
����������
�������

Citation: Fúster-Sabater, A.; Requena,

V.; Cardell, S.D. An Efficient

Algorithm to Compute the Linear

Complexity of Binary Sequences.

Mathematics 2022, 10, 794. https://

doi.org/10.3390/math10050794

Academic Editor: Antanas Cenys

Received: 27 January 2022

Accepted: 24 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Efficient Algorithm to Compute the Linear Complexity of
Binary Sequences
Amparo Fúster-Sabater 1,* , Verónica Requena 2 and Sara D. Cardell 3

1 Instituto de Tecnologías Físicas y de la Información, C.S.I.C., 28006 Madrid, Spain
2 Departament de Matemàtiques, University of Alicante, 03690 Alicante, Spain; vrequena@ua.es
3 Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC),

Santo André 09210-580, Brazil; s.cardell@ufabc.edu.br
* Correspondence: amparo@iec.csic.es

Abstract: Binary sequences are algebraic structures currently used as security elements in Internet
of Things devices, sensor networks, e-commerce, and cryptography. In this work, a contribution to
the evaluation of such sequences is introduced. In fact, we present a novel algorithm to compute
a fundamental parameter for this kind of structure: the linear complexity, which is related to the
predictability (or non-predictability) of the binary sequences. Our algorithm reduced the computation
of the linear complexity to just the addition modulo two (XOR logic operation) of distinct terms of
the sequence. The performance of this procedure was better than that of other algorithms found in
the literature. In addition, the amount of required sequence to perform this computation was more
realistic than in the rest of the algorithms analysed. Tables, figures, and numerical results complete
the work.

Keywords: Hadamard matrix; generalized sequence; linear complexity; Sierpinski’s triangle

MSC: 11B65, 68R01

1. Introduction

The Internet is rapidly evolving, making possible the connectivity among any kinds
of devices and giving rise to the Internet of Things (IoT) [1,2]. The IoT is based on all
the applications and possibilities provided by the devices of daily use such as mobile
phones, televisions, refrigerators, etc., to improve people’s lives and business environments.
Nevertheless, the need to secure the interconnection of all these devices soon arose. This
task is not easy, since the vast majority of IoT devices are not manufactured nor designed
with safety in mind. Moreover, these devices are very different from each other, and security
must be adapted to distinct models, types, and technical characteristics.

The security of an IoT network involves different techniques, i.e., blockchain, trust
management [3–5], as well as cryptographic mechanisms. Cryptographic security is needed
to prevent users from losing data and to avoid risks related to the inappropriate use of
passwords. Many designs providing cryptographic security are based on true random
numbers, but their generation is a complex task [6,7]. Some popular random noise algo-
rithms are somehow imperfect, showing defects that make them vulnerable and predictable,
which in cryptographic terms is a real concern. Some weaknesses are never found, at least
publicly, and create a false sense of security in the community of users. The devices in
which faults are detected are those with the most flagrant glitches or those that are most
popular, e.g.: (1) the algorithm A5 in GSM mobile communications cryptanalysed in [8,9];
(2) the J3Gen generator for low-cost passive RFID tags; (3) the generator RC4 for encrypting
Internet traffic that was also cryptanalysed in [10,11]. In brief, it is difficult to design a
true random number generator that can provide a strong cryptographic basis for system
security, especially for IoT devices; see [12,13].

Mathematics 2022, 10, 794. https://doi.org/10.3390/math10050794 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10050794
https://doi.org/10.3390/math10050794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8261-3550
https://orcid.org/0000-0002-1497-6456
https://orcid.org/0000-0003-0225-5106
https://doi.org/10.3390/math10050794
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10050794?type=check_update&version=1

Mathematics 2022, 10, 794 2 of 23

Pseudo-Random Number Generators (PRNGs) are deterministic algorithms [14,15]
used to produce random number sequences for cryptographic applications, such as digital
signatures, the generation of nonces or keys, etc. These applications require some statistical
properties in their output sequences such as a large period and linear complexity, low
auto-correlation, wide dimensional distribution, the uniformity of the distribution for large
quantities of generated numbers, etc. The interested reader is referred to [16] (Chapter 2).

Binary sequences generated by maximal-period Linear Feedback Shift Registers (LF-
SRs), i.e., PN-sequences [17], have been extensively used in many and diverse applications
such as e-commerce, mobile wireless communications, digital broadcasting, and cryptogra-
phy (stream ciphers) [18,19]. In order to ensure their cryptographic use, it is required to
remove the linearity inherent to the PN-sequences. LFSRs play an important part in the
design of cryptographic PNRGs [20,21]. Among the most popular families of cryptographic
sequence generators based on PN-sequences, we can highlight the irregular decimation-
based generators. The method of irregularly decimating the output sequences of LFSRs [22]
generates powerful PNRGs that produce, in turn, sequences with good cryptographic
properties such as: long periods, large linear complexity, two-valued auto-correlation
properties, good distribution of zeros and ones along the sequence, etc. One of the most
important generators in this family is the Generalized Self-Shrinking Generator (GSSG) [23].
This generator is fast, easy to implement, and generates good cryptographic sequences [24],
so it is appropriate for low-cost applications.

In this paper, we present a contribution to security whose significance is limited
to cryptographic mechanisms. In fact, our proposal is an algorithm that computes the
linear complexity of sequences with a period of a power of two. The technique herein
presented uses Hadamard matrices [25] and the B-representation of sequences proposed
in [26,27]. Our algorithm was much more efficient than the other ones proposed in the
literature [26,28–30], and the required amount of sequence to perform this computation
was also more realistic.

Furthermore, besides being faster and requiring less intercepted bits of the sequence,
the importance of this algorithm relies on the fact that it is especially efficient for families
of sequences with an upper bound on the parameter’s linear complexity, i.e, the sequences
generated by the Generalized Self-Shrinking Generator (GSSG) [23].

Our contributions can be enumerated as follows: (1) some basic concepts needed to
understand the rest of the paper are introduced (Section 2); (2) we recall the concept of
B-representation and establish a relation between this representation of sequences and the
Hadamard matrices (Section 3); (3) we propose a novel method of computing the linear
complexity of sequences with a period of a power of two and apply it to generalized
sequences in Sections 4 and 5, respectively; (4) we discuss (Section 6) the advantages of
our method when compared with the other ones; (5) the paper ends (Section 7) with some
important remarks concerning our results.

2. Basic Concepts and Generalities

In this section, we introduce different concepts and structures that are used systemati-
cally throughout the work.

2.1. Linear Feedback Shift Registers

Let F2 = {0, 1} be the Galois field of two elements. Consider {ui}i≥0 = {u0, u1, u2, . . .}
a binary sequence with ui ∈ F2, for i = 0, 1, 2, . . . We say that the sequence {ui}i≥0 is
periodic if there exists an integer T, called the period, such that ui+T = ui, for all i ≥ 0. In
the sequel, all the sequences considered are binary sequences, and the symbol + denotes
the Exclusive-OR (XOR) logic operation.

Let r be a positive integer, and let a1, a2, a3, . . . , ar be constant coefficients with aj ∈ F2,
for j = 1, 2, . . . , r. A binary sequence {ui}i≥0 satisfying the relation:

ui+r = a1ui+r−1 + a2ui+r−2 + a3ui+r−3 + · · ·+ ar−1ui+1 + arui, i ≥ 0, (1)

Mathematics 2022, 10, 794 3 of 23

is called an r-th order linear recurring sequence in F2. The terms {u0, u1, . . . , ur−1} are
referred to as the initial terms and define uniquely the construction of the sequence.

A relation of the form given by Equation (1) is called an r-th order linear recurrence re-
lationship.

The monic polynomial:

p(x) = xr + a1xr−1 + a2xr−2 + a3xr−3 + · · ·+ ar−1x + ar ∈ F2[x]

is called the characteristic polynomial of the linear recurring sequence and {ui}i≥0 is said
to be generated by p(x).

We can obtain linear recurring sequences through Linear Feedback Shift Registers
(LFSRs) [17]. In fact, an LFSR can be defined as an electronic device with r interconnected
memory cells (or stages) with binary content. At every clock pulse, the binary element of
each stage is shifted to the adjacent stage, as well as a new element is computed through
the linear feedback to fill the empty stage (see Figure 1). We say that the LFSR has the
maximal length if the characteristic polynomial of the linear recurring sequence is primitive.
In this case, its output sequence is called the Pseudo-Noise sequence (PN-sequence), and
its period is T = 2r − 1 with 2r−1 ones and 2r−1 − 1 zeros; see [17].

ui+r−1 ui+r−2 ui+r−3 · · · ui+1 ui

a1 a2 a3 · · · ar−1 ar

+ + · · · + +

ui+r

Figure 1. LFSR of length r or LFSR with r stages.

The linear complexity of a sequence {ui}i≥0, denoted by LC, is defined as the length
of the shortest LFSR that generates such a sequence or, equivalently, as the lowest-order
linear recurrence relationship that generates such a sequence.

In cryptographic applications, the linear complexity must be as large as possible. The
expected value is approximately half the period LC ' T/2 (see [31]).

2.2. The Generalized Self-Shrinking Generator

Consider a PN-sequence {ui}i≥0 obtained from a maximal-length LFSR with L stages
and an L-dimensional binary vector G = [g0, g1, g2, ..., gL−1] ∈ FL

2 , and let {vi}i≥0 be the
sequence defined as:

vi = g0ui + g1ui−1 + g2ui−2 + · · ·+ gL−1ui−L+1 for i ≥ 0. (2)

Next, we define a decimation rule to generate a new sequence {sj}j≥0 as follows:{
If ui = 1, then sj = vi;
If ui = 0, then vi is discarded.

The sequence {sj}j≥0, denoted by S(G), is called the generalized self-shrunken sequence,
GSS-sequence, or simply generalized sequence associated with G; see [23]; the sequence
generator is called the Generalized Self-Shrinking Generator (GSSG). The set of sequences
S =

{
S(G) | G ∈ FL

2
}

is called the family of generalized sequences based on the PN-sequence
{ui}i≥0. It is worth noticing that the period of any generalized sequence is a divisor of 2L−1

(as 2L−1 is the number of ones in the PN-sequence), and the linear complexity satisfies [29]:

2L−2 < LC ≤ 2L−1 − (L− 2). (3)

Mathematics 2022, 10, 794 4 of 23

In order to analyse more properties of this generator, the interested reader is referred
to [22,23,27,32].

From now on, we consider a sequence with the notation {ui}i≥0 or {ui}, indistinctly.

2.3. Binomial Sequences

The binomial number (n
i) represents the coefficient corresponding to the power xi in

the algebraic expansion of the polynomial (1 + x)n. For every integer n ≥ 0, we know that
(n

0) = 1, while (n
i) = 0 for i > n. Now, the binomial sequences are introduced as follows.

Definition 1. Given a fixed integer k ≥ 0, the k-th binomial sequence is given by:{(
n
k

)}
n≥0

=

{
0, if n < k,
(n

k) mod 2, if n ≥ k.

Table 1 shows the first eight binomial coefficients, as well as the first eight binomial
sequences with their corresponding periods and linear complexities. Moreover, recall that
the binomial sequences are just shifted versions (starting in the first one) of the successive
diagonals of Sierpinski’s triangle reduced modulo two, as depicted in Figure 2.

Table 1. The first 8 binomial coefficients (n
k) (0 ≤ k < 8) and their binomial sequences

{
(n

k)
}

, periods,
and linear complexities.

Binomial Coeff. Binomial Sequences
{
(n

k)
}

Period LC

(n
0) 11111111 . . . 1 1
(n

1) 01010101 . . . 2 2
(n

2) 00110011 . . . 4 3
(n

3) 00010001 . . . 4 4
(n

4) 00001111 . . . 8 5
(n

5) 00000101 . . . 8 6
(n

6) 00000011 . . . 8 7
(n

7) 00000001 . . . 8 8

1

11

121

131 3

1441 6

1101 10 55

1201 66 15 15

11 7 21 35 35 21 7

1

11

101

111 1

1001 0

101 0 11

101 00 1 1

11 1 1 1 1 1 1

Figure 2. Two representations of Sierpinski’s triangle.

In the following, we recall some results about the period and the structure of the
binomial sequences.

Proposition 1 ([26], Proposition 3). Given the binomial sequence
{
(n

2L+k)
}

, with 0 ≤ k < 2L,
we have that:

(a) The period of such a sequence is T = 2L+1;

Mathematics 2022, 10, 794 5 of 23

(b) The period of such a sequence has the following structure:

{(
n

2L + k

)}
0≤n<2L+1

=

{
0 if 0 ≤ n < 2L + k,
(n

k) if 2L + k ≤ n < 2L+1.

Corollary 1 ([26], Corollary 4). The binomial sequences of the form
{
(n

2L)
}

, (L = 0, 1, 2, . . .)
have period T = 2L+1 and the following structure:{(

n
2L

)}
0≤n<2L+1

=

{
0 If 0 ≤ n < 2L;
1 If 2L ≤ n < 2L+1.

Corollary 2 ([26], Corollary 5). The binomial sequences of the form
{
(n

2L)
}
(L = 0, 1, 2, . . .) are

balanced, i.e, they contain the same number of ones and zeros.

The proofs and more properties of such sequences can be found in [26].

Remark 1. The binomial sequences have the following structure:{(
n
2L

)}
: 0 0 . . . 0︸ ︷︷ ︸

2L zeros

1 1 . . . 1︸ ︷︷ ︸
2L ones{(

n
2L + k

)}
: 0 0 . . . 0︸ ︷︷ ︸

2L zeros

.︸ ︷︷ ︸
the first 2L terms

of
{
(nk)
}

See the Figure 3 for more details. The following example illustrates the previous results.

{
(n

2L+k)
}

:
︷ ︸︸ ︷︷ ︸︸ ︷2L zeros 2L bits

︸︷︷︸︸︷︷︸
k t

{
(n

k)
}

: ︸ ︷︷ ︸
2L bits

︷︸︸︷︷︸︸︷k t

Figure 3. Structure of the binomial sequences
{
(n

k)
}

and
{
(n

2L+k)
}

.

Example 1. The binomial sequence
{
(n

4)
}

has period eight and is composed of four consecutive
zeros followed by four consecutive ones:{(

n
4

)}
: 0 0 0 0 1 1 1 1

The binomial sequence
{
(n

7)
}

=
{
(n

4+3)
}

has also period eight and is composed of four
consecutive zeros followed by the first four bits of

{
(n

3)
}

:{(
n
7

)}
: 0 0 0 0 0 0 0 1︸ ︷︷ ︸

{(n
3)}

Theorem 1. The linear complexity of the binomial sequence
{
(n

k)
}

is k + 1.

Notice that, as a consequence of Theorem 1, the linear complexity of any binomial
sequence is immediate. Furthermore, in the following sections, we will see that any

Mathematics 2022, 10, 794 6 of 23

sequence of a period of a power of two can be expressed as a sum (modulo two) of binomial
sequences. As a result, it is easy to compute the linear complexity of such sequences by just
observing the binomial sequence of a greater degree in the binomial decomposition [26].

2.4. Construction of Binomial Matrices from Binomial Sequences

In this subsection, we introduce the concept of the binomial matrix, which is closely
related with the binomial sequences and Sierpinski’s triangle.

Definition 2. Let t be a non-negative integer. We define the binomial matrix Ht as the binary
Hadamard matrix of size 2t × 2t constructed as follows: H0 = [1], for t = 0, and:

Ht =

[
Ht−1 Ht−1
0t−1 Ht−1

]
,

for t > 0, with 0t−1 the 2t−1 × 2t−1 null matrix.

In general, any binomial matrix Ht can be easily constructed from binomial sequences
as follows:

1. Its rows correspond to the first 2t bits of the first 2t binomial sequences, that is,

Ht =



{
(n

0)
}

{
(n

1)
}

...{
(n

2t−2)
}

{
(n

2t−1)
}


=


1 1 1 1 1 1 . . . 1 1 1 1
0 1 0 1 0 1 . . . 0 1 0 1
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0 0 1 1
0 0 0 0 0 0 . . . 0 0 0 1

;

2. Its columns correspond to the first 2t bits of shifted versions of the first 2t binomial
sequences starting in their first one, i.e., the columns of Ht are the diagonals of
Sierpinski’s triangle (see Figure 2):

Ht =
[{

(n
2t−1)

}∗ {
(n

2t−1)
}∗ . . .

{
(n

1)
}∗ {

(n
0)
}∗]

=



1 1 . . . 1 1
0 1 . . . 0 1
0 0 . . . 1 1
0 0 . . . 0 1
...

...
...

...
0 0 . . . 1 1
0 0 . . . 0 1


.

In the previous expression, we denoted by
{
(n

k)
}∗ the shifted version of the binomial

sequence
{
(n

k)
}

starting in the first one (k = 0, . . . , 2t − 1).
As we said before, the diagonals of the Sierpinski triangle correspond to the columns

of the Hadamard matrix, and at the same time, they are shifted versions of the binomial
sequences, that is the rows of the same matrix. See, for example, Figure 4. The circled
diagonal corresponds to the shifted version

{
(n

4)
}∗ of the binomial sequence

{
(n

4)
}

. Notice
that the sequence

{
(n

4)
}

corresponds to the fourth row of Ht, and the circled diagonal
corresponds to the (2t − 5)-th column of Ht, for t sufficiently large. In general, the sequence{
(n

k)
}

corresponds to the k-th row of Ht, and the shifted version
{
(n

k)
}∗ (that is, the k-th

diagonal of Sierpinski’s triangle) corresponds to the (2t − k − 1)-th column of Ht, for t
sufficiently large.

Mathematics 2022, 10, 794 7 of 23

1

11

101

111 1

1001 0

101 0 11

101 00 1 1

11 1 1 1 1 1 1

1

11

101

1111

1001 0

101 0 11

101 00 1 1

11 1 1 1 1 1 1

1

11

1 0 1

1 1 1 1

1 0 0 10

1 0 101 1

1 0 10 011

1 1111111

0 000 0 00

000 0 00

0 000 0

000 0

0 00

00

0

Figure 4. Binary Sierpinski’s triangle where the circled bits correspond to the shifted version of the
binomial sequence

{
(n

4)
}

.

In brief, there is a close relation among binomial sequences, diagonals of Sierpinski’s
triangle, and binary Hadamard matrices.

3. B-Representation

The binomial representation (B-representation) of binary sequences was first intro-
duced in [26]. In fact, every binary sequence {sn} whose period T is a power of two, that is
T = 2t, can be expressed as a linear combination of binomial sequences as follows:

{sn} =
2t−1

∑
i=0

ci

{(
n
i

)}
, (4)

where t is a non-negative integer,
{
(n

i)
}

is the i-th binomial sequence, and the coefficients
ci ∈ F2, for (i = 0, 1, . . . , 2t − 1). The above equation is the B-representation of the sequence
{sn}.

Let imax be an integer in the interval (0 ≤ imax ≤ 2t − 1) such that the coefficient
cimax of the B-representation satisfies:

cimax 6= 0 while ci = 0 for all index i in the range (imax < i ≤ 2t − 1).

The coefficient cimax and the B-representation provide us with information about two
fundamental parameters of the sequence, the period and the linear complexity:

• Period of {sn} in terms of the B-representation: As a consequence of Proposition 1, it is
possible to prove that the period T of the sequence {sn} is the period of the binomial
sequence

{
(n

imax)
}

, since the period of the sequence is the greatest period of the
binomial sequences included in its B-representation (see ([26], Proposition 3));

• Linear complexity of {sn} in terms of the B-representation: As a consequence of Theorem 1,
the linear complexity of the sequence {sn} is the linear complexity of the binomial
sequence

{
(n

imax)
}

(see ([26], Corollary 14)), that is:

LC = imax + 1. (5)

Mathematics 2022, 10, 794 8 of 23

Fixing a linear complexity LC, the period T of the corresponding sequence is uniquely
determined. Nevertheless, fixing a period T, there exist distinct sequences with such a
period, but with different values of their linear complexities, as we can observe in Table 1.

Due to the particular structure of the binomial sequences, we can reformulate the
binomial representation of {sn} given in Equation (4) and convert it into a matrix equation
using the binomial matrix Ht.

Theorem 2. Consider the B-representation of a sequence {sn} of period T = 2t, with t a non-
negative integer, and let Ht be the binomial matrix of size 2t × 2t. Then,

(s0, s1, . . . , s2t−1) = (c0, c1, . . . , c2t−1) · Ht mod 2,

where the vector (s0, s1, . . . , s2t−1) corresponds to the 2t successive terms of the sequence {sn} and
(c0, c1, . . . , c2t−1) are the coefficients that weight the binomial sequences in (4).

Proof. From the B-representation of {sn} given in Expression (4), we have that:

c0 · {1 1 1 1 1 1 1 1 . . . 1 1 1 1}
c1 · {0 1 0 1 0 1 0 1 . . . 0 1 0 1}
c2 · {0 0 1 1 0 0 1 1 . . . 0 0 1 1}
c3 · {0 0 0 1 0 0 0 1 . . . 0 0 0 1}
...

...
...

...
...

...
...

...
...

...
...

...
...

c2t−4 · {0 0 0 0 0 0 0 0 . . . 1 1 1 1}
c2t−3 · {0 0 0 0 0 0 0 0 . . . 0 1 0 1}
c2t−2 · {0 0 0 0 0 0 0 0 . . . 0 0 1 1}

+ c2t−1 · {0 0 0 0 0 0 0 0 . . . 0 0 0 1}
{sn} = {s0 s1 s2 s3 s4 s5 s6 s7 . . . s2t−4 s2t−3 s2t−2 s2t−1}

where sk, the k-th term of the sequence {sn}, is the bitwise XOR operation of the k-th
term of each binomial sequence, notated (k

i), multiplied by its corresponding coefficient ci
(i = 0, 1, . . . , 2t − 1), that is:

sk =
2t−1

∑
i=0

ci

(
k
i

)
.

Thus, in matrix form, the previous representation can be expressed as:

(s0, s1, . . . , s2t−1) = (c0, c1, . . . , c2t−1) · Ht mod 2. (6)

An useful property of the Hadamard matrices is described as follows:

Lemma 1. The inverse of a binomial matrix Ht is the matrix itself, i.e., it is an idempotent matrix.

Proof. We proceed by induction. We have that H2
2 = I2, where I2 is the identity matrix of

size 2× 2. Suppose that the axiom is true for t− 1, then we have that:

H2
t =

[
H2

t−1 0t−1
0t−1 H2

t−1

]
=

[
It−1 0t−1
0t−1 It−1

]
= It.

Making use of the previous results, the next theorem is introduced.

Mathematics 2022, 10, 794 9 of 23

Theorem 3. Consider the B-representation of {sn}, a sequence of period T = 2t, with t a non-
negative integer. Let Ht be the binomial matrix of size 2t × 2t. Then,

(c0, c1, . . . , c2t−1) = (s0, s1, . . . , s2t−1) · Ht mod 2. (7)

Proof. The result is an immediate consequence of Theorem 2 and Lemma 1 multiplying
Equation (6) by Ht and rewriting it as indicated in (7).

The previous expression allows us to compute the coefficients ci in terms of the
binomial matrix Ht and the elements of the sequence {sn}. The following example clarifies
this construction.

Example 2. Consider the sequence {sn} = {s0, s1, s2, . . . , s7} of period T = 23. According to
Equation (4), we can write:

c0 · {1 1 1 1 1 1 1 1}
c1 · {0 1 0 1 0 1 0 1}
c2 · {0 0 1 1 0 0 1 1}
c3 · {0 0 0 1 0 0 0 1}
c4 · {0 0 0 0 1 1 1 1}
c5 · {0 0 0 0 0 1 0 1}
c6 · {0 0 0 0 0 0 1 1}

+ c7 · {0 0 0 0 0 0 0 1}
{sn} = {s0 s1 s2 s3 s4 s5 s6 s7}

Thus, the elements of the sequence {sn} can be expressed as:

s0 = c0
s1 = c0 + c1
s2 = c0 + c2
s3 = c0 + c1 + c2 + c3
s4 = c0 + c4
s5 = c0 + c1 + c4 + c5
s6 = c0 + c2 + c4 + c6
s7 = c0 + c1 + c2 + c3 + c4 + c5 + c6 + c7.

Therefore, the matrix equation is:

(s0, s1, . . . , s7) = (c0, c1, . . . , c7) · H3 mod 2, (8)

where the binomial matrix H3 is:

H3 =

[
H2 H2
02 H2

]
=



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


. (9)

Now, multiplying both members of Equation (8) by the inverse matrix of H3, that is the matrix
itself, we obtain:

(s0, s1, . . . , s7) · H3 mod 2 = (c0, c1, . . . , c7).

This expression allows us to compute the coefficients ci from the sequence {sn} and the binomial
matrix H3.

Mathematics 2022, 10, 794 10 of 23

Recall that, in the previous example, the rows of H3 correspond to the first eight
binomial sequences, while its columns read from right to left are the first eight diagonals of
Sierpinski’s triangle (shifted versions of the corresponding binomial sequences).

4. Computation of LC by Means of the B-Representation

According to the previous section, Equation (7) introduces a simple method of com-
puting the coefficient cimax and, consequently, the linear complexity and period of the
corresponding sequence.

4.1. An Algorithm to Compute the LC of Sequences with a Period of a Power of Two

In this section, we present a fast algorithm, based on binomial matrices, that computes
the LC of any binary sequence whose period T is a power of two.

Note that the matrix Ht can be expressed in terms of its columns as:

Ht = [h0h0h0, h1h1h1, . . . , h2t−1h2t−1h2t−1].

Therefore, every binary coefficient ci (i = 0, 1, . . . , 2t − 1) is computed as the product
modulo two of the row vector (s0, s1, . . . , s2t−1) (the 2t bits of the sequence {sn}) by the
corresponding column vector hihihi. From now on, we represent in bold the column vectors of
the binomial matrix Ht. The computation starts with the coefficient c2t−1 and proceeds in
reverse order until the first coefficient ci 6= 0 is reached. In that case, the index imax = i
and, consequently, the parameter LC are computed via Equation (5). Algorithm 1 illustrates
this computation.

Algorithm 1: Computation of the LC of a given sequence.

Input:
seq: sequence of period 2t,
Ht: the (2t × 2t) binomial matrix

01: imax = −1; i = length(seq)− 1;
02: while i ≥ 0 do
03: ci = (s0, s1, . . . , s2t−1) · hihihi;
04: if ci 6= 0 then
05: imax = i;
06: Break;
07: endif
08: i = i− 1;
09: endwhile
Output:

LC = imax + 1: Linear complexity of the sequence.

From this computational method, two basic ideas can be drawn:

1. The algorithm that computes LC is reduced to products modulo two of binary vec-
tors. Clearly, its computational complexity will be minimum compared with other
algorithms found in the literature; see Section 6;

2. If the column himaxhimaxhimax has many zeros and only a few ones, then only a few terms of the
sequence {sn} will be required to compute its LC.

In the sequel, these features were analysed in detail when this procedure was applied
to a particular family of cryptographic sequences, the generalized self-shrunken sequences
(see Section 2.2 for more details).

4.2. Sequences with an Upper Bound on the Linear Complexity

The previous algorithm is particularly useful when we analyse sequences whose LC is
upper bounded by a maximum value LCmax. In that case, the computation of coefficients is

Mathematics 2022, 10, 794 11 of 23

simplified as ci = 0 for every coefficient in the range (imax < i ≤ 2t − 1). Then, Algorithm
1 starts with the index i = imax = LCmax − 1 and computes the coefficient:

cimax = (s0, s1, . . . , s2t−1) · himaxhimaxhimax.

Two different situations can occur:

• If cimax 6= 0, then the linear complexity of the sequence is LCmax. Recall that, in this
case, the computation of LC was reduced to the simple product of two binary vectors.
For sequences with an upper bound on LC, this computation can be seen as a quick
test to check whether the sequence exhibits maximum LC;

• If cimax = 0, then the previous algorithm proceeds in decreasing order computing the
remaining indices (imax > i ≥ 0) until a coefficient ci 6= 0 is reached. In that case,
the linear complexity of the sequence satisfies LC < LCmax.

In the next section, we applied the previous method to the generalized self-shrunken se-
quences.

5. Application of the Algorithm to Generalized Sequences

The generalized sequences seem to be the ideal candidates for the application of the
previous algorithm. In fact, their period is a power of two, and as we saw in Section 2,
their linear complexity is upper bounded by LC ≤ 2L−1 − (L− 2), where L is the length
of the LFSR that generates the family of generalized sequences. Therefore, we initialized
Algorithm 1 with the value i = imax = 2L−1 − (L− 1).

Now, we can determine the value of the coefficient cimax by multiplying the generalized
sequence {sn} by the corresponding column himaxhimaxhimax of the Hadamard matrix (or binomial
matrix) HL−1. Depending on the value of cimax, we can check whether the generalized
sequence has or has not maximum complexity LCmax. Indeed, cimax 6= 0 implies that
the generalized sequence complexity is LC = 2L−1 − (L − 2), otherwise LC will take a
lower value.

According to [29], half the sequences of the generalized family have maximum linear
complexity. Therefore, half the coefficients cimax satisfy the inequality cimax 6= 0. Thus,
the linear complexity of half the sequences of a generalized family can be simply determined
by the computation of the coefficient cimax.

Let us see a particular example of the application of the defined algorithm in a gener-
alized sequence.

Example 3. Let {sn} = {1110001001110100} be a generalized sequence obtained from an LFSR
of length L = 5, the characteristic polynomial x5 + x3 + 1, the initial state IS = (11111), and
G = [1, 0, 0, 1, 0]. The period of the generalized sequence is T = 2L−1 = 24. Then, the binomial
matrix HL−1 = H4 is a

(
24 × 24)-Hadamard matrix of the form:

Mathematics 2022, 10, 794 12 of 23

H4 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



. (10)

According to Equation (3), the maximum value of the complexity will be here LCmax = 13.
Therefore, if the coefficient cimax = c13−1 = c12 = 1, then the sequence {sn} will have maximum
linear complexity. In this example, we multiplied the generalized sequence by the column h12h12h12 of the
matrix H4 (the fourth column of H4 read from right to left), giving rise to the coefficient c12 = 1.

At the same time, we realized that the column h12h12h12 = (1000100010001000)′ only includes four
ones (a fourth of the period, i.e., T/4), which means that only four terms of {sn} will determine
whether the generalized sequence has LCmax. Those terms are: s0, s4, s8, s12, which, in turn,
determine the coefficient:

c12 = s0 + s4 + s8 + s12.

The remaining terms of the generalized sequence are redundant for this computation.
If the sequence {sn} was shifted, then the reasoning would be the same: one out of four

consecutive digits of the sequence would be needed to check whether LC = LCmax. In brief,
according to the column h12h12h12, any set of four digits separated by four positions from each other is
enough for this checking.

We remark that, for generalized sequences, Equation (5) can be rewritten as:

imax = LCmax − 1 = 2L−1 − (L− 2)− 1 = 2L−1 − (L− 1).

Thus, the column himaxhimaxhimax corresponds to the (L− 1)-th column of the matrix HL−1 read
from right to left.

All the previous results can be generalized to any value of L taking into account that
the binomial matrix HL−1 is a Hadamard matrix. In the next subsections, we analysed
the method described in the previous section. In fact, in order to obtain a bound on the
number of required operations for this calculation, we computed the linear complexity of
the generalized sequences coming from LFSRs with different lengths L.

5.1. Analysis of 3 ≤ L ≤ 5

In a similar way to that developed in Example 3, we applied this method to generalized
sequences coming from LFSRs with characteristic polynomials of degrees L = 3, 4, 5.

Mathematics 2022, 10, 794 13 of 23

In the case L = 3, the maximum value of the linear complexity of a generalized
sequence is LCmax = 3. It corresponds to the column h2h2h2 of the matrix:

H2 =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

, (11)

that is the second column of H2 (read from right to left) circled in (11), which corresponds
to the binomial sequence {(n

1)}∗. In Table 2, we computed, for L = 3, 4, 5, the values of
LCmax, the index imax, the location of himaxhimaxhimax, the binomial matrix HL−1, and the binomial
sequence associated with himaxhimaxhimax.

Table 2. Table of the values of the upper bound of LC, imax, and himaxhimaxhimax for L = 3, 4, 5.

L LCmax imax himaxhimaxhimax HL−1 {(n
k)}∗

3 3 2 2 H2 {(n
1)}∗

4 6 5 3 H3 {(n
2)}∗

5 13 12 4 H4 {(n
3)}∗

We observed that for L = 4, LCmax = 6, and using our algorithm, we obtained
himaxhimaxhimax = h5h5h5, that is the third column of H3 (read from right to left) circled in (12).

H3 =



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


. (12)

Due to the recursive structure of the Hadamard matrix, we can obtain the column h5h5h5
of H3 using the columns of H2. We only had to concatenate twice the sequence given in
the third column of H2. In a similar way, for L = 5, LCmax = 13, then himaxhimaxhimax = h12h12h12, that is
the fourth column of H4 in Equation (10) read from right to left. It can also be obtained
from the concatenation twice of the fourth column of H3 or concatenating four times the
sequence given in the fourth column of H2. In conclusion, we can construct the columns
himaxhimaxhimax, for the cases L = 3, 4, 5, using the matrix H2, as we show in Table 3. We only needed
to concatenate 2L−3 times the corresponding column of himaxhimaxhimax in H2 to obtain the column
in HL−1. In the next subsection, we generalized this method of obtaining the binomial
sequences associated with the column himaxhimaxhimax, for different values of L.

Table 3. The 4-box to analyse generalized sequences with L = 3, 4, 5.

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

L = 5 4 3
{(n

k)}∗ = {(n
3)}∗ {(n

2)}∗ {(n
1)}∗

Mathematics 2022, 10, 794 14 of 23

5.2. Analysis of 5 ≤ L ≤ 17

In the previous subsection, we used the matrix H2 as the reference matrix to obtain
the columns of himaxhimaxhimax for L = 3, 4, 5. From now on, we fix H4 as our reference matrix, called
the 16-box. From this matrix, we determined the column himaxhimaxhimax for the different cases of L,
which allowed us to obtain the number of required bits to compute LC.

In a similar way to that developed in previous sections, we analysed the linear
complexity of the generalized sequences coming from LFSRs with length L in the range
L = 5, . . . , 17.

The steps of this analysis can be enumerated as follows:

• Step 1: Take the
(
24 × 24)-matrix H4 in Equation (10) as the reference matrix, the 16-

box, since the successive matrices HL−1 are made up of sub-matrices H4 or 16-boxes;
• Step 2: Divide the period T = 2L−1 of the generalized sequence by 16 to determine

the number of 16-boxes included in the (2L−1 × 2L−1)-matrix HL−1;
• Step 3: Count the number of ones in the column himaxhimaxhimax of the 16-box;
• Step 4: Multiply this number by the number of 16-boxes in HL−1 in order to obtain

the total number of ones in the column himaxhimaxhimax of HL−1. This number coincides with the
number of bits necessary to check whether the generalized sequence has LCmax. At the
same time, the column himaxhimaxhimax shows the distribution of the required bits all along the
sequence {sn}.
This analysis was adapted to the successive n-boxes used in the following subsections.

As far as L increases by one, in the frame of the box, the column himaxhimaxhimax is shifted one position
to the left.

The 16-box is depicted in Table 4. We can see the column himaxhimaxhimax corresponding to each
value of L (written at the bottom of the table) in the interval L ∈ [5, 6, . . . , 17], as well as the
corresponding binomial sequence {(n

k)}∗. Indeed, for L = 5, himaxhimaxhimax is the fourth column of
H4 read from left to right. Now, for L = 6, himaxhimaxhimax is the fifth column of H5 or also the fifth
column of H4 concatenated twice. Following a similar reasoning to that presented in the
previous subsection, we have that the binomial sequence associated with the column himaxhimaxhimax
of HL−1, for 5 ≤ L ≤ 17, can be obtained from the concatenation of 2L−4 times the column
himaxhimaxhimax of H4.

Table 4. The 16-box to analyse generalized sequences with 5 ≤ L ≤ 17.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

L = 17 . . . 10 9 . . . 5
{(n

k)}∗ = {(n
15)}∗ . . . {(n

8)}∗ {(n
7)}∗ . . . {(n

3)}∗

The parameters that describe this analysis are shown in Table 5 where its columns
correspond to:

Mathematics 2022, 10, 794 15 of 23

1. L = length of the LFSR generating the family of generalized sequences;
2. T = 2L−1 period of the generalized sequence;
3. No. of 16-boxes: number of 16-boxes included in the binomial matrix HL−1, i.e., T/16;
4. No. of ones/16-box: number of ones in the column himaxhimaxhimax of the 16-box;
5. No. of required bits: number of one in the column himaxhimaxhimax of the matrix HL−1 or,

equivalently, number of required bits of the sequence {sn}; this number is expressed
as a fraction of the period T.

Table 5. Basic parameters for generalized sequences with 5 ≤ L ≤ 17.

L T No. of
16-Boxes

No. of
1’s/16-Box No. of Required Bits

5 24 20 22 22 = T/4
6 25 21 23 24 = T/2
7 26 22 22 24 = T/4
8 27 23 22 25 = T/4
9 28 24 21 25 = T/8

10 29 25 23 28 = T/2
11 210 26 22 28 = T/4
12 211 27 22 29 = T/4
13 212 28 21 29 = T/8
14 213 29 22 211 = T/4
15 214 210 21 211 = T/8
16 215 211 21 212 = T/8
17 216 212 20 212 = T/16

From Table 5, we realized that Algorithm 1 will never require the knowledge of the
whole sequence {sn} to check whether its LC is maximum. At any rate, depending on the
value of L, the amount of sequence needed will be greater or shorter.

In fact, as we show in the following results, we can give an upper and lower bound of
the number of operations required to compute LC for some particular cases.

Theorem 4. Let {sn} be a generalized sequence with period T = 2L−1. Consider that the column
himaxhimaxhimax of HL−1 corresponds to the binomial sequence

{
(n

2m)
}∗, with m < L− 1 a positive integer.

Then, the maximum number of required bits to compute LC from Algorithm 1 is T/2.

Proof. This result is immediate by Corollary 2.

Theorem 5. Let {sn} be a generalized sequence with period T = 2L−1. Assume that the column
himaxhimaxhimax of HL−1 corresponds to the binomial sequence

{
(n

2m−1)
}∗, with m < L− 1 a positive integer.

Then, the minimum number of required bits to compute LC from Algorithm 1 is T/2m.

Proof. This result is immediate by Definition 1, since the binomial sequence
{
(n

2m−1)
}∗ has

a unique digit of one, while the remaining digits are zero.

Note that these considerations can be generalized to any value of L. For L ∈ [5, 17], it
is easy to see that L = 6 and L = 10, corresponding to the binomial sequences

{
(n

4)
}∗ and{

(n
8)
}∗, respectively, are the least suitable cases since such values require the knowledge of

half the sequence. Nevertheless, the value L = 17, corresponding to the binomial
{
(n

15)
}∗,

requires only the knowledge of T/16 bits.
At the same time, the column himaxhimaxhimax of the 16-box determines the distribution of the

required terms along the sequence. For instance:

• For L = 10, himaxhimaxhimax = (1111111100000000)′, which means that eight out of sixteen bits
of the sequence are needed to check whether LC = LCmax. Moreover, the required bits
must be consecutive;

Mathematics 2022, 10, 794 16 of 23

• For L = 17, himaxhimaxhimax = (1000000000000000)′, which means that one out of sixteen bits of
the sequence is needed to check whether the linear complexity is maximum;

• For the remaining values of L, the number of required bits takes the values T/4 or
T/8, as shown in Table 5. In fact, it depends on the number of ones along the column
himaxhimaxhimax of the 16-box, in particular, T/8 for columns with two ones, e.g., L = 9, 13, 15, 16,
and T/4 for columns with four ones, e.g., L = 5, 7, 8, 11, 12, 14.

The next subsections analyse these results for greater values of L.

5.3. Analysis of 18 ≤ L ≤ 33

The study was similar to that of the previous subsection, but we now used a 32-box as
shown in Table 6, where H4 is the 16-box defined above and 04 is the (24 × 24)-null matrix.
Next, we divided the period T of the sequence by thirty-two and analysed the number
of ones in the successive columns himaxhimaxhimax of the 32-box when L takes values in the interval
L ∈ [18, 19, . . . , 33]. It can be noticed that for these values of L, the columns himaxhimaxhimax include
the corresponding ones of the 16-box plus sixteen zeros of 04. See Table 6.

Table 6. The 32-box to analyse generalized sequences with 18 ≤ L ≤ 33.

H4 H4

04 H4

L = 33 . . . 26 25 . . . 18 17 . . . 10 9 . . . 2

Table 7 shows in detail this study for the different values of L. According to the
table, the least suitable case is L = 18 corresponding to the binomial sequence

{
(n

16)
}∗

with sixteen consecutive ones followed by sixteen consecutive zeros. On the other hand,
the most suitable case is L = 33 corresponding to the binomial sequence

{
(n

31)
}∗ with a

unique one followed by thirty-one zeros. See in Table 7 the amount of sequence needed in
terms of the period T.

Table 7. Basic parameters for generalized sequences with 18 ≤ L ≤ 33.

L T No. of
32-Boxes

No. of
1’s/32-Box No. of Required Bits

18 217 212 24 216 = T/2
19 218 213 23 216 = T/4
20 219 214 23 217 = T/4
21 220 215 22 217 = T/8
22 221 216 23 219 = T/4
23 222 217 22 219 = T/8
24 223 218 22 220 = T/8
25 224 219 21 220 = T/16
26 225 220 23 223 = T/4
27 226 221 22 223 = T/8
28 227 222 22 224 = T/8
29 228 223 21 224 = T/16
30 229 224 22 226 = T/8
31 230 225 21 226 = T/16
32 231 226 21 227 = T/16
33 232 227 20 227 = T/32

5.4. Analysis of 34 ≤ L ≤ 65

The study was similar to that of the previous subsections, but we now used a 64-box
as shown in Table 8, where H4 and 04 are defined as before and 05 is the (25 × 25)-null

Mathematics 2022, 10, 794 17 of 23

matrix. Now, we divided the period T of the sequence by sixty-four and analysed the
number of ones in the successive columns himaxhimaxhimax of the 64-box when L takes values in the
interval L ∈ [34, 35, . . . , 65]. It can be noticed that this range of values of L can be divided
into two sub-intervals:

1. For L ∈ [34, 35, . . . , 49], in the the 64-box columns we will have the ones of two
16-boxes plus thirty-two consecutive zeros of 05;

2. For L ∈ [50, 51, . . . , 65], in the 64-box columns, we will have the ones of the 16-box
plus 16 + 32 consecutive zeros coming from 04 and 05, respectively. See Table 8.

Table 8. The 64-box to analyse generalized sequences with 34 ≤ L ≤ 65.

H4 H4 H4 H4

04 H4 04 H4

05

H4 H4

04 H4

L = 65 . . . 50 49 . . . 34 33 . . . 18 17 . . . 2

Table 9 shows in detail this study for some values of L in each sub-interval. According
to Table 9, the least suitable case is L = 34, corresponding to the binomial sequence

{
(n

32)
}∗

with 16 + 16 consecutive ones followed by thirty-two consecutive zeros, which means that
T/2 bits are required to check the maximum complexity. On the other hand, the most
suitable case is L = 65 corresponding to the binomial sequence

{
(n

63)
}∗ with a unique one

followed by sixty-three zeros. Therefore, one out of sixty-four bits is needed to check LCmax,
that is only T/64 bits of the sequence are needed.

Table 9. Basic parameters for generalized sequences with 34 ≤ L ≤ 65.

L T No. of
64-Boxes

No. of
1’s/64-Box No. of Required Bits

34 233 227 25 232 = T/2
38 237 231 24 235 = T/4
39 238 232 23 235 = T/8
41 240 234 22 236 = T/16
45 244 238 22 240 = T/16
47 246 240 22 242 = T/16
48 247 241 22 243 = T/16
49 248 242 20 243 = T/32

50 249 243 24 247 = T/4
54 253 247 23 250 = T/8
55 254 248 22 250 = T/16
57 256 250 21 251 = T/32
61 260 254 21 255 = T/32
63 262 256 21 257 = T/32
64 263 257 21 258 = T/32
65 264 258 20 258 = T/64

5.5. Analysis of 66 ≤ L ≤ 129

The study was similar to that of the previous subsections, but we now used a 128-box
as shown in Table A1, where H4, 04, 05 are defined as before and 06 is the (26 × 26)-null

Mathematics 2022, 10, 794 18 of 23

matrix. Now we divided the period T of the sequence by one-hundred twenty-eight and
analysed the number of ones in the successive columns himaxhimaxhimax of the 128-box, when L takes
values in the interval L ∈ [66, 67, . . . , 129]. It can be noticed that this range of L values can
be divided into four sub-intervals:

1. For L ∈ [66, 67, . . . , 81], in the the 128-box columns, we will have the ones of four
16-boxes plus sixty-four consecutive zeros of 06;

2. For L ∈ [82, 83, . . . , 97], in the 128-box columns, we will have the ones of the 16-box,
then sixteen consecutive zeros coming from 04, then the ones of the 16-box, and finally,
sixteen consecutive zeros coming from 04. See Table A1;

3. For L ∈ [98, 99, . . . , 113], in the 128-box columns, we will have the ones of two consec-
utive 16-boxes, then 32 + 64 consecutive zeros coming from 05 and 06, respectively;

4. For L ∈ [114, 115, . . . , 129], in the the 128-box columns, we will have the ones of
a unique 16-box, then 16 + 32 + 64 consecutive zeros coming from 04, 05, and 06,
respectively. See Table A1.

Table 10 shows in detail this study for some values of L in each sub-interval. According
to Table 10, we notice that:

1. In the interval L ∈ [66, 67, . . . , 81], the least suitable case is L = 66, corresponding
to the binomial sequence

{
(n

64)
}∗ where 16 + 16 + 16 + 16 consecutive bits of the

sequence are required followed by other 64 non-necessary bits, that is T/2 bits of the
sequence are needed to check the maximum complexity;

2. In the interval L ∈ [82, 83, . . . , 97], the most suitable case is L = 97 where the distri-
bution of the needed bits over the sequence is as follows: two bits separated thirty
positions from each other followed by 15 + 16 + 64 redundant bits, which means that
we need the knowledge of T/64 bits of the sequence;

3. In the interval L ∈ [98, 99, . . . , 113], the most suitable case is L = 113, where the
distribution of the needed bits over the sequence is as follows: two bits separated
sixteen positions from each other followed by 15 + 32 + 64 redundant bits, which
means that we need the knowledge of T/64 bits of the sequence;

4. In the interval L ∈ [114, 115, . . . , 129], the most suitable case is L = 129, corresponding
to the binomial sequence

{
(n

127)
}∗. In that case, one out of one-hundred twenty-eight

bits is required to check LCmax.

Table 10. Basic parameters for generalized sequences with 66 ≤ L ≤ 129.

L T No. of
128-Boxes

No. of
1’s/128-Box No. of Required Bits

66 265 258 26 264 = T/2
67 266 259 25 264 = T/4
69 268 261 24 265 = T/8
73 272 265 23 268 = T/16
78 277 270 24 274 = T/8
79 278 271 23 274 = T/16
80 279 272 23 275 = T/16
81 280 273 22 275 = T/32

82 281 274 25 279 = T/4
83 282 275 24 279 = T/8
85 284 277 23 280 = T/16
89 288 281 22 283 = T/32
94 293 286 23 289 = T/16
95 294 287 22 289 = T/32
96 295 288 22 290 = T/32
97 296 289 21 290 = T/64

Mathematics 2022, 10, 794 19 of 23

Table 10. Cont.

L T No. of
128-Boxes

No. of
1’s/128-Box No. of Required Bits

98 297 290 25 295 = T/4
99 298 291 24 295 = T/8

101 2100 293 23 296 = T/16
105 2104 297 22 299 = T/32
110 2109 2102 23 2105 = T/16
111 2110 2103 22 2105 = T/32
112 2111 2104 22 2106 = T/32
113 2112 2105 21 2106 = T/64

114 2113 2106 24 2110 = T/8
115 2114 2107 23 2110 = T/16
117 2116 2109 22 2111 = T/32
121 2120 2113 21 2114 = T/64
126 2125 2118 22 2120 = T/32
127 2126 2119 21 2120 = T/64
128 2127 2120 21 2121 = T/64
129 2128 2121 20 2121 = T/128

In general, we employed:

1. The 16-box for L ∈ [5, 6, . . . , 17];
2. The 32-box for L ∈ [18, 19, . . . , 33];
3. The 64-box for L ∈ [34, 35, . . . , 65];
4. The 128-box for L ∈ [66, 67, . . . , 129].

For greater values of L, the process goes on in the same way as the Hadamard structure
of the binomial matrices is systematically repeated.

Remark 2. With only four reference matrices, we easily obtained values of L in the range L > 128,
which is the cryptographic range with practical application.

6. Comparison with Other Algorithms

In this section, we compared our own method with other techniques to compute the
LC found in the literature.

1. The Berlekamp–Massey algorithm [28] computes the LC of a sequence synthesiz-
ing the shortest LFSR that generates such a sequence. It is a sequential algorithm
that needs to know and process at least 2 · LC consecutive bits of the sequence. In
the case of application to, e.g., generalized sequences, this means the knowledge of
more than one period of the sequence, which is clearly out of the application range.
The characteristics of this algorithm are depicted in the first row of Table 11;

2. In [26], the authors proposed an algorithm, Binomial Sequence Decomposition (BSD-
algorithm), that computes the B-representation of a sequence and, consequently, its
LC via Equation (5). Thus, the BSD-algorithm computes the linear complexity, as the
Berlekamp–Massey algorithm does, but after having processed only LC bits instead
of 2 · LC. The complexity of the BSD-algorithm, which performs the sum of two
sequences of T bits (T additions) for every binomial sequence, is O(r× T), r being
the number of binomial sequences with r � T. Again, this method is, in practice,
unrealistic. See the characteristics of this algorithm in the second row of Table 11;

3. The folding algorithm [30] is another technique to compute the LC of sequences with
a period of a power of two, T = 2t. It is based on successive foldings of the own
sequence to locate the maximum binomial sequence and calculate LC. At every step,
the folding algorithm sums the first half of the sequence with the second half to cancel
common binomial sequences in both halves. The procedure ends when only one bit is

Mathematics 2022, 10, 794 20 of 23

left. In fact, at every step, the folding mechanism reduces the length of the studied
sequence by two with a total of log T steps. Moreover, at each step, the folding algo-
rithm performs T/2i (i = 0, . . . , log T) logic operations. This algorithm only performs
logic operations, but it needs to handle the whole sequence. See the characteristics of
such an algorithm in the third row of Table 11;

4. In the method proposed in this work, two main features must be enhanced:

(a) The algorithm only performs bitwise XOR logic operations;
(b) It will never need the whole sequence, as the Hadamard matrices always in-

clude null blocks corresponding to portions of the sequence whose knowledge
is not necessary.

When this algorithm is applied, there are more and less favorable cases. For an integer
fixed m, the worst scenario corresponds to sequences whose column himaxhimaxhimax in the
binomial matrix is the binomial sequence

{
(n

2m)
}∗, as we need the knowledge of half

the sequence T/2. Conversely, the most favorable scenario corresponds to sequences
whose column himaxhimaxhimax in the binomial matrix is the binomial sequence

{
(n

2m+1−1)
}∗,

as we need the knowledge of T/2m bits of the sequence. See the characteristics of this
algorithm in the fourth row of Table 11.

Table 11. Comparison among the algorithms.

Algorithm Type of Sequence Length Requirements Complexity

Berlekamp–Massey Alg. [28] Any sequence ≈2T O(T2)

BSD-Algorithm [26] Period T = 2t T O(T × r)

Folding Algorithm [30] Period T = 2t T O(T)

B-representation Period T = 2t T/2 (Worst case) O(T/2)

Table 11 summarizes the comparison, in terms of the computational complexity and
length requirements, of our algorithm with the other ones mentioned above in this section.
Notice that the r in the second row corresponds to the number of binomial sequences in the
B-representation of the sequence under study.

7. Conclusions

In this work, we proposed a general technique based on the B-representation to
compute the linear complexity of any binary sequence with a period of a power of two. We
focused on the study of the LC of the generalized sequences just to distinguish generalized
sequences with a maximum LC of value 2L−1 − (L− 2).

Furthermore, this algorithm is particularly efficient for families with an upper bound
on the value of the linear complexity.

The computation of LCmax was only performed by means of the bitwise XOR operation
of several bits of the sequence. At the same time, the fractal structure of the binomial matrix
(the Hadamard matrix) was exploited.

Notice that we did not need the whole sequence to compute the linear complexity, but
just partial knowledge of it. Depending on the value of L, more or less favorable cases can
be found. It is worth mentioning that the only parameter we used in this method was L,
which means that the algorithm did not depend on the characteristic polynomial of the
original LFSR, but on its degree.

Finally, we want to emphasize that we can reach suitable cryptographic values of L
only with four reference matrices (16-box, 32-box, 64-box, and 128-box), all of them made
out of 16-boxes. Thanks to this method, it is possible to achieve values of L > 128, just by
using the same structure as the one employed in Table A1.

Author Contributions: A.F.-S., V.R. and S.D.C. contributed equally to this work. All authors have
read and agreed to the published version of the manuscript.

Mathematics 2022, 10, 794 21 of 23

Funding: This work was supported in part by the Spanish State Research Agency (AEI) of the
Ministry of Science and Innovation (MICINN), Project P2QProMeTe (PID2020-112586RB-I00/AEI/
10.13039/501100011033), co-funded by the European Regional Development Fund (ERDF, EU). It
is also supported by Comunidad de Madrid (Spain) under Project CYNAMON (P2018/TCS-4566),
co-funded by FSE and European Union FEDER funds. The work of the second author was partially
supported by Spanish Grant VIGROB-287 of the University of Alicante.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of the data; in the writing of the
manuscript; nor in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

LFSR Linear Feedback Shift Register
PRNG Pseudo-Random Number Generator
GSSG Generalized Self-Shrinking Generator
LC Linear Complexity
IoT Internet of Things

Mathematics 2022, 10, 794 22 of 23

Appendix A

Table A1. The 128-box to analyse generalized sequences with 66 ≤ L ≤ 129.

H4 H4 H4 H4 H4 H4 H4 H4

04 H4 04 H4 04 H4 04 H4

H4 H4 H4 H4

05 05

04 H4 04 H4

H4 H4 H4 H4

04 H4 04 H4

06

H4 H4

05

04 H4

L = 129 . . . 114 113 . . . 98 97 . . . 82 81 . . . 66 65 . . . 34 33 . . . 18 17 . . . 2

References
1. Bouguettaya, A.; Sheng, Q.Z.; Benatallah, B.; Neiat, A.G.; Mistry, S.; Ghose, A.; Nepal, S.; Yao, L. An internet of things service

roadmap. Commun. ACM 2021, 64, 86–95. http://doi.org/10.1145/3464960.
2. Zhang, W.; Sheng, Q.Z.; Mahmood, A.; Tran, D.; Zaib, M.; Hamad, S.; Aljubairy, A.; Alhazmi, A.F.; Sagar, S.; Ma, C. The 10

Research Topics in the Internet of Things. In Proceedings of the 2020 IEEE 6th International Conference on Collaboration
and Internet Computing (CIC), Atlanta, GA, USA, 1–3 December 2020; IEEE Computer Society: Los Alamitos, CA, USA, 2020;
pp. 34–43. http://doi.org/10.1109/CIC50333.2020.00015.

3. Khan, W.Z.; Arshad, Q.u.A.; Hakak, S.; Khan, M.K.; Saeed-Ur-Rehman. Trust Management in Social Internet of
Things: Architectures, Recent Advancements, and Future Challenges. IEEE Internet Things J. 2021, 8, 7768–7788.
http://doi.org/10.1109/JIOT.2020.3039296.

4. Xu, L.D.; Lu, Y.; Li, L. Embedding Blockchain Technology Into IoT for Security: A Survey. IEEE Internet Things J. 2021,
8, 10452–10473. http://doi.org/10.1109/JIOT.2021.3060508.

5. Mahmood, A.; Siddiqui, S.A.; Sheng, Q.Z.; Zhang, W.E.; Suzuki, H.; Ni, W. Trust on wheels: Towards secure and resource efficient
IoV networks. Computing 2022. http://doi.org/10.1007/s00607-021-01040-7.

6. Fischer, V. A Closer Look at Security in Random Number Generators Design. In Constructive Side-Channel Analysis and Secure
Design, COSADE 2012; Schindler, W., Huss, S.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7275, pp. 167–182.
http://doi.org/10.1007/978-3-642-29912-4_13.

7. Francillon, A.; Castelluccia, C. TinyRNG: A Cryptographic Random Number Generator for Wireless Sensors Network Nodes. In
Proceedings of the 2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks
and Workshops, Limassol, Cyprus, 16–20 April 2007; pp. 1–7. http://doi.org/10.1109/WIOPT.2007.4480051.

Mathematics 2022, 10, 794 23 of 23

8. Biryukov, A.; Shamir, A.; Wagner, D. Real Time Cryptanalysis of A5/1 on a PC. In Proceedings of Fast Software Encryption 2000;
Goos, G., Hartmanis, J., Van Leeuwen, J., Schneier, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 1978, pp. 1–18.
http://doi.org/10.1007/3-540-44706-7_1.

9. Petrovic, S.; Fúster-Sabater, A. Cryptanalysis of the A5/2 Algorithm. IACR Cryptol. EPrint Arch. 2000, 2000, 52.
10. Peinado, A.; Munilla, J.; Fúster-Sabater, A. EPCGen2 Pseudorandom Number Generators: Analysis of J3Gen. Sensors 2014,

14, 6500–6515. http://doi.org/10.3390/s140406500.
11. Paul, G.; Maitra, S. RC4 Stream Cipher and Its Variants; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2012.
12. Dutta, I.K.; Ghosh, B.; Bayoumi, M. Lightweight Cryptography for Internet of Insecure Things: A Survey. In Proceedings of the

2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January
2019; pp. 475–481. http://doi.org/10.1109/CCWC.2019.8666557.

13. Philip, M.A.; Vaithiyanathan. A survey on lightweight ciphers for IoT devices. In Proceedings of the 2017 International
Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 21–23 December 2017; pp. 1–4.
http://doi.org/10.1109/TAPENERGY.2017.8397271.

14. Dubrova, E.; Hell, M. Espresso: A stream cipher for 5G wireless communication systems. Cryptogr. Commun. 2017, 9, 273–289.
http://doi.org/10.1007/s12095-015-0173-2.

15. Orúe López, A.B.; Hernández Encinas, L.; Montoya Vitini, F. Trifork, a new Pseudorandom Number Generator Based on Lagged
Fibonacci Maps. J. Comput. Sci. Eng. 2010, 2, 46–51.

16. Paar, C.; Pelzl, J. Understanding Cryptography; Springer: Berlin, Germany, 2010.
17. Golomb, S.W. Shift Register-Sequences; Aegean Park Press: Laguna Hill, CA, USA, 1982.
18. Biryukov, A.; Perrin, L. State of the Art in Lightweight Symmetric Cryptography. IACR Cryptol. EPrint Arch. 2017, 2017, 511.
19. Orúe López, A.B.; Hernández Encinas, L.; Martín Muñoz, A.; Montoya Vitini, F. A Lightweight Pseudorandom Number Generator

for Securing the Internet of Things. IEEE Access 2017, 5, 27800–27806. http://doi.org/10.1109/ACCESS.2017.2774105.
20. Hassan, S. ans Bokhari, M.U. Design of Pseudo Random Number Generator using Linear Feedback Shift Register. Int. J. Eng.

Adv. Technol. IJEAT 2019, 9, 1956–1965. http://doi.org/10.35940/ijeat.B2912.129219.
21. Rahimov, H.; Babaei, M.; Farhadi, M. Cryptographic PRNG based on combination of LFSR and chaotic logistic map. Appl. Math.

2011, 2, 1531–1534. http://doi.org/10.4236/am.2011.212217.
22. Díaz Cardell, S.; Fúster-Sabater, A. Cryptography with Shrinking Generators: Fundamentals and Applications of Keystream Sequence

Generators Based on Irregular Decimation; Springer Briefs in Mathematics; Springer International Publishing: Berlin/Heidelberg,
Germany, 2019. http://doi.org/10.1007/978-3-030-12850-0.

23. Hu, Y.; Xiao, G. Generalized Self-Shrinking Generator. IEEE Trans Inf. Theory 2004, 50, 714–719. http://doi.org/10.1109/TIT.2004.
825256.

24. Cardell, S.D.; Requena, V.; Fúster-Sabater, A.; Orúe, A.B. Randomness Analysis for the Generalized Self-Shrinking Sequences.
Symmetry 2019, 11, 1460. http://doi.org/10.3390/sym11121460.

25. Seberry, J.; Yamada, M. Hadamard matrices, Sequences, and Block Designs. In Contemporary Design Theory—A Collection of
Surveys; Stinson, D.J., Dinitz, J., Eds.; John Wiley and Sons: Chichester, UK, 1992; pp. 431–560.

26. Cardell, S.D.; Fúster-Sabater, A. Binomial Representation of Cryptographic Binary Sequences and Its Relation to Cellular
Automata. Complexity 2019, 2019, 2108014. http://doi.org/10.1155/2019/2108014.

27. Cardell, S.D.; Climent, J.J.; Fúster-Sabater, A.; Requena, V. Representations of Generalized Self-Shrunken Sequences. Mathematics
2020, 8, 1006. http://doi.org/10.3390/math8061006.

28. Massey, J.L. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 1969, 15, 122–127. http://doi.org/10.1109/TIT.1969.
1054260.

29. Fúster-Sabater, A.; Cardell, S. Linear complexity of generalized sequences by comparison of PN-sequences. Rev. Real Acad. Cienc.
Exactas Físicas Y Nat. Ser. A Mat. RACSAM 2020, 114, 79–97. http://doi.org/10.1007/s13398-020-00807-5.

30. Martin-Navarro, J.L.; Fúster-Sabater, A. Folding-BSD Algorithm for Binary Sequence Decomposition. Computers 2020, 9, 100.
http://doi.org/10.3390/computers9040100.

31. Rueppel, R.A. Linear Complexity and Random Sequences; In Advances in Cryptology — EUROCRYPT 85, Workshop on the Theory
and Application of of Cryptographic Techniques; Pichler, F., Ed.; Lecture Notes in Computer Science, Springer: Berlin/Heidelberg,
Germany, 1986; Volume 219, pp. 167–188. http://doi.org/10.1007/10.1007/3-540-39805-8_21.

32. Cardell, S.D.; Fúster-Sabater, A. Discrete linear models for the generalized self-shrunken sequences. Finite Fields Their Appl. 2017,
47, 222–241. http://doi.org/10.1016/j.ffa.2017.06.010.

	Introduction
	Basic Concepts and Generalities
	Linear Feedback Shift Registers
	The Generalized Self-Shrinking Generator
	Binomial Sequences
	Construction of Binomial Matrices from Binomial Sequences

	B-Representation
	Computation of LC by Means of the B-Representation
	An Algorithm to Compute the LC of Sequences with a Period of a Power of Two
	Sequences with an Upper Bound on the Linear Complexity

	Application of the Algorithm to Generalized Sequences
	Analysis of 3 L 5
	Analysis of 5 L 17
	Analysis of 18 L 33
	Analysis of 34 L 65
	Analysis of 66 L 129

	Comparison with Other Algorithms
	Conclusions
	Appendix A
	References

