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The density classification problem is explored experimentally in the case of two-dimensional grids.

We compare the performance of deterministic and stochastic CA, as well as interacting particle sys-

tems. The question of how to design a rule that would attain an arbitrary precision is examined and

we show that it seems more difficult to solve than in the one-dimensional case.

1 Introduction

The density classification problem is a simple inverse problem which consists in deciding in a distributed

way if an initial configuration contains more 0s or more 1s, that is, if the initial density of 1s is smaller

than or greater than 1/2. The difficulty of this problem – also called the majority problem – comes from

the need to reach a consensus : all the components of the system should agree on a state 0 or 1, depending

on whether the initial configuration contained more 0s or more 1s, respectively.

This problem was first formulated by Packard in 1988 [9], after he considered the problem of self-

correcting noisy cellular automata, as studied by Gács et al. [7]. Since then, the problem has attracted a

large amount of research efforts in order to search for the best solutions. After noticing that finding good

rules was a difficult task, Land and Belew issued a key result: no perfect density classifier exists [8]. This

nevertheless did not stop the quest for good rules as it was not known how well a rule could perform.

We recently showed that for one-dimensional systems, if we allow stochastic transitions, it is then

possible to solve the density classification problem with an arbitrary precision [5]. This means that for

a given ring size, a probabilistic cellular automaton can be designed such that the probability that it

misclassifies a randomly drawn configuration can be made arbitrarily small. However, our construction

does not guarantee that the same level of precision will be kept for all ring sizes. It should also be noted

that an increase of the quality of classification comes at the expense of an increase in the convergence

time. It is to date an open problem to find the stochastic rules which present the best compromise between

the classification quality and the classification time.

On the positive side, it was shown that the result is not merely a “theoretical” construction but it also

leads to the effective construction of rules that outperform the best rules known so far. However, the

question as to whether such constructions can be found for different topologies was raised. The purpose

of this note is to examine if a similar result can be obtained for two-dimensional cellular systems.

It may be thought at first sight that it is possible to generalise the solution to the two-dimensional case

by “slicing” a toroidal grid into rings. Unfortunately, this solution does not work as different “slices” may

give different “answers” while the density classification problem requires that the system reaches a global

consensus. It is thus necessary to establish some kind of “communication” between the two dimensions

of the cellular automaton in order to obtain the property of a classification with an arbitrary precision.

Our intuition was that this operation was rather easy but our experiments revealed that the situation was

more complicated than it first seemed. Note that it is well-known that deciding properties of cellular
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automata is generally more difficult in two dimensions than in one-dimensions (see e.g. [12, 3, 6]), but

the situation here is different since we want to solve an inverse problem, that is, to exhibit one particular

rule that would solve the problem (totally or partially).

This note exposes the experimental results which were obtained in a first attempt to answer this

question. In Sec. 2, we define formally the problem and then study three cellular rules in Sec. 3. We

introduce an IPS rule in Sec. 4 and show that this rule exhibits a good performance. Finally we briefly

discuss the results and give some further motivations to study this problem in two dimensions.

2 Definitions

A cellular automaton (CA) is constituted of a collection of cells placed on a discrete space L that is

usually a subset of Z
d , where d is called the dimension of the lattice. We here focus on finite two-

dimensional square lattices, that is, we take L = (Z/L.Z)2, where L is the lattice size.

A configuration represents the state of the automaton; each cell can have a binary state, the config-

uration space is E = {0,1}L . For the sake of simplicity, we consider that configurations are functions

from L to {0,1} and denote by xt(c) the state of a cell c ∈ L at time t. Each cell is linked to a set of k

cells, defined with local translations obtained with k vectors that form a set N = (n1, . . . ,nk), called the

neighbourhood.

The local rule of the cellular automaton f is a function from {0,1}k to {0,1} that defines how cells

update their state according to the states of their neighbours. When the cells are updated synchronously,

the evolution of the systems maps a configuration xt to a configuration xt+1 such that for all c ∈ L :

xt+1(c) = f (xt(c+n1), . . . ,x
t(c+nk)).

The density classification problem consists in designing a cellular system that would converge to

the uniform configurations 0 = 0L or 1 = 1L , depending on whether the density of ones in the initial

condition is lower or greater than 1/2, respectively. Formally, for a given initial configuration x ∈ E, the

probability of good classification PGC(x) is the probability that there exists a time T such that xT = 0

and d(x)< 1/2 or such that xT = 1 and d(x)> 1/2 where d(x) = |{c,x(c) = 1}|/n.

We assume that the initial configurations obey the binomial distribution, that is, they are drawn

uniformly in the configuration space. For a given classifier C and a given lattice size L, the quality Q

is the average success rate. It is calculated as: Q = ∑x∈E PGC(x)/2n. Note that the presence of fixed

points other than 0 or 1 represents a potential loss in quality: if, starting from an initial condition x, the

system enters in one such fixed point, the configuration is considered “non-classified” and PGC(x) will

decrease accordingly.

Before examining various rules, we introduce the majority function maj, which associates to a t-uple

in {0,1}2m+1 the value maj(q1, . . . ,q2m+1) = 0 if ∑
2m+1
i=1 qi < m and maj(q1, . . . ,q2m+1) = 1 otherwise.

3 Three cellular automata rules

3.1 Toom’s rule

Toom’s rule consists in applying the majority rule on the neighbourhood constituted of the cell itself and

in North and East neighbours [4]. Formally, the local rule is defined as the application of maj on the

neighbourhood N3 = {(0,0),(0,1),(1,0)}.
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t = 0 t = 5 t = 15 t = 30

Figure 1: Example of an evolution of Toom’s rule with L = 21. Blue/dark and white cells represent cells

in state 0 and 1, respectively.

t = 0 t = 10 t = 20 t = 40

Figure 2: Example of an evolution of Reynaga’s rule with L = 21.

Marcovici et al. showed that this rule is a perfect density classification on infinite lattice-size lat-

tices [2] (the system is initialised with a Bernoulli law of parameter d with d 6= 1/2). The proof relies on

arguments from percolation theory and on the “eroder” property of the model, that is, the fact that a set

of cells in one state surrounded by a set of states in another state will fatally disappear (as if it were an

island that was progressively eroded by the see).

Figure 1 shows the evolution of the rule with an initial random condition of density d ∼ 0.47. This

configuration is well-classified in 33 steps, which is rather rapid as compared to the classification times

observed for one-dimensional systems.

Unfortunately, the rule gives poor results as a classifier, even for small lattices. For instance, for

L= 9, using 105 random samples, we measured a quality of only Q= 0.536, which shows that rules offers

a very little gain over a pure random guess! In fact only 0.7% of the configurations are misclassified:

the bad quality of the classification is mainly due to the existence of non-converging configurations. For

larger lattices, the result only worsens and we fall below 1/2 for L = 21.

The reason why this rule does not obtain good results is the presence of numerous of non-classified

configurations. For instance, the configuration with contiguous horizontal lines of 1-cells is a fixed point.

The configuration where only the cells of one diagonal are in state 1 will evolve into a cycle of length L,

obtained by a South-West translation of the 1-cells.

3.2 Reynaga’s rule

The next rule we examine was introduced by Reynaga in the context of pattern processing [10]. It was

designed as a means of generalising the famous Gács-Kurdiumov-Levin (GKL) rule [7]. The rule is

initially defined on von Neumann neighbourhood N5 = {(0,0),(0,1),(1,0),(0,−1),(−1,0)}.
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Informally, it consists in dividing the neighbourhood into two parts and in applying the majority rule

on one or the other part depending on whether the central cell is in state 0 or 1 (see Fig. 2).

Using the letters C,N,E,S,W to symbolise the respective states of the central cell, of the North, East,

South and West cells of the von Neumann neighbourhood, the local function that defines Reynaga’s rule

reads:

Rey(C,N,E,S,W ) =

{

maj(C,N,E) if C = 1

maj(C,S,W ) otherwise.

A statistical sampling made out of 105 random initial conditions gives for L = 21, Q = 0.61. This

is better than the previous rule, but remains quite low compared to other known rules in one or two

dimensions. For this rule too, the proportion of non-converging configurations remains quite high, with

a rate of approximately one fourth. The number of fixed points is indeed numerous: a configuration

made of horizontal or vertical lines of 1-cells is a fixed point. It also very easy to “cheat” this automaton:

a simple “cross” of 1-cells makes the system always converge to the 1 configuration while the initial

density of the pattern approaches zero when the lattice size increases.

Surprisingly enough, the extension of this rule to the Moore neighbourhood only worsens the result.

Indeed, we found that the quality drops to Q = 0.55 and the proportion of non-converging configurations

increases to one third.

3.3 A two-dimensional traffic-majority rule

Our goal now is to generalise the one-dimensional construction proposed in order to solve the density

classification problem with an arbitrary precision [5]. This solution was constructed as a stochastic

“blend” of the traffic rule (ECA 184), which is number-conservative, and the majority rule. If we want

to obtain a similar result in two dimensions, we thus need to blend the majority rule with a number-

conservative rule that would, like the traffic rule, separate similar cells as much as possible, as it is the

case in one dimension. For instance, in the case of a grid with an even size and an equal initial number

of 0s and 1s, we would like to obtain a “checkerboard pattern” where no two 0s or 1s are adjacent.

Unfortunately, we are not aware of the existence of any such rule.

We now introduce a first attempt to generalise the traffic rule. Before we express it in the CA for-

malism, it may be easier to describe it in terms of particle movements: To take the metaphor of traffic,

the local effect of the rule consists in moving cars (state 1) with a priority to East, and, with the direction

North as a second choice. Conversely, the empty spaces (state 0) will attempt to move South if possible

and to move West otherwise.

Although the formulation of the rule locally uses only the four adjacent neighbours, its formulation in

terms of CA necessitates the use of the Moore neighbourhood: N9 = {(cx,cy), |cx −c′x| ≤ 1}. (We invite

readers to verify this statement). To define this local rule, denoted by Traffic2D, we take C,N,NE, . . .
as the letters that represent the state of the central cell, the North, North-East cells, etc. ; we then define

Traffic2D depending on the state of the central cell C. For C = 1 we have:

Traffic2D(1,N,NE, . . . ,NW ) =

{

0 if E = 0 or (N = 0 and NE = 0)

1 otherwise,

and for C = 0, the law gives a symmetric behaviour when we permute 0/1 and the two spatial directions:

Traffic2D(0,N,NE, . . . ,NW ) =

{

1 if W = 1 or (S = 1 and SW = 1)

0 otherwise.

Figure 3 shows an example of evolution of this rule from a random initial configuration. We observe

that the configuration quickly stabilises into a configuration where all 1-cells translate to the right and
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t = 0 t = 5 t = 20 t = 147

Figure 3: Example of an evolution of the Traffic2D rule with L = 21.

t = 10 t = 20 t = 30 t = 40

t = 10 t = 50 t = 100 t = 1300

Figure 4: Example of an evolution of the TraMaj2D rule with L = 21: (top) evolution to a good classif-

cation, (bottom) evolution towards a bad classification (rare event); in both cases, the initial condition is

identical to the one of Fig. 3.

where no two 1-cells are found next to another in the horizontal direction.

The TraMaj2D rule is then defined as a stochastic rule which consists in applying the majority rule

with probability ε and the Traffic2D rule with probability 1−ε . We analysed the behaviour of this rule

for 103 random samples and a maximum simulation time of 5.104. The results for L = 21 and ε = 0.1
give a quality of Q = 0.70. For ε = 0.01, the quality improves to 0.81 but the average classification time

increases dramatically. It was not possible to improve the quality further as a decrease in ε only slightly

improves the results while the average time of classification increases.

Though much better than the two previous rules, the overall results are rather disappointing when

compared to the one-dimensional case. It seems that we are facing a paradox: although one could think

that a two-dimensional model would obtain better results, the additional dimensions seems more a burden

than an aid. In our view, this strange phenomenon is due to the absence of a “good” number-conserving

rule in 2D. To design such a rule, we would need a strong connection between the two directions of

propagation. If we give a priority of one direction over the other, as in the Traffic2D rule, we can not
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Figure 5: Three configurations reached with different settings of the checkerboard rule with L = 21 :

(left) β = 0 ; (middle) β = 1 ; (right) β = 0.1. The three systems were intialized with the same initial

configuration of density ∼ 0.47.

hope a perfect spreading of the particles as in the one dimensional case. On the other hand, as we are in

a synchronous update, it is difficult to find a solution that would both conserve the number of particles

and at the same time spread these particles correctly in the lattice. There may be of course such rules but

we are currently unaware of any, and we leave the question of their existence as an open question.

4 An Interacting Particle System

In order to cope with the difficulties provided by the synchronous CA models that we studied previously,

we now turn our attention to interacting particle systems, in which cells are updated asynchronously

by pairs. This updating by pairs provides a decisive advantage over classical CA: it is easy to model

an exchange of positions of two particles, or in an equivalent way, a movement of particles (that is, an

exchange with an empty position).

We now propose to use a rule that was designed heuristically, that is, by a succession of trials and

observations. It consists in using two rules in a stochastic fashion: (a) the “checkerboard rule” drives

the system into a pattern that resembles a checkerboard, (b) the majority rule makes the system drift

towards one of the two homogeneous fixed point. Rule (b) is applied with probability ε and rule (a) with

probability 1− ε .

Let us now define this IPS rule formally. An interacting particle system (IPS) can be seen as a fully

asynchronous cellular automaton where cells are updated by pairs. Let I ⊂ L ×L be the interaction

graph of the IPS, which represents all the cell pairs that can be updated. In this work, we use interactions

with the 8-nearest cells, which we denote by: I8 = {(c,c′) ∈ L 2, |cx − c′x| = 1 or |cy − c′y| = 1}, with

the convention c = (cx,cy),c
′ = (c′x,c

′
y).

The updating of an IPS I is made through a selection function ∆ : N → I which chooses at each

time step a pair of cells to update. The local transition function φ of an IPS maps the neighbourhood

state of two cells (here c and c′) to their new respective state. For a neighbourhood N of size k, it

thus defined from Qk ×Qk to Q2. We these notations, we write: for each time t, with (c,c′) = ∆(t),

(xt+1(c),xt+1(c′)) = φ

(

xt(c+n1), . . . ,x
t(c+nk)

xt(c′+n1), . . . ,x
t(c′+nk)

)

and xt+1(c) = xt(c) if c is not selected by ∆ at time

t.

The checkerboard rule is defined as follows: for a pair of cells ca and cb selected for update, let na
I

(resp. nb
I ) be the number of cells in the von Neumann neighbourhood of ca (resp. cb ) whose state is

equal to the state of ca (resp. cb). For a real number β ∈ [0,1], the rule consists in always inverting the

states of ca and cb if na
I +nb

I > 3 and inverting these states with probability β if na
I +nb

I = 3.
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In order to set the value of β , we empirically observed the behaviour of the checkerboard rule on

an odd lattice size for different values of this parameter. For β = 0, the system quickly stabilises on

a pattern that is formed by large checkerboard regions, separated by some non-checkerboard “fracture

lines” (see Fig. 5-left). For β = 1, we observe that checkerboard regions form in some parts of the

lattice while other parts remain unstable (see Fig. 5-middle). A trade-off between the two behaviours

was obtained for β = 0.1: for this setting, one observes a relatively quick stabilisation on a pattern where

the non-checkerboard regions are rather reduced (see Fig. 5-right).

The second component of our rule is the majority rule, which is applied on the Moore neighbourhood

with probability ε in order to drive the system to a homogeneous fixed point. A good compromise

between a good quality of classification and a reasonable computation time was obtained for ε = 0.001.

For these settings, using 104 random samples, we measured quality of classification close to Q= 0.90

for a size L = 21. This result represents a small improvements over the best two-dimensional rules that

are known by the author (Alonso-Sanz and Bull report a quality of Q = 0.87 for a two-dimensional block

CA enhanced with 4 bits of memory [1]). However, the question as to how we can further improve this

performance is still open.

5 Discussion

This note presented an exploration of the density classification problem in two dimensions with deter-

ministic and stochastic cellular automata and interacting particle systems. The results are surprising as

they highlight a kind of paradox: On the one hand, for infinite grids, analytical results are obtained rather

easily, but the one-dimensional-case is very difficult to tackle [2]. On the other hand, if we take finite

grids, the situation seems reversed: in one dimension, a stochastic CA was found to classify the density

with an arbitrary precision, but obtaining a similar result in two dimensions is still an open question.

A possibility to move forward would be to search for other types of symmetry breaking, for instance

producing stripes instead of checkerboards.

Before we close this note, we would like to say a few words on the motivations to examine this prob-

lem in two dimensions. In The chemical basis of morphogenesis, Turing raised the question as to how an

organism made of identical cells may form a shape that would be obtained by an autonomous differen-

tiation of its cells [13]. The difficulty for answering this question is deeply linked to the symmetries of

the problem: if all cells obey the same laws and if the initial condition does not contain any information,

how can a structured shape appear in the cellular system? The idea of Turing is that the process that

drives the cells’ differentiation should result in what we now call a symmetry breaking: from a situation

where the system looks perfectly symmetric from a macroscopic point of view, the system should reach

a global state that has less symmetries, that is, a state that contains more information. For instance, the

first step of the morphogenesis process in living organisms consists in transforming a sphered egg where

all cells are equivalent into an ellipsoidal egg, where North and South poles are differentiated.

Our interest is to link the density classification problem with this question of symmetry breaking.

Indeed, if we adopt a statistical point of view, the problem itself can be reformulated as a symmetry

breaking process : it amounts to starting from a uniform distribution (all cells can be in state 0 or 1

with equal probability) and reaching a distribution reduced to the two homogeneous fixed points (cells

have reached a consensus state 0 or 1). We thus call for further explorations to determine whether the

regularities seen in cellular automata are an advantage or a drawback to achieve a symmetry breaking.

Our systems display a kind of a “maximal simplicity”: a discrete regular space, cells have a binary

state which is updated at discrete time steps. The method chosen for updating cells is thus crucial : in
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cellular automata, the synchronous updating may not help breaking the symmetry. Interacting particle

systems, which involve a fully asynchronous updating, may give more freedom as seen in the present

note. More generally, we would like to know whether the presence of randomness can be an aid to

perform computations... As noted by Suzudo [11], the problem of creating checkerboard patterns from

random initial conditions is already interesting per se.
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