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Abstract
This note is devoted to the splitting algorithm proposed by Davis and Yin (Set-valued Var.
Anal. 25(4), 829–858, 2017) for computing a zero of the sum of three maximally monotone
operators, with one of them being cocoercive. We provide a direct proof that guarantees its
convergence when the stepsizes are smaller than four times the cocoercivity constant, thus
doubling the size of the interval established by Davis and Yin. As a by-product, the same
conclusion applies to the forward-backward splitting algorithm. Further, we use the notion
of “strengthening” of a set-valued operator to derive a new splitting algorithm for comput-
ing the resolvent of the sum. Last but not least, we provide some numerical experiments
illustrating the importance of appropriately choosing the stepsize and relaxation parameters
of the algorithms.

Keywords Monotone inclusion · Resolvent · Splitting algorithm · Forward-backward ·
Strengthening
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1 Introduction

When a problem has certain structure, it is normally useful to take advantage of it. Following
the divide-and-conquer paradigm, splitting algorithms iteratively solve simpler problems
which are defined by separately using some parts of the original problem. A particular
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subfamily are projection methods (see, e.g., [10, Chapter 5]), which can be used to find
a common point in the intersection of sets, based on projections of points defined in the
iterations into each of the sets. These methods are usually variations of classical iterative
schemes for finding fixed points of certain type of nonexpansive operators. Monotone oper-
ator theory [7] permits to generalize these algorithms to tackle the far more general problem
of finding a zero of the sum of maximally monotone operators by using their resolvents
instead of the projectors (see Definitions 2.2 and 2.4).

There are many different splitting algorithms for computing a zero of the sum of two
maximally monotone operators (see, e.g., [7, Chapter 26]). Theoretically, one can always
transform any splitting algorithm for computing zeros of the sum of two operators into
a splitting algorithm for computing zeros of the sum of finitely many operators (see,
e.g., [7, Proposition 26.4]), thanks to Pierra’s product space reformulation [26]. Neverthe-
less, numerical experience shows that this theoretical trick usually slows down the resulting
algorithm (see, e.g., [1, Section 6.1]), especially when the number of operators is large (see,
e.g., [2, Section 4] and [8, Section 5]). To alleviate this problem, various schemes requiring
one space less in the product space have been recently proposed [9, 14, 23].

Only recently, three-operator splitting algorithms have been developed [18, 21, 27–29].
This note is devoted to one of them, which was introduced by Damek Davis and Wotao
Yin in [18], and is commonly referred as Davis–Yin splitting algorithm. The algorithm is
designed for solving the problem

find x such that 0 ∈ (A + B + T )(x), (1)

where all three operators involved are maximally monotone and act on a Hilbert space, and
T is also cocoercive (see Definition 2.1). Davis and Yin defined the operator

DYγ := JγB ◦ (
2JγA − Id −γ T ◦ JγA

) + Id −JγA, (2)

where JγA and JγB denote the corresponding resolvents, and proved that DYγ is α-

averaged for α = 2β
4β−γ

when γ ∈ ]0, 2β[, where β > 0 is the cocoercivity constant

of T . Then, they defined their splitting algorithm through the standard Krasnosel’skiĭ–Mann
iteration

xk+1 = (1 − λk)xk + λkDYγ (xk), k = 0, 1, 2, . . . , (3)

with λk ∈ ]0, 1/α[ satisfying the assumptions of [7, Proposition 5.16], from which its con-
vergence to a fixed point x of DYγ follows. Further, the shadow sequence (JγA(xk))k∈N
weakly converges to a solution to (1), and convergence is strong under additional assump-
tions. Three well-known splitting algorithms can be obtained as a particular instance of
Davis–Yin’s, namely the Douglas–Rachford [22] (when T = 0), the forward-backward [22,
25] (when A = 0) and the backward-forward [3] (when B = 0).

In this note we provide a direct proof of the convergence of the iterative method (3)
without relying on the averagedness of the operator DYγ (see Theorem 3.3). Our proof has
two key advantages: (i) it permits to simplify the assumptions on the relaxation parameters,
and (ii) it allows to choose the stepsize γ in ]0, 4β[ instead of ]0, 2β[. Observe that the
operator DYγ does not need to be averaged when γ > 2β (for instance, take A = B = 0,
T the identity, and apply DYγ to the points x = 1 and z = −1). As a by-product, this
shows that the stepsize in the forward-backward and the backward-forward algorithms can
be also chosen in ]0, 4β[. In addition, we derive in Theorem 3.7 a strengthened version of
Davis–Yin splitting algorithm which permits computing the resolvent of A + B + T .
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Right before submitting this manuscript, we learnt about a recent preprint by Dao-Phan,
which now has been published [17]. Using the notion of conically averaged operators intro-
duced in [5], the authors prove in [17, Corollary 4.2] that the operator (1 − λ) Id +λDYγ is
2λβ/(4β − γ )-averaged when γ ∈ ]0, 4β[, from which the convergence of (3) for a fixed
λk = λ follows.

As a simple motivating example of the importance of the algorithm parameters, consider
the problem of finding the minimum norm point in the intersection of two balls A and B in
the Euclidean space whose intersection has nonempty interior. The problem can be solved
with Davis–Yin splitting algorithm, taking A and B as the normal cones to the respective
balls, and T as the identity mapping. Since the resolvents of the normal cones are the pro-
jectors (see Example 2.7), which we denote by PA and PB, the iterative scheme is given
by

xk+1 = xk − λkPA(xk) + λkPB ((2 − γ )PA(xk) − xk) , k = 0, 1, 2, . . . ,

and (PA(xk))k∈N converges to the minimum norm point in A ∩ B (the normal cone sum
rule holds). Both the relaxation parameter λk and the stepsize γ have a big influence on the
behavior of the algorithm, as shown in Fig. 1.

In this example, since the cocoercivity constant β is equal to 1, [18, Theorem 2.1] guar-
antees the convergence when the parameter γ is taken in ]0, 2[, while Theorem 3.3 allows
to take γ ∈ ]0, 4[. When the Davis–Yin splitting algorithm is applied to the same problem
with different starting points x0, it can behave very differently depending on the parameters,
as shown in Figs. 1 and 2.

In general, larger stepsizes are commonly believed to be associated with faster conver-
gence of algorithms, but this is not always the case, particularly when an algorithm has
several parameters. It is important to have in mind that the relaxation parameter λk of the
Davis–Yin splitting algorithm is upper bounded by 2 − γ

2β
and that its value has an impor-

tant effect. If γ ∈ ]0, 2β[, overrelaxed steps (i.e., λk > 1) are allowed in (3), while only
underrelaxed steps can be taken when γ ≥ 2β. The fact that both the stepsize and the relax-
ation parameters are important is especially apparent when one considers the particular case
of A = B = 0 and T = ∇f for a differentiable function f whose gradient is Lipschitz con-
tinuous with constant L = 1

β
. In this case, the iteration (3) reduces to the gradient descent

Fig. 1 Behavior of Davis–Yin splitting algorithm for two starting points x0 and x̃0 and two stepsize param-
eters γ , with λk = 0.99(2 − γ /2). The solution s is obtained after projecting the fixed point onto
A
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Fig. 2 Number of iterations needed until the shadow sequence gets sufficiently close to the solution s (pre-
cisely, ‖PA(xk) − s‖ < 10−10) for different values of γ and λk = λ, with starting points x0 (left) and x̃0
(right) shown in Fig. 1

scheme:
xk+1 = xk − γ λk∇f (xk), k = 0, 1, 2, . . . . (4)

We observe in (4) that the stepsize of the algorithm is actually γ λk , so the upper bound
2 − γ

2β
on the relaxation parameters λk entails γ λk < 2β = 2

L
, as expected.

Finally, it is important to recall that in practical applications only a lower bound of the
best cocoercivity constant β is usually known, and this can affect the performance of the
algorithms. For instance, consider again the application of the Davis–Yin algorithm with
starting point x̃0 shown on the right in Fig. 2 and imagine that we underestimate β to β̂ =
0.65 < 1 = β. Then, we observe in Fig. 3 how the choice of a stepsize parameter γ ∈
]0, 2β̂[ excludes better values like γ̂ ∈ ]2β̂, 4β̂[. A typical choice for the parameters of the
forward-backward algorithm is γ = (2−ε)β and λk = 1, for a small ε > 0 (see, e.g., [13]).

Fig. 3 Repetition of the experiment shown on the right of Fig. 2. When only an approximate value β̂ of the
cocoercivity constant is known, choosing the stepsize γ ∈ ]0, 2β̂[ (shaded area) can exclude better choices
like γ̂
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This example shows that, when only an estimate β̂ of the best value of β is known, it can be
worth testing the performance of the algorithm with parameters γ = (2+ε)β̂ and λk = 1−ε

(i.e., with underrelaxation).
The remainder of this paper is structured as follows. In Section 2 we recall some prelim-

inary notions and results. In Section 3 we provide an alternative proof of convergence of the
Davis–Yin splitting algorithm and derive its strengthened version for computing the resol-
vent of the sum. In Section 4 we include some illustrative numerical experiments. We finish
with some conclusions in Section 5.

2 Preliminaries

Throughout this paper, H is a real Hilbert space equipped with inner product 〈·, ·〉 and
induced norm ‖ · ‖. We abbreviate norm convergence of sequences in H with → and we
use ⇀ for weak convergence.

A set-valued operator is a mapping A : H ⇒ H that assigns to each point in H a subset
of H, i.e., A(x) ⊆ H for all x ∈ H. In the case when A always maps to singletons, i.e.,
A(x) = {u} for all x ∈ H, A is said to be a single-valued mapping and is denoted by
A : H → H. In an abuse of notation, we may write A(x) = u when A(x) = {u}. The
domain, the range, the graph, the set of fixed points and the set of zeros of A, are denoted,
respectively, by dom A, ran A, gra A, Fix A and zer A; i.e.,

dom A := {x ∈ H : A(x) �= ∅} , ran A := {u ∈ H : ∃x ∈ H : u ∈ A(x)} ,

gra A := {(x, u) ∈ H × H : u ∈ A(x)} , Fix A := {x ∈ H : x ∈ A(x)} ,

and zer A := {x ∈ H : 0 ∈ A(x)} .

The inverse operator of A, denoted by A−1, is defined through x ∈ A−1(u) ⇐⇒ u ∈
A(x). The identity operator is denoted by Id.

Definition 2.1 We say that an operator T : H → H is

(i) L-Lipschitz continuous for L > 0 if

‖T (x) − T (y)‖ ≤ L‖x − y‖ ∀x, y ∈ H;
(ii) β-cocoercive for β > 0 if

〈x − y, T (x) − T (y)〉 ≥ β‖T (x) − T (y)‖2 ∀x, y ∈ H.

Note that, by the Cauchy–Schwarz inequality, any β-cocoercive mapping is 1
β

-Lipschitz
continuous. When the operator is the gradient of a convex function, the Baillon–Haddad
theorem states that both notions are equivalent, see [4, Corolaire 10].

Definition 2.2 Let A : H ⇒ H be a set-valued operator.

(i) A is said to be η-monotone for η ∈ R if

〈x − y, u − v〉 ≥ η‖x − y‖2 ∀(x, u), (y, v) ∈ gra A.

Furthermore, an η-monotone operator A is said to be maximally η-monotone if there
exists no η-monotone operator B : H ⇒ H such that gra B properly contains gra A.
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(ii) A is said to be uniformly monotone with modulus φ : R+ → [0, +∞[ if φ is
increasing, vanishes only at 0, and

〈x − y, u − v〉 ≥ φ(‖x − y‖) ∀(x, u), (y, v) ∈ gra A.

An operator is monotone (in the classical sense) if it is 0-monotone and it is η-strongly
monotone (in the classical sense) if it is η-monotone for η > 0, in which case it is uniformly
monotone with modulus φ(t) = ηt2, for t ∈ R+.

Definition 2.3 We say that an operator T : H → H is demiregular at x ∈ H if for all
sequences (xk)k∈N with xk ⇀ x and T (xk) → T (x), we have xk → x.

The resolvent operator, whose definition is given next, is one of the main building blocks
of splitting algorithms.

Definition 2.4 Given an operator A : H ⇒ H, the resolvent of A with parameter γ > 0 is
the operator JγA : H ⇒ H defined by JγA := (Id +γA)−1.

The following result is a consequence of Minty’s theorem [24].

Proposition 2.5 (Resolvents of η-monotone operators) Let A : H ⇒ H be η-monotone
and let γ > 0 such that 1 + γ η > 0. Then

(i) JγA is single-valued,
(ii) dom JγA = H if and only if A is maximally η-monotone.

Proof See [15, Proposition 3.4].

Example 2.6 Let f : H →]−∞,+∞] be a proper, lower semicontinuous (lsc) and convex
function. Then, the subdifferential of f , which is the operator ∂f : H ⇒ H defined as

∂f (x) = {u ∈ H : f (x) + 〈u, y − x〉 ≤ f (y), ∀y ∈ H},
is a maximally monotone operator. Furthermore, it holds that Jγ ∂f = proxγf : H → H,
where proxγf is the proximity operator of f (with parameter γ ) defined at x ∈ H by

proxγf (x) := argmin
u∈H

(
f (u) + 1

2γ
‖x − u‖2

)
,

see, e.g., [7, Theorem 20.25 & Example 23.3]. Some functions are prox-friendly, which
means that their proximity operator is easy to compute, see [11] for various examples. This
is the case for the �1-norm, whose proximity operator is the result of applying the soft
thresholding function:

proxγ ‖·‖1
(x) = sign(x) � [|x| − γ ]+,

where � denotes element-wise product and [ · ]+ and | · | are applied element-wise. That is,
its i-th component is given by

proxγ ‖·‖1
(x)i =

⎧
⎨

⎩

xi + γ, if xi < −γ,

0, if |xi | ≤ γ,

xi − γ, if xi > γ,

for i = 1, 2, . . . , n.
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Example 2.7 Given a nonempty set C ⊆ H, the indicator function of C, ιC : H →
] − ∞,∞], is defined as

ιC(x) :=
{

0, if x ∈ C;
+∞, if x /∈ C.

When C is a convex set, ιC is a convex function whose subdifferential becomes the normal
cone to C, NC : H ⇒ H, given by

∂ιC(x) = NC(x) :=
{ {u ∈ H : 〈u, c − x〉 ≤ 0, ∀c ∈ C}, if x ∈ C,

∅, otherwise.

When C is nonempty, closed and convex, the normal cone NC is maximally monotone.
Furthermore, JNC

= PC , where PC : H → H denotes the projector onto C, which is
defined at x ∈ H by

PC(x) := argmin
c∈C

‖x − c‖,
see, e.g., [7, Example 20.26 & Example 23.4].

Fejér monotonicity is a key property in fixed point theory (see, e.g, [7, Chapter 5]). It will
allow us to derive weak convergence of the sequence generated by the Davis–Yin splitting
algorithm.

Definition 2.8 Let C be a nonempty subset of H and let (xn)n∈N be a sequence in H. Then
(xn)n∈N is Fejér monotone with respect to C if for all x ∈ C

‖xn+1 − x‖ ≤ ‖xn − x‖ ∀n ∈ N.

Proposition 2.9 Let C be a nonempty subset of H and let (xn)n∈N be a sequence in H.
Suppose that (xn)n∈N is Fejér monotone with respect to C and that every weak sequential
cluster point of (xn)n∈N belongs to C. Then (xn)n∈N converges weakly to a point in C.

Proof See [7, Theorem 5.5].

3 Davis–Yin Splitting Algorithm

Let A,B : H ⇒ H be two maximally monotone operators and let T : H → H be
cocoercive. Consider the problem

find x ∈ H such that 0 ∈ (A + B + T )(x). (5)

The following lemma characterizes the set of zeros of the latter sum of operators in terms
of the set

Ωγ := {
x ∈ H : JγA(x) = JγB

(
2JγA(x) − x − γ T (JγA(x))

)}
, (6)

with γ > 0, and shows that Ωγ = Fix DYγ , where

Fix DYγ = {u + γy : u ∈ zer(A + B + T ), y ∈ (−B(u) − T (u)) ∩ A(u)} , (7)

as proved in [18, Lemma 2.2].

Lemma 3.1 For every γ > 0, it holds

zer(A + B + T ) = JγA(Ωγ ).

In particular, zer (A + B + T ) �= ∅ ⇐⇒ Ωγ �= ∅. Further, Ωγ = Fix DYγ .
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Proof Observe that

u ∈ zer (A + B + T ) ⇔ −γ T (u) ∈ (γA + γB)(u)

⇔ (∃ x ∈ H) x − u ∈ γA(u), u − x − γ T (u) ∈ γB(u)

⇔ (∃ x ∈ H) u = JγA(x), 2u − x − γ T (u) ∈ (Id +γB)(u)

⇔ (∃ x ∈ H) u = JγA(x), u = JγB(2u − x − γ T (u)),

from where the first claim follows. Further, we have

x ∈ Ωγ ⇔ (∃u ∈ zer (A + B + T )) u = JγA(x), u = JγB(2u − x − γ T (u))

⇔ (∃u ∈ zer (A + B + T )) x − u ∈ γA(u), x − u ∈ (−γB(u) − γ T (u))

⇔ (∃u ∈ zer (A + B + T ) , ∃y ∈ (−B(u) − T (u)) ∩ A(u)), x = u + γy,

and thus, Ωγ = Fix DYγ , by (7).

Using a technique similar to the one employed in [1, Theorem 8], we can provide a direct
proof of the convergence of Davis–Yin splitting algorithm with the additional advantages of
both allowing a larger stepsize and having a simpler condition on the relaxation parameters
than [18, Theorem 2.1]. The proof makes use of the following technical lemma.

Lemma 3.2 Let A,B : H ⇒ H be two maximally monotone operators and T : H → H.
Let x, x̂ ∈ H and γ > 0, and set u := JγA(x), û := JγA

(x̂), v := JγB(2u − x − γ T (u))

and v̂ := JγB(2û − x̂ − γ T (û)). Then, it holds

0 ≤ 〈x − x̂, (u − v) − (û − v̂)〉 − ‖(u − v) − (û − v̂)‖2 − γ 〈T (u) − T (û), v − v̂〉. (8)

Further, if A (respectively B) is uniformly monotone with modulus φ, then (8) holds with 0
replaced by γφ(‖u − û‖) (respectively γφ(‖v − v̂‖)).

Proof Since x − u ∈ γA(u) and x̂ − û ∈ γA(û), monotonicity of γA yields

0 ≤ 〈(x − u) − (x̂ − û), u − û〉. (9)

Likewise, since 2u−x−γ T (u)−v ∈ γB(v) and 2û−x̂−γ T (û)−v̂ ∈ γB(v̂), monotonicity
of γB implies

0 ≤ 〈(2u − x − γ T (u) − v) − (2û − x̂ − γ T (û) − v̂), v − v̂〉
= 〈(v̂ − û) − (v − u), v − v̂〉 − 〈(x − u) − (x̂ − û), v − v̂〉 − γ 〈T (u) − T (û), v − v̂〉.

(10)
Summing together (9) and (10), we obtain

0 ≤ 〈(x − u) − (x̂ − û), (u − v) − (û − v̂)〉
+〈(v̂ − û) − (v − u), v − v̂〉 − γ 〈T (u) − T (û), v − v̂〉

= 〈x − x̂, (u − v) − (û − v̂)〉 − ‖(u − v) − (û − v̂)‖2 − γ 〈T (u) − T (û), v − v̂〉,
which proves (8). The last assertion easily follows from the definition of uniform mono-
tonicity.

Theorem 3.3 (Davis–Yin splitting) Let A, B : H ⇒ H be two maximally monotone opera-
tors and T : H → H be a β-cocoercive operator, with β > 0, such that zer (A + B + T ) �=
∅. Set a stepsize γ ∈ ]0, 4β[ and consider a sequence of relaxation parameters (λk)k∈N
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in ]0, 2 − γ /(2β)] such that
∑

k∈N λk

(
2 − γ

2β
− λk

)
= +∞. Given some initial point

x0 ∈ H, consider the sequences defined by
⎧
⎪⎨

⎪⎩

uk = JγA(xk)

vk = JγB(2uk − xk − γ T (uk))

xk+1 = xk + λk(vk − uk).

(11)

Then, the sequence (xk)k∈N is Fejér monotone with respect to the set Ωγ given in (6).
Moreover, the following assertions hold:

(i) xk ⇀ x̄ ∈ Ωγ , uk ⇀ ū, vk ⇀ ū, vk − uk → 0 and T (uk) → T (ū) with

ū = JγA(x̄) = JγB(2ū − x̄ − γ T (ū)) ∈ zer (A + B + T ) . (12)

Further, T (zer(A + B + T )) = {T (ū)}.
(ii) If either A or B is uniformly monotone on every bounded subset of its domain, or T

is demiregular at every point in zer (A + B + T ), then (uk)k∈N and (vk)k∈N converge
strongly to ū ∈ zer (A + B + T ).

Proof Define the sequences

(∀k ∈ N) zk := γ T (uk) and wk := vk − uk

and note the following relations that (11) yields

(uk, xk − uk) ∈ gra γA and (vk, 2uk − xk − zk − vk) ∈ gra γB. (13)

Pick any x ∈ Ωγ and denote u := JγA(x). By definition of Ωγ , we have u = JγB(2u−
x − γ T (u)). Applying Lemma 3.2 to x and x̂ := xk , observing that û = uk , v = u and
v̂ = vk , yields

0 ≤ 〈x − xk,wk〉 − ‖wk‖2 − γ 〈T (u) − T (uk), u − vk〉. (14)

The first two terms in (14) multiplied by 2λk can be expressed as

2λk

(
〈x − xk, wk〉 − ‖wk‖2

)
= 2〈x − xk, xk+1 − xk〉 − 2λk‖wk‖2

= ‖xk − x‖2 − ‖xk+1 − x‖2 + λk(λk − 2)‖wk‖2.
(15)

Now, using the β-cocoercivity of T , the last term in (14) can be expressed as

−γ 〈T (u) − T (uk), u − vk〉 = −γ 〈T (u) − T (uk), u − uk〉+γ 〈T (u) − T (uk), wk〉
≤ −βγ ‖T (u) − T (uk)‖2 + γ 〈T (u) − T (uk), wk〉.

(16)

Using Cauchy–Schwarz and Young’s inequalities, the last term in (16) can be estimated as

γ 〈T (u) − T (uk), wk〉 ≤ βγ ‖T (u) − T (uk)‖2 + γ

4β
‖wk‖2. (17)

Combining (14)–(17), we have

‖xk+1 − x‖2 + λk(2 − λk)‖wk‖2 ≤ ‖xk − x‖2 + 2γ λk

4β
‖wk‖2.

As a result, we reach the expression

‖xk+1 − x‖2 + λk

(
2 − γ

2β
− λk

)
‖wk‖2 ≤ ‖xk − x‖2. (18)
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Since λk ≤ 2 − γ /(2β), (18) implies that (xk)k∈N is Fejér monotone with respect to Ωγ

and thus, bounded. Since resolvents are nonexpansive and T is 1
β

-Lipschitz continuous (by
Cauchy–Schwarz), it follows that (uk)k∈N, (zk)k∈N and (vk)k∈N are bounded.

(i) The Fejér monotonicity of (xk)k∈N implies that the sequence (‖xk − x‖)k∈N is
nonincreasing and convergent. Telescoping (18), we obtain

∑

k∈N
λk

(
2 − γ

2β
− λk

)
‖wk‖2 ≤ ‖x0 − x‖2,

which implies lim infk→∞ ‖wk‖ = 0, since
∑

k∈N λk

(
2 − γ

2β
− λk

)
= +∞. To prove

that wk → 0, it suffices to show that the sequence (‖wk‖)k∈N is nonincreasing. Applying
Lemma 3.2 with x := xk+1 and x̂ := xk yields

0 ≤ 〈xk+1 − xk,wk − wk+1〉 − ‖wk+1 − wk‖2 − γ 〈T (uk+1) − T (uk), vk+1 − vk〉.
The first two terms multiplied by 2 can be expressed as

2〈λkwk,wk − wk+1〉−2‖wk+1−wk‖2 = λ2
k‖wk‖2−‖wk+1−wk‖2−‖wk+1−wk+λkwk‖2,

while the third term is equal to

−γ 〈T (uk+1) − T (uk), vk+1 − vk〉
= −γ 〈T (uk+1) − T (uk), wk+1 − wk〉 − γ 〈T (uk+1) − T (uk), uk+1 − uk〉

≤ γβ‖T (uk+1)−T (uk)‖2+ γ

4β
‖wk+1−wk‖2−γβ‖T (uk+1) − T (uk)‖2

= γ

4β
‖wk+1 − wk‖2,

where we have used again Young’s inequality and the cocoercivity of T . Therefore, we
deduce

0 ≤ λ2
k‖wk‖2 − ‖wk+1 − wk + λkwk‖2 +

(
γ

2β
− 1

)
‖wk+1 − wk‖2

= λ2
k‖wk‖2 − λ2

k‖wk‖2 + 2λk〈wk+1 − wk, −wk〉 +
(

γ

2β
− 2

)
‖wk+1 − wk‖2

= λk‖wk‖2 − λk‖wk+1‖2 +
(

γ

2β
− 2 + λk

)
‖wk+1 − wk‖2,

that is,

λk‖wk+1‖2 ≤ λk‖wk‖2 −
(

2 − γ

2β
− λk

)
‖wk+1 − wk‖2 ≤ λk‖wk‖2,

so (‖wk‖)k∈N is nonincreasing, since λk > 0. Hence, we have proved that wk → 0.
Let (x̄, ū, z̄) be a weak sequential cluster point of the bounded sequence (xk, uk, zk)k∈N.

Hence, there is a subsequence of (xkn , ukn , zkn)n∈N which is weakly convergent to (x̄, ū, z̄).
Now, consider the operator S : H3 ⇒ H3 given by

S :=
⎛

⎝
(γA)−1

(γ T )−1

γB

⎞

⎠ +
⎛

⎝
0 0 − Id
0 0 − Id
Id Id 0

⎞

⎠ ,
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which is maximally monotone, because it is the sum of a maximally monotone operator and
a skew-symmetric matrix (see, e.g., [7, Example 20.35 & Corollary 25.5(i)]). From (13), it
follows that ⎛

⎝
ukn − vkn

ukn − vkn

ukn − vkn

⎞

⎠ ∈ S

⎛

⎝
xkn − ukn

zkn

vkn

⎞

⎠ .

As the graph of a maximally monotone operator is sequentially closed in the weak-strong
topology (see, e.g., [7, Proposition 20.38]), taking the limit as n → ∞ and observing that
xkn − ukn ⇀ x̄ − ū and vkn ⇀ ū (since wkn = vkn − ukn → 0), we deduce that

⎛

⎝
0
0
0

⎞

⎠ ∈
⎛

⎝

⎛

⎝
(γA)−1

(γ T )−1

γB

⎞

⎠ +
⎛

⎝
0 0 − Id
0 0 − Id
Id Id 0

⎞

⎠

⎞

⎠

⎛

⎝
x̄ − ū

z̄

ū

⎞

⎠ .

The latter inclusion is equivalent to

ū = JγA(x̄), z̄ = γ T (ū) and ū = JγB(2ū − x̄ − z̄), (19)

which implies x̄ ∈ Ωγ . Therefore, every weak sequential cluster point of (xk)k∈N is con-
tained in Ωγ , and Proposition 2.9 implies that (xk)k∈N is weakly convergent to a point
x̄ ∈ Ωγ . Then (19) shows that ū = JγA(x̄) and z̄ = γ T (ū) are the unique cluster points of
(uk)k∈N and (zk)k∈N, respectively, and hence uk ⇀ ū, vk ⇀ ū and zk ⇀ z̄.

Moreover, since x was arbitrarily chosen in Ωγ , (14) and (16) also hold with u replaced
by ū and x replaced by x̄. From the resulting inequalities, we obtain

βγ ‖T (ū) − T (uk)‖2 ≤ 〈x̄ − xk,wk〉 + 〈uk − ū, wk〉
+ 〈ū − vk,wk〉 + γ 〈T (ū) − T (uk), wk〉,

(20)

and thus T (uk) → T (ū). Now, by Lemma 3.1, we know that ū ∈ zer (A + B + T ).
Finally, pick any ũ ∈ zer (A + B + T ). By Lemma 3.1, there is x̃ ∈ Ωγ such that

ũ = JγA(x̃). Setting x = x̃ at the beginning of the proof, (20) becomes

βγ ‖T (ũ)−T (uk)‖2 ≤ 〈x̃−xk, wk〉+〈uk − ũ, wk〉+〈ũ − vk, wk〉 + γ 〈T (ũ) − T (uk), wk〉.
Since xk ⇀ x̄, uk ⇀ ū, vk ⇀ ū, wk → 0 and T (uk) → T (ū), the inequality above implies
T (ū) = T (ũ). This proves that T (zer(A + B + T )) = {T (ū)}.

(ii) Assume first that A is uniformly monotone. Since the sequence (uk)k∈N is bounded,
the set {ū} ∪ {uk, k ≥ 0} ⊂ dom A is bounded. Thus, using uniform monotonicity in
Lemma 3.2 with x := x̄ and x̂ := xk , we obtain the stronger inequality

γφ(‖ū − uk‖) ≤ 〈x̄ − xk,wk〉 − ‖wk‖2 − γ 〈T (ū) − T (uk), ū − vk〉, (21)

which entails γφ(‖ū − uk‖) → 0. Since φ is increasing, we deduce that uk → ū, which
implies vk → ū. When B is uniformly monotone, the result similarly follows.

Finally, suppose that the demiregularity assumption holds. By (i), we know that uk ⇀ ū

and T (uk) → T (ū), so the demiregularity of T at ū implies that uk → ū. Since vk−uk → 0,
we also obtain that vk → ū.

Remark 3.4 (i) The stepsize γ in [18, Theorem 2.1] is assumed to be in ]0, 2βε[, with
ε ∈ ]0, 1[, while Theorem 3.3 allows to take stepsizes in the interval ]0, 4β[, which is twice
larger. Note that our assumption is required to guarantee that 2−γ /(2β) > 0. The relaxation
parameters (λk)k∈N in [18, Theorem 2.1] must be taken in ]0, 2 − ε[, while the interval
given in Theorem 3.3 is ]0, 2 − γ /(2β)]. If γ ∈ ]0, 2βε[, we have 2 − ε < 2 − γ /(2β).
Thus, Theorem 3.3 additionally allows to take some of the relaxation parameters equal to
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2 − γ /(2β) (but not all of them, as we need
∑

k∈N λk

(
2 − γ

2β
− λk

)
= +∞, unless either

A or B is uniformly monotone). Finally, unlike [18, Theorem 2.1], we do not require the
assumption infk∈N λk > 0.

(ii) In Theorem 3.3(ii), even when
∑

k∈N λk

(
2 − γ

2β
− λk

)
< +∞, we have proved that the

sequence (uk)k∈N (respectively (vk)k∈N) is strongly convergent to ū when A (respectively
B) is uniformly monotone.
(iii) Observe that it is also possible to prove xk ⇀ x̄ ∈ Ωγ using the notion of conically
averaged operators recently introduced in [5], not only for a fixed relaxation parameter
λk = λ, as it was done in [17, Corollary 4.2]. Indeed, by [17, Theorem 4.1], the operator
DYγ in (2) is conically (2 − γ /(2β))−1-averaged, so [5, Proposition 2.9] can be applied to
deduce the convergence of the Krasnosel’skiĭ–Mann iteration (3) to a fixed point of DYγ ,
which belongs to Ωγ by Lemma 3.1.

As a corollary, we obtain the following convergence result for the forward-backward
splitting algorithm that allows doubling the range of the stepsizes assumed in [7, Theo-
rem 26.14] (which is a particular case of [12, Proposition 4.4]). Although this wider range
of the stepsizes has been shown before in [19–21], it has not yet become widely known in
the literature.

Corollary 3.5 Let B : H ⇒ H be a maximally monotone operator and T : H → H be a
β-cocoercive operator, with β > 0, such that zer (B + T ) �= ∅. Set a stepsize γ ∈ ]0, 4β[
and consider a sequence of relaxation parameters (λk)k∈N in ]0, 2 − γ /(2β)] such that
∑

k∈N λk

(
2 − γ

2β
− λk

)
= +∞. Given some initial point x0 ∈ H, consider the sequences

defined by {
yk = xk − γ T (xk)

xk+1 = xk + λk(JγB(yk) − xk).

Then, the following assertions hold:

(i) (xk)k∈N converges weakly to a point x̄ ∈ zer (B + T ) and (T (xk))k∈N converges
strongly to the unique dual solution T (x̄).

(ii) If either B is uniformly monotone on every bounded subset of its domain, or T is
demiregular at every point in zer (B + T ), then (xk)k∈N converges strongly to x̄ ∈
zer (B + T ).

Proof Apply Theorem 3.3 with A = 0. By Theorem 3.3(i), T (x) → T (x̄) and T (zer(B +
T )) = {T (x̄)}, which is the solution to the dual problem, see [7, Proposition 26.1(iv)].

We conclude this section by deriving a splitting algorithm for computing the resolvent of
A + B + T . To this aim, we use the systematic framework developed in [1], based on the
notion of strengthening of an operator.

Definition 3.6 Let θ > 0, σ ∈ R and let w ∈ H. Given A : H ⇒ H, the (θ, σ )-
strengthening with inner perturbation w of A is the operator A

(θ,σ )
w : H ⇒ H defined

by

A(θ,σ )
w := A ◦ (θ Id −w) + σ Id .
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Theorem 3.7 (Strengthened-Davis–Yin splitting) Let A,B : H ⇒ H be maximally αA-
monotone and αB -monotone operators, respectively, and let T : H → H be a β-cocoercive
and maximally αT -monotone operator, with β > 0. Let θ > 0, σA, σB ∈ R and σT ≥ 0 be
such that

σA + σB + σT > 0 and (θαA + σA, θαB + σB, θαT + σT ) ∈ R
3+ \ {03}. (22)

Let μ := (θ/β + σT )−1 and γ ∈ ]0, 4μ[. Consider a sequence of relaxation param-

eters (λk)k∈N in ]0, 2 − γ /(2μ)] verifying
∑

k∈N λk

(
2 − γ

2μ
− λk

)
= +∞. Suppose

q ∈ ran
(

Id + θ
σA+σB+σT

(A + B + T )
)
. Given any x0 ∈ H, consider the sequences

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uk = J γθ
1+γ σA

A

(
1

1 + γ σA

(xk + γ σAq)

)

vk = J γθ
1+γ σB

B

(
1

1 + γ σB

((2 − γ σT )uk − xk − θγ T (uk) + γ (σB + σT )q)

)

xk+1 = xk + λk(vk − uk).

(23)

Then (uk)k∈N and (vk)k∈N are weakly convergent to J θ
σA+σB+σT

(A+B+T )(q), and (xk)k∈N is

weakly convergent to x̄, with

J γθ
1+γ σA

A

(
1

1 + γ σA

(x̄ + γ σAq)

)
= J θ

σA+σB+σT
(A+B+T )(q).

Further, if θαA + σA > 0 (respectively θBα + σB > 0) then the convergence of (uk)k∈N
(respectively (vk)k∈N) is strong, even when

∑
k∈N λk

(
2 − γ

2μ
− λk

)
< +∞.

Proof Set x̂0 := 1
θ
(x0 − q) and consider the sequences

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ûk = J
γA

(θ,σA)

−q

(x̂k)

v̂k = J
γB

(θ,σB )
−q

(
2ûk − x̂k − γ T

(θ,σT )
−q (ûk)

)

x̂k+1 = x̂k + λk(v̂k − ûk).

(24)

By (22) and [16, Proposition 2.1], the operators A
(θ,σA)
−q , B

(θ,σB)
−q and T

(θ,σT )
−q are max-

imally monotone, and by [1, Theorem 1(iii)], T
(θ,σT )
−q is μ-cocoercive. By assumption,

q ∈ ran
(

Id + θ
σA+σB+σT

(A + B + T )
)

, and thus (22) and [1, Proposition 3] imply that

zer
(
A

(θ,σA)
−q + B

(θ,σB)
−q + T

(θ,σT )
−q

)
=

{
1

θ

(
J θ

σA+σB+σT
(A+B+T )(q) − q

)}
. (25)

By Theorem 3.3(i), ûk ⇀ û and v̂k ⇀ û, with

û ∈ zer
(
A

(θ,σA)
−q + B

(θ,σB)
−q + T

(θ,σT )
−q

)
,

and x̂k ⇀ x̂, where x̂ satisfies

û = J
γA

(θ,σA)
−q

(x̂) ∈ zer
(
A

(θ,σA)
−q + B

(θ,σB)
−q + T

(θ,σT )
−q

)
. (26)
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If θαA + σA > 0 (respectively θαB + σB > 0), then ûk → û (respectively v̂k → û) by

Theorem 3.3(ii), even if
∑

k∈N λk

(
2 − γ

2μ
− λk

)
< +∞. Thanks to [16, Proposition 2.1],

we may rewrite (24) as

⎧
⎪⎪⎨

⎪⎪⎩

θûk + q = J γθ
1+γ σA

A

(
θ

1 + γ σA

x̂k + q

)

θv̂k + q = J γθ
1+γ σB

B

(
θ

1 + γ σB

(
2ûk − x̂k − γ

(
T (θûk + q) + σT ûk

)) + q

)

Further, by (26), (25) and [16, Proposition 2.1],

J θ
σA+σB+σT

(A+B+T )(q) = θJ
γA

(θ,σA)

−q

(
x̂
) + q = J γθ

1+γ σA
A

(
θ

1 + γ σA

x̂ + q

)
.

The result follows by making the change of variables (xk, uk, vk) := (θ x̂k + q, θûk +
q, θv̂k + q) for all k ∈ N and x̄ := θx̂ + q. The final assertion is a consequence of
Remark 3.4(ii).

Remark 3.8 Another way of computing the resolvent with parameter μ > 0 of A + B + T

at q ∈ H is applying the Davis–Yin splitting algorithm to A, B and T̃ := 1
μ
(Id −q) + T ,

where T̃ is
(
β−1 + μ−1

)−1
-cocoercive, by [1, Theorem 1(iii)], and β is the cocoercivity

constant of T . Note that this is a particular instance covered by Theorem 3.7, taking σT = 1
μ

,
σA = σB = 0 and θ = 1.

4 Numerical Experiments

In this section we provide some numerical examples of the algorithms developed in the
previous section. These experiments aim not to be exhaustive and only intend to show
the importance of appropriately choosing the stepsize and the relaxation parameters of the
algorithms.

4.1 A Feasibility Problemwith Hard and Soft Constraints

Let A,B,C ⊆ R
n be three closed and convex sets with nonempty intersection of the relative

interiors of A and B. Suppose A and B are hard constraints, which need to be satisfied,
and C is a third soft constraint, which does not necessarily need to be fulfilled, but whose
violation we want to reduce as much as possible. Imagine that, at the same time, we would
like to find a point in A ∩ B as close as possible to a point q ∈ R

n. This problem can be
written as

argmin
x∈A∩B

1

2
d2(x,C) + ρ

2
‖x − q‖2, (27)

where d2(x,C) := ‖x − PC(x)‖2 and ρ > 0 is a regularization parameter specifying the
importance of remaining close to the point q. Problem (27) can be reformulated as

argmin
x∈Rn

ιA(x) + ιB(x) + 1

2
‖x − q‖2 + 1

2ρ
d2(x,C),
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whose solution is given by prox(
ιA+ιB+ 1

2ρ
d2(·,C)

)(q). The subdifferential sum rule (see,

e.g., [7, Corollary 16.50(v)]) guarantees the equality

prox(
ιA+ιB+ 1

2ρ
d2(·,C)

)(q) = J(
∂ιA+∂ιB+∇

(
1

2ρ
d2(·,C)

))(q) = J(
NA+NB+ 1

ρ
(Id −PC)

)(q),

and thus, solving (27) boils down to computing the resolvent at q of the sum of the three
maximally monotone operators A := NA, B := NB and T := 1

ρ
(Id −PC), with T being

1
ρ

-cocoercive (see, e.g., [7, Corollary 12.31]).
To illustrate on the problem (27) the behavior of the Davis–Yin algorithm and its

strengthened version derived in Theorem 3.7, we retake our simple introductory example
of two balls A and B centered at (−1.6,−0.75) and (−0.35, 0.12), with radii 0.55 and
1, respectively. We chose these values to make the problem slightly challenging. We now
add a new third ball C with center (1, −1) and radius 0.5, the point q := (−1.75, 1.5)

and take ρ := 1. Observe that any combination of σA ≥ 0, σB ≥ 0 and σT ≥ 0 such
that θ := σA + σB + σT > 0 satisfies the hypotheses of Theorem 3.7. Although find-
ing the best values is beyond the scope of this work, for comparison, we tested the result
of running the algorithm (23) with (σA, σB, σT ) = (0, 0, 1/μ) (which corresponds to
Davis–Yin splitting, see Remark 3.8) and (σA, σB, σT ) = (0, 1, 1), using as starting point
x0 := (0.7, 1.7). In accordance with Theorem 3.7, the stepsize γ must be chosen so that
γ
μ

∈ ]0, 4[, for μ = ((σA + σB + σT )ρ + σT )−1. In Fig. 4 we have represented the iter-

ates for λk = 0.99(2 − γ
2μ

) and for two values of γ
μ

, namely 1.5 (overrelaxation) and 2.5
(underrelaxation).

In order to obtain the best combination of the stepsize and relaxation parameters, we run
the algorithms for every possible value of (

γ
μ
, λ) on a grid with 4950 points in ]0, 4[×]0, 2[.

The algorithms were stopped when the norm of the difference between the shadow sequence
PA(xk) and the solution to the problem was smaller than 10−8. The solution, which is
approximately equal to (−1.227559,−0.3452923), was computed in Maple by numerically
solving the KKT conditions with high precision. A contour plot representing the number of
iterations is shown in Fig. 5. The minimum number of iterations for Davis–Yin was 17 and
it was attained at (

γ
μ
, λ) = (3.11, 0.43), and for the strengthened-Davis–Yin was 16 and

Fig. 4 Behavior of the iterates of the Davis–Yin (left) and the strengthened-Davis–Yin (right) splitting algo-
rithms for the problem (27) for two stepsize parameters γ and λk = 0.99(2 − γ /(2μ)). Since σA = 0, the
solution is obtained after projecting the fixed point onto the set A
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Fig. 5 Number of iterations needed until the shadow sequence is sufficiently close to the solution s when the
Davis–Yin (left) and the strengthened-Davis–Yin (right) splitting algorithms are applied for different values
of γ and λk = λ, with the experiment setting shown in Fig. 4

it was reached at three pair of values of γ
μ

and λ, namely γ
μ

= 2.34, λ ∈ {0.79, 0.81} and
γ
μ

= 2.39, λ = 0.79.

4.2 Image Recovery Via �1 Regularization

The restoration of blurred images using �1 regularization has become a standard applica-
tion in the literature to test the performance of forward-backward algorithms, see [6]. This
consists in solving a minimization problem of the form

argmin
x∈Rn

μ‖x‖1 + 1

2
‖Mx − b‖2

2, (28)

where M ∈ R
m×n, b ∈ R

m is the observed blurred image (the vectorization of the two-
dimensional matrix) and μ > 0 is a regularization parameter. Setting B = ∂ (μ‖ · ‖1)

and T = MT (Mx − b), this problem can be reformulated as finding a zero of the sum
B + T of two maximally monotone operators. Since T is Lipschitz continuous, we can
employ the forward-backward algorithm (i.e., Davis–Yin with A = 0), to solve (28). Note
that the proximity operator of the �1-norm is the well-known soft thresholding function
from Example 2.6. As pixel values must be in [0, 1], it is more realistic to solve instead the
problem

argmin
x∈[0,1]n μ‖x‖1 + 1

2
‖Mx − b‖2

2,

Setting A = N[0,1]n and B and T as above, this problem can be solved without much
additional effort using the Davis–Yin splitting algorithm.

For our tests we replicated the wavelet-based restoration method in [6, Section 5.1.],
including the additional constraint x ∈ [0, 1]n. We also ran our experiments without this
constraint (applying thus forward-backward) and the results were basically the same, so we
do not include them for brevity. We employed as observed images the widely-used 256×256
pixels cameraman image and a picture of a symbol from the University of Alicante: the
sculpture “Dibuixar l’espai” (by Pepe Azorı́n), with a resolution of 600 × 800 pixels. The
images, shown in Fig. 6, were subjected to a Gaussian 9 × 9 blur with standard deviation 4,
followed by an additive zero-mean Gaussian noise with standard deviation 10−3. We chose
M = RW , where R is the matrix representing the blur operator and W is the inverse of the

1026 F.J. Aragón-Artacho, D. Torregrosa-Belén



Fig. 6 Original (left), observed blurred (middle) and restored (right) images, showing the cameraman at
the top and the sculpture “Dibuixar l’espai” at the bottom. The Davis–Yin algorithm was applied for 200
iterations with γ = 1.98 and λ = 0.99, using as starting point the observed blurred image

three stage Haar wavelet transform. The regularization parameter was taken as μ = 2·10−5.
The Lipschitz constant of T is the spectral radius of MT M , which is equal to 1. Thus, T is
1-cocoercive and the stepsize in the Davis–Yin algorithm can be chosen in the interval ]0, 4[.
For values of (γ, λ) on a grid with 4950 points in ]0, 4[×]0, 2[, we performed 200 iterations
of the algorithm taking as initial image the observed blurred image. Figure 7 shows the
value of the objective function in the final iteration. We observe a symmetry with respect to
the diagonal. The lowest values of the objective function were 0.349 for the cameraman and
2.684 for the sculpture, and they were both attained at (γ, λ) = (1.98, 0.99).

Fig. 7 Objective function value after 200 iterations of the forward-backward algorithm applied to the cam-
eraman (left) and the sculpture “Dibuixar l’espai” (right), for different values of γ and λ, and taking as
starting point the observed blurred image
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5 Conclusions

We have presented an alternative proof of convergence for the Davis–Yin splitting algorithm
without requiring the Davis–Yin operator (2) to be averaged. The proof was solely based on
monotone operator theory and has the additional advantage of allowing larger stepsizes, up
to four times the cocoercivity constant of the single-valued operator, doubling thus the range
of values allowed in [18]. As a consequence, the same conclusion applies to the forward-
backward splitting algorithm. We have also derived a strengthened version of the algorithm
for computing the resolvent of the sum, based on the framework developed in [1]. The
numerical experiments included show the importance of appropriately selecting the stepsize
and relaxation parameters. In most of our tests, the behavior of the algorithm with respect
to the parameters was symmetric, as the one shown in Fig. 7. Selecting the best parameters
is not a simple task, but even so, it is clear that having more freedom in the choice of the
stepsize parameter can be advantageous.
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