]/ - - 0.838 27.79 0.789 26.12

PredRNN [202] - - 0.839 27.55 0.703‡ 24.16‡
VarNet [207]/ - - 0.843 28.48 0.739 25.37

SAVP-VAE [159]/ - - 0.852 27.77 0.811 26.18

PredRNN++ [203] - - 0.865 28.47 0.741‡ 25.21‡
MSNET [208] - - 0.876 27.08 - -
E3d-LSTM [111] - - 0.879 29.31 0.810 27.24

Jin et al. [106] - - 0.893 29.85 0.851 27.56

results using different metrics were reported on Caltech
Pedestrian by Kwon et al. [108], CrevNet [112], and Jin et
al. [106]. The former, by taking advantage of its retrospective
prediction scheme, was also the overall winner on the UCF-
101 dataset. The latter outperformed state of the art on
all metrics except on LPIPS, as predictions of probabilistic
approaches are clearer and realist but less consistent with
the ground truth. However [106] is absolute the winner on
the BAIR Push dataset.

On the one hand, some approaches have been evalu-
ated on other datasets: SDC-Net [114] outperformed [44],
[132] on YouTube8M, TrIVD-GAN-FP outperformed [127],
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TABLE 5
Results on Caltech Pedestrian. Predicting the next y frames from x

context frames (x→ y). † reported by Kwon et al. [108], ‡ reported by
Reda et al. [114], ∗ reported by Gao et al. [134], / reported by Jin et al.

[106]. Per-pixel average MSE (10−3). Best results in bold.

Caltech Pedestrian
(10→ 1)

method MSE↓ SSIM↑ PSNR↑ LPIPS↓

BeyondMSE [44]‡ 3.42 0.847 - -
MCnet [132]‡ 2.50 0.879 - -
DVF [22]∗ - 0.897 26.2 5.57/

Dual-GAN [56] 2.41 0.899 - -
CtrlGen [94]∗ - 0.900 26.5 6.38/

PredNet [70]† 2.42 0.905 27.6 7.47/

ContextVP [113] 1.94 0.921 28.7 6.03/

GAN-VGG [107] - 0.916 - 3.61

G-VGG [107] - 0.917 - 3.52

SDC-Net [114] 1.62 0.918 - -
Kwon et al. [108] 1.61 0.919 29.2 -
DPG [134] − 0.923 28.2 5.04/

G-MAE [107] - 0.923 - 4.30

GAN-MAE [107] - 0.923 - 4.09

CrevNet [112] - 0.925 29.3 -
Jin et al. [106] - 0.927 29.1 5.89

TABLE 6
Results on UCF-101 dataset. Predicting the next x frames from y

context frames (x→ y). † results reported by Oliu et al. [110]. Per-pixel
average MSE (10−3). Best results are represented in bold.

UCF-101 UCF-101
(10→ 10) (4→ 1)

method MSE↓ PSNR↑ MSE↓ SSIM↑ PSNR↑

Srivastava et al. [80]† 148.66 10.02 - - -
PredNet [70]† 15.50 19.87 - - -
BeyondMSE [44]† 9.26 22.78 - - -
MCnet [132] 9.40† 23.46† - 0.91 31.0

RLN [205]† 9.18 23.56 - - -
fRNN [110] 9.08 23.87 - - -
BeyondMSE [44] - - - 0.92 32

Dual-GAN [56] - - - 0.94 30.5

DVF [22] - - - 0.94 33.4

ContextVP [113] - - - 0.92 34.9

Kwon et al. [108] - - 1.37 0.94 35.0

[209] on Kinetics-600 test set [168], E3d-LSTM compared
their method with [110], [202], [203], [206] on the TaxiBJ
dataset [163], and CrevNet [112] on Traffic4cast [167]. On the
other hand, some explored out-of-domain tasks [20], [111],
[112], [124], [125] (see ood column in Table 2).

5.2.1 Results on Probabilistic Approaches
Probabilistic video prediction methods have been mainly
evaluated on the Stochastic Moving MNIST, Bair Push and
Cityscapes datasets. Different from the original Moving
MNIST dataset, the stochastic version includes uncertain
digit trajectories, i.e. the digits bounce off the border with
a random new direction. On this dataset, both versions of
Castrejon et al. models (1L, without a hierarchy of latents,
and 3L with a 3-level hierarchy of latents) outperform SVG
by a large margin. On the Bair Push dataset, SAVP reported
sharper and more realistic-looking predictions than SVG
which suffer of blurriness. However, both models were
outperformed by [183] as well on the Cityscapes dataset.
The model based on a 3-level hierarchy of latents [183]

TABLE 7
Results on SM-MNIST (Stochastic Moving MNIST), BAIR Push and
Cityscapes datasets. † results reported by Castrejon et al. [183]. ‡

results reported by Jin et al. [106].

SM-MNIST BAIR Push Cityscapes
(5→ 10) (2→ 28) (2→ 28)

method FVD↓ SSIM↑ FVD↓ SSIM↑ PSNR↑ FVD↓ SSIM↑

SVG [161] 90.81† 0.688† 256.62† 0.816† 17.72‡ 1300.26† 0.574†
SAVP [159] - - 143.43† 0.795† 18.42‡ - -
SAVP-VAE [159] - - - 0.815‡ 19.09‡ - -
SV2P inv. [38]‡ - - - 0.817 20.36 - -
vRNN 1L [183] 63.81 0.763 149.22 0.829 - 682.08 0.609

vRNN 3L [183] 57.17 0.760 143.40 0.822 - 567.51 0.628

Jin et al. [106] - - - 0.844 21.02 - -

TABLE 8
Results on Cityscapes dataset. Predicting the next y semantic

segmented frames from 4 context frames (4→ y). ‡ IoU results on
eight moving objects classes. † results reported by Chiu et al. [149]

Cityscapes
(4→ 1) (4→ 3) (4→ 9) (4→ 10)

method IoU↑ IoU↑ IoU↑ IoU↑

S2S [57]‡ - 55.3 40.8 -
S2S-maskRCNN [16]‡ - 55.4 42.4 -
S2S [57] 62.6† 59.4 47.8 -
Nabavi et al. [145] 71.37 60.06 - -
F2F [16] - 61.2 41.2 -
Vora et al. [150] - 61.47 45.4 -
S2S-Res101-FCN [144] - 62.6 - 50.8

Terwilliger et al. [18]‡ - 65.1 46.3 -
Chiu et al. [149] 72.43 65.53 50.52

Jin et al. [144] - 66.1 - 53.9

Terwilliger et al. [18] 73.2 67.1 51.5 52.5

Bayes-WD-SL [17] 75.3 66.7 52.5 -
F2MF [148]‡ − 67.7 54.6 −
F2MF [148] − 69.6 57.9 −

outperform previous works on all three datasets, showing
the advantages of the extra expressiveness of this model.

5.2.2 Results on the High-level Prediction Space

Most of the methods have chosen the semantic segmentation
space to make predictions. Although they relied on differ-
ent datasets for training, performance results were mostly
reported on the Cityscapes dataset using the IoU metric.
Authors explored short-term (next-frame prediction), mid-
term (+3 time steps in the future) and long-term (up to +10
time step in the future) predictions. On the semantic seg-
mentation prediction space, Bayes-WD-SL [17], F2MF [148],
and Jin et al. [52] reported the best results. Among these
methods, it is noteworthy that Bayes-WD-SL was the only
one to explore prediction diversity on the basis of a Bayesian
formulation.

In the instance segmentation space, the F2F pioneering
method [16] was outperformed by Sun et al. [156] on short
and mid-term predictions using the AP50 and AP evalua-
tion metrics. On the other hand, in the keypoint coordinate
space, the seminal model of Minderer et al. [89] qualitatively
outperformed SVG [161], SAVP [159] and EPVA [53], yet
pixel-wise metrics reported similar results. In the human
pose space, and by regressing future frames from human
pose predictions, Tang et al. [160] outperformed SAVP [159],
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MCnet [132] and [54] on the basis of the PSNR and SSIM
metrics on the Penn Action and J-HMDB [210] datasets.

6 DISCUSSION

The video prediction literature ranges from a direct syn-
thesis of future pixel intensities, to complex probabilistic
models addressing prediction uncertainty. The range be-
tween these approaches consists of methods that try to
factorize or narrow the prediction space. Simplifying the
prediction task has been a natural evolution of video predic-
tion models, influenced by several open research challenges
discussed below. Due to the curse of dimensionality and
the inherent pixel variability, developing a robust prediction
based on raw pixel intensities is overly-complicated. This
often leads to the regression-to-the-mean problem, visually
represented as blurriness. Making parametric models larger
would improve the quality of predictions, yet this is cur-
rently incompatible with high-resolution predictions due
to memory constraints. Transformation-based approaches
propagate pixels from previous frames based on estimated
flow maps. In this case, prediction quality is directly in-
fluenced by the accuracy of the estimated flow. Similarly,
the prediction in a high-level space is mostly conditioned
by the quality of some extra supervisory signals such as
semantic maps and human poses, to name a few. Erroneous
supervision signals would harm prediction quality.

Analyzing the impact of the inductive bias on the per-
formance of a video prediction model, Villegas et al. [190]
demonstrated the maximization of the SVG model [161]
performance with minimal inductive bias (e.g. segmentation
or instance maps, optical flow, adversarial losses, etc.) by in-
creasing progressively the scale of computation. A common
assumption when addressing the prediction task in a high-
level feature space, is the direct improvement of long-term
predictions as a result of simplifying the prediction space.
Even if the complexity of the prediction space is reduced,
it is still multimodal when dealing with natural videos.
For instance, when it comes to long-term predictions in the
semantic segmentation space, most of the models reported
predictions only up to ten time steps into the future. This
directly suggests that the choice of the prediction space is
still an unsolved problem. Finding a trade-off between the
complexity of the prediction space and the output quality is
challenging. An overly-simplified representation could limit
the prediction on complex data such as natural videos. Al-
though abstract predictions suffice for many of the decision-
making systems based on visual reasoning, prediction in
pixel space is still being addressed.

From the analysis performed in this review and in line
with the conclusions extracted from [190] we state that:
(1) including recurrent connections and stochasticity in a
video prediction model generally lead to improved perfor-
mance; (2) increasing model capacity while maintaining a
low inductive bias also improves prediction performance;
(3) multi-step predictions conditioned by previously gen-
erated outputs are prone to accumulate errors, diverging
from the ground truth when addressing long-term hori-
zons; (4) methods predicted further in the future without
relying on high-level feature spaces; (5) combining pixel-

wise losses with adversarial training somewhat mitigates
the regression-to-the-mean issue.

6.1 Research Challenges

Despite the wealth of currently existing video prediction
approaches and the significant progress made in this field,
there is still room to improve state-of-the-art algorithms. To
foster progress, open research challenges must be clearly
identified and disentangled. So far in this review, we have
already discussed about: (1) the importance of spatio-
temporal correlations as a self-supervisory signal for pre-
dictive models; (2) how to deal with future uncertainty and
model the underlying multimodal distributions of natural
videos; (3) the over-complicated task of learning meaningful
representations and deal with the curse of dimensionality;
(4) pixel-wise loss functions and blurry results when dealing
with equally probable outcomes, i.e. probabilistic environ-
ments. These issues define the open research challenges in
video prediction.

Currently existing methods are limited to short-term
horizons. While frames in the immediate future are ex-
trapolated with high accuracy, in the long term horizon
the prediction problem becomes multimodal by nature.
Initial solutions consisted on conditioning the prediction on
previously predicted frames. However, these autoregressive
models tend to accumulate prediction errors that progres-
sively diverge the generated prediction from the expected
outcome. On the other hand, due to memory issues, there
is a lack of resolution in predictions. Authors tried to
address this issue by composing the full-resolution image
from small predicted patches. However, as the results are
not convincing because of the annoying tilling effect, most
of the available models are still limited to low-resolution
predictions. In addition to the lack of resolution and long-
term predictions, models are still prone to the regress-to-the-
mean problem that consists on averaging the output frame
to accommodate multiple equally probable outcomes. This
is directly related to the pixel-wise loss functions, that focus
the learning process on the visual appearance. The choice
of the loss function is an open research problem with a
direct influence on the prediction quality. Finally, the lack
of reliable and fair evaluation models makes the qualitative
evaluation of video prediction challenging and represents
another potential open problem.

6.2 Future Directions

Based on the in-depth analysis conducted in this review, we
present some future promising research directions.
Consider alternative loss functions: Pixel-wise loss func-
tions are widely used in the video prediction task, causing
blurry predictions when dealing with uncontrolled environ-
ments or long-term horizon. In this regard, great efforts have
been made in the literature to identify adequate loss func-
tions for the prediction task. However, despite the existing
wide spectrum of loss functions, most models still blindly
rely on deterministic loss functions.
Alternatives to RNNs: Currently, RNNs are still widely
used in this field to model temporal dependencies, and
achieved state-of-the-art results on different benchmarks
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[110], [111], [202], [203]. Nevertheless, some methods also
relied on 3D convolutions to further enhance video predic-
tion [111], [149] representing a promising avenue.
Use synthetically generated videos: Simplifying the pre-
diction is a current trend in the video prediction litera-
ture. A vast amount of video prediction models explored
higher-level features spaces to reformulate the prediction
task into a more tractable problem. However, this mostly
conditions the prediction to the accuracy of an external
source of supervision such as optical flow, human pose, pre-
activations (percepts) extracted from supervised networks,
and more. This issue could be alleviated by taking advan-
tage of existing fully-annotated and photorealistic synthetic
datasets or by using data generation tools. Video prediction
in photorealistic synthetic scenarios has not been explored
in the literature.
Evaluation metrics: Since the most widely used evaluation
protocols for video prediction rely on image similarity-
based metrics, the need for fairer evaluation metrics is
imminent. A fair metric should not penalize predictions that
deviate from the ground truth at the pixel level, if their
content represents a plausible future prediction in a higher
level, i.e., the dynamics of the scene correspond to the reality
of the labels. In this regard, some methods evaluate the
similarity between distributions or at a higher-level. How-
ever, there is still room for improvement in the evaluation
protocols for video prediction and generation [211].

7 CONCLUSION

In this review, after reformulating the predictive learning
paradigm in the context of video prediction, we have closely
reviewed the fundamentals on which it is based: exploiting
the time dimension of videos, dealing with stochasticity, and
the importance of the loss functions in the learning pro-
cess. Moreover, an analysis of the backbone deep learning-
based architectures for this task was performed in order to
provide the reader the necessary background knowledge.
The core of this study encompasses the analysis and clas-
sification of more than 50 methods and the datasets they
have used. Methods were analyzed from three perspectives:
method description, contribution over the previous works
and performance results. They have also been classified
according to a proposed taxonomy based on their main
contribution. In addition, we have presented a comparative
summary of the datasets and methods in tabular form so
as the reader, at a glance, could identify low-level details.
In the end, we have discussed the performance results on
the most popular datasets and metrics to finally provide
useful insight in shape of future research directions and
open problems. In conclusion, video prediction is a promis-
ing avenue for the self-supervised learning of rich spatio-
temporal correlations, providing prediction capabilities to
existing intelligent decision-making systems. While great
strides have been made, there is still room for improvement
in video prediction using deep learning techniques.
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