
HAL Id: hal-00724232
https://hal.inria.fr/hal-00724232v2

Submitted on 4 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rapid and Round-free Multi-pair Asynchronous
Push-Pull Aggregation
Hyun-Gul Roh, Claudia Ignat

To cite this version:
Hyun-Gul Roh, Claudia Ignat. Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggrega-
tion. [Research Report] RR-8044, INRIA. 2012. �hal-00724232v2�

https://hal.inria.fr/hal-00724232v2
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
80

44
--

FR
+E

N
G

RESEARCH
REPORT
N° 8044
August 2012

Project-Teams SCORE

Rapid and Round-free
Multi-pair Asynchronous
Push-Pull Aggregation
Hyun-Gul Roh, Claudia-Lavinia Ignat





RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Rapid and Round-free Multi-pair
Asynchronous Push-Pull Aggregation

Hyun-Gul Roh∗, Claudia-Lavinia Ignat†

Project-Teams SCORE

Research Report n° 8044 — August 2012 — 30 pages

Abstract: As various distributed algorithms and services demand overall information on large
scale networks, the protocols that aggregate data over networks are essential, and the quality of
aggregations determines the quality of those distributed algorithms and services. Though a variety
of aggregation protocols have been proposed, gossip-based iterative aggregations have outstand-
ing advantages especially in accuracy, result distribution, topology-independence, and resilience to
network churns. However, most of iterative aggregations, especially push-pull style aggregations,
suffer from two synchronization constraints: synchronized rounds and synchronized communica-
tion. Namely, iterative protocols generally need prior configurations to synchronize rounds over
all nodes, and messages should be exchanged in a synchronous way in order to ensure accurate
estimates in push-pull or push-sum protocols. This paper proposes multi-pair asynchronous push-
pull aggregation (MAPPA), which liberates the push-pull aggregations from the synchronization
constraints, and pursues a way to accelerate the aggregation speed. MAPPA considerably reduces
aggregation times, and shows an improvement in fault-tolerance. Thanks to topology indepen-
dence, inherent from gossip mechanisms, and its rapidness, MAPPA is resilient to network churns,
and thus suitable for dynamic networks.

Key-words: aggregation, gossip protocol, asynchronous computation, peer-to-peer overlay net-
work

∗ hangulroh@gmail.com
† claudia.Ignat@loria.fr



Rapid and Round-free
Multi-pair Asynchronous
Push-Pull Aggregation

Résumé : Ce document montre comment utiliser le style RR.sty. Pour en savoir plus, consulter
le fichier RR.dvi ou RR.pdf. Définissez toujours les commandes avant utilisation.

Mots-clés : calcul formel, base de formules, protocole, différentiation automatique, génération
de code, modélisation, lien symbolique/numérique, matrice structurée, résolution de systèmes
polynomiaux



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 3

Contents
1 Introduction 4

2 Background 6
2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Two synchronization constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Related Work 8

4 Pair Mass Conservation 10

5 Multi-pair asynchronous push-pull aggregation 13

6 Asynchronous overlapped restarting technique 17

7 Evaluation 18
7.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 Discussion on message overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Conclusion 27

RR n° 8044



4 Roh & Ignat

1 Introduction

In large scale networks, such as peer-to-peer overlay networks, wireless sensor networks, and
content delivery networks, various distributed services and algorithms demand to aggregate global
statistic information. For example, cloud storage services should collect the information of disk
capacity spread over their huge clouds; the number of active nodes need to be monitored by
network management services; and load balancing algorithms will use current states of loads as
inputs. Reflecting such strong demand, for the past decade, various aggregation protocols have
been explosively proposed.

Aggregation protocols can be classified under two large groups: topology dependent and inde-
pendent ones [7]. Topology dependent protocols, e.g., TAG [13], need prior efforts to constitute
specific routing topologies such as trees, graphs, or rings. If such a hardship is endured, this
class of aggregations are efficient in message overhead, but inflexible to network churns or fragile
to single points of failures such as node crashes.

On the other hand, topology independent protocols are flexible in deployment and resilient
to network changes. There are various kinds of topology independent aggregations exhibiting
different characteristics. For example, Sample& Collide [14] and Hop-Sampling [10] rely on
probabilistic sampling technique and probabilistic polling technique, respectively. Due to their
probabilistic natures, these two aggregations are inaccurate even in fault-free environments [16].

Iterative aggregation protocols (also called averaging protocols by [7]), such as push-sum [9],
push-pull [18][5], A1/A2 [15], and Flow-Updating [6], compute the aggregation by exchanging
periodic messages. Especially, gossip-based iterative protocols are scalable and reliable, and
constrain no specific network topologies due to the characteristics of gossiping, which randomly
chooses messages recipients from neighbors. Generally, iterative protocols are of considerable
merits in accuracy, result distribution and resilience of network churns [7][16].

This paper sheds new light on the push-pull style aggregations [18][5][15] from a practical point
of view. We strive to find a way to liberate aggregations from two synchronization constraints:
one is posed to most of the iterative aggregations, and the other is specific to the push-pull
aggregations. Ultimately, we pursue a practical aggregation which is rapid and easily deployable.

The first constraint is that most of iterative protocols require all the nodes over large networks
to synchronize their rounds, meaning that all nodes should coordinate the starting point of every
round. A round is a unit of the iteration, in which estimates are exchanged and updated.
Round-based protocols are conceptually simple, but synchronizing rounds in real-world networks
cannot be achieved immediately and incurs non-negligible overhead. According to [1], it takes
dozens of seconds to reduce the time difference between the first and the last starting points of
each round within 100 ms. In other words, round-based protocols need to lay the ground for
their bootstrapping, and the length of a round should be long enough to cope with such a time
difference.

The second constraint is related to the synchronization of message passing. In push-pull ag-
gregations, if messages are exchanged asynchronously, interferences among asynchronous updates
cause damage to system mass, which is the sum of estimates located at all nodes. The system
mass conservation is a key property for the correct aggregations in the iterative protocols [9],
and many efforts [15][19][20][21] have been made in order to satisfy this property in the presence
of the asynchrony. However, they still disallow certain kinds of asynchronous updates because
interferences among such updates could result in damage to the system mass.

This paper proposes an adapted push-pull protocol named multi-pair asynchronous push-pull
aggregation (MAPPA), which is free from these two synchronization constraints. We address a
simple property, pair mass conservation that enables MAPPA to isolate asynchronous updates
for avoiding interferences among them. By virtue of this permission for asynchrony, we also

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 5

liberate MAPPA from synchronized rounds. Consequently, MAPPA needs no prior setup for
synchronized rounds, and is easy to be deployed in any large scale networks.

Furthermore, we take another step for rapid aggregations. By adopting multiple concurrent
pushes rather than a single one, i.e., multi-pair asynchrony, we can accelerate convergences of
estimates significantly, compared to other iterative protocols. Concomitantly but considerably,
fault-tolerance is also enhanced in MAPPA. In our evaluations, we will show the behaviors of
MAPPA under various conditions, and present comparisons with some other approaches. The
results show that MAPPA takes a fraction of the convergence times needed in other approaches.
Bringing out the best of the rapid convergence, we present an asynchronous overlapped restarting
technique that enables all nodes to maintain convergent estimates, and prove that MAPPA is
advantageous to dynamic networks.

This paper is organized as follows. Section 2 defines our system model and two synchroniza-
tion constraints. Section 3 gives a survey of related work regarding iterative aggregations. We
address the pair mass conservation in Section 4, and then Sections 5 and 6 propose MAPPA
and the asynchronous overlapped restarting technique. In Section 7, MAPPA is evaluated with
various experiments, and we conclude the paper in Section 8.

RR n° 8044



6 Roh & Ignat

=0.325 =0.325 =0.35

System mass:

Node 1 Node 2 Node 3

(a) Synchronous protocol

=0.275 =0.3375 =0.25

Node 1 Node 2 Node 3

System mass: )

(b) Asynchronous protocol

e1

e2

e3

Figure 1: An example of synchronous and asynchronous aggregations. The estimates of nodes
1, 2, and 3 are x, y, and z. In (b) asynchronous protocol, system mass is not conserved.

2 Background

2.1 System model

This section presents a model of our gossip-based asynchronous aggregation protocol that will be
used throughout the paper. Let N = {1, 2, · · · , n} be a set of n nodes composing a network, and
Gi ⊂ N be a set of neighbors to which node i gossips messages. Each node i ∈ N has a value vi
that should be aggregated across the entire system, and maintains an estimate v̂i(t). This paper
defines an estimate v̂i(t) as a function of time t because it is non-periodically updated whenever
node i asynchronously receives pushes and pulls.

This paper focuses on the average aggregation because it is a basis of various aggregations such
as sum, count, product, or variance [5]. For a set of the values of all the nodes v={v1, v2, · · · , vn},
the goal of the average aggregation is for each node i to obtain an estimate v̂i that is equal to the
average v̄ = 1

n

∑
∀k∈N vk. Therefore, every estimate should converge to the average as follows:

v̂i ≈
1

n

∑
∀k∈N

v̂k for ∀i ∈ N (1)

According to this formula, the aggregation is determined by the sum of estimates
∑
∀k∈N v̂k,

called the system mass. Kempe et al. [9] addressed the system mass conservation as a property
for the correct aggregation. In Section 4, we propose a more elaborative definition of the system
mass conservation with a solution to preserving the property in the presence of asynchrony.

This paper focuses on the push-pull style aggregation in which updates carry out pairwise.
Namely, each node i pushes its local estimate to a random neighbor in Gi, and then a certain
value is pulled from the neighbor. We denote a push and a pull message by push[ps] and pull[pl],
where ps and pl represent the delivered values of the push and pull, respectively.

2.2 Two synchronization constraints

In this section, we identify two synchronization constraints of the push-pull aggregation.

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 7

The first constraint is related to the communication of pushes and pulls. Following the push-
pull protocol of Jelasity et al. [18][5] that takes arithmetic means fairly on both sides, Fig. 1
shows an example of synchronous and asynchronous communications. Specifically, the push-pull
aggregations can be distinguished into synchronous and asynchronous ones as follows:

• Synchronous protocol: Any push synchronizes with its corresponding pull message. In
other words, as shown in Fig. 1-(a), after a node sends push[y0], the node should wait for
pull[x0] that responds to push[y0] without doing anything.

• Asynchronous protocol: While a node is waiting for a pull responding to a sent push,
it can deal with some events of pairwise updates. Between an update of push-pull, three
types of events can happen as illustrated in Fig. 1-(b):

e1) receiving a push from any node and responding to it with a pull,

e2) sending a new push to any node,

e3) receiving a pull of any previous sent push.

Note that e2 and e3 are reciprocal each other. For example, between the update of
push[y0]− e3(pull[x0]), push[y1] corresponds to e2 while pull[x0] is e3 between the update
of e2(push[y1])− pull[x1].

If the push-pull aggregation of Jelasity et al. [5] is operated with the asynchronous commu-
nication, the system mass is damaged due to the interferences among pairwise updates. For
example, at node 2 of Fig. 1-(b), e1 and e3 make the values of y that are used in the updates of
the both-side of pull[x0] and pull[x1] be different, thereby interfering with each other. As such in-
terferences cause errors in calculating arithmetic means on both-sides of a pull, the asynchronous
aggregation cannot conserve the system mass as in Fig. 1-(b). In Section 4, we introduce a
simple and practical property to liberate this synchronization constraint.

Another synchronization constraint is related to the round (also known as cycle), which is
a time unit most of iterative aggregations [9][5][19][21][20][6] are adopting. Rounds have to be
synchronized so as to proceed in a lock-step mode; in other words, the same round r should have
physically identical starting and ending times at all nodes. As stated in Introduction, however,
the round synchronization in real-world networks cannot be achieved immediately, and cannot
avoid errors [1]. The round-based push-pull aggregations are encouraged to complete a pairwise
update in a round, and thus a push and a pull generated at round r should arrive to another node
in the same round r. This constraint is hard to meet because of arbitrary propagation delays.
The event types e2 and e3 defined above can be associated with the synchronized round:

e2) sending multiple pushes to multiple neighbors in a round,

e3) receiving an out-of-round push or pull.

In Section 3, we will examine how to deal with these events in existing iterative protocols.
In our proposed protocol, each node cyclically sends one or more pushes in parallel regardless

of the completions of the previous pairwise updates. Besides, a push and a pull generated at a
node are accepted by another node regardless of the receiver’s state, meaning pairwise updates of
each node proceeds independently without synchronization. To distinguish such characteristics
with those of the round, this paper uses the term cycle.

RR n° 8044



8 Roh & Ignat

3 Related Work

The aggregation protocols can be classified according to two perspectives: the network topologies
and computation methods on which the algorithms reply [16][7]. Different classes of aggregation
protocols impose different restrictions and trade-offs when other distributed applications adopt
them. Since our proposed protocol is a gossip-based push-pull aggregation that is irrespective
of specific network topologies and based on iterative computations, this section focuses on the
similar category of the aggregation algorithms.

According to the comparative works of [16] and [7], push-sum [9], push-pull [18][5][15], and
Flow-Updating [6] protocols belong to the category of iterative aggregations. They have ad-
vantages in accuracy, topology-independence, result distribution, and fault-tolerance, over other
approaches, such as TAG [13], Sample&Collide [14] and Hop-Sampling [10]. However, as iterative
aggregations need periodic message passing among nodes, the synchronization issues addressed
in Section 2.2 are important. We, therefore, look into the existing iterative aggregations in terms
of the synchronization issues.

Kempe et al. [9] proposed a push-sum aggregation protocol, where nodes send only pushes.
However, this protocol requires an acknowledgment for every push in order to cope with faults
such as message loss. Using the values delivered with many pushes, nodes update local estimates
at the end of every round. Although pushes can transfer with arbitrary delays, synchronized
rounds are encouraged so that any push should arrive to another node in the same round as at
the sending node [20].

As stated in Section 2.2, Jelasity et al. [18][5] presented the synchronous push-pull aggregation
protocol. Rao et al. [20] applied asynchrony to the protocol of Jelasity et al. and the push-sum
protocol. They permit loosely synchronized rounds that allow different nodes not exactly same
time to begin any round r. Nevertheless, to some extent, the rounds should be synchronized
so that messages generated at round r should be delivered to other nodes at the same round
r; otherwise, out-of-round messages are ignored. Therefore, the two adapted protocols let the
round length be long enough, and permit only the event type e1, but not e2 and e3 (see Section
2.2). As a result, interferences among updates are suppressed, but cannot be eliminated all,
thereby admitting errors in estimates. In their comparison between the push-pull and push-sum
protocols, the former is faster than the latter, but accuracy is impaired more seriously in the
former.

Rao et al. presented two additional push-pull protocols [19] and [21] for asynchrony. Though
the authors claim that rounds are asynchronous, these protocols also require the loosely synchro-
nized rounds likewise as in their previous protocol [20]. Instead, if a node receives any push and
pull of a different round, it computes some recovery shares in order to resolve the interferences
caused by asynchrony. The protocols are classified into optimistic [19] and pessimistic [21] ones
according to when nodes update estimates. In the optimistic one [19], nodes update estimates
just after receiving pushes or pulls, but the pessimistic one [21] updates the estimates at the
completion of every round. The optimistic protocol can handle a number of e1 events pushed
in the same round, while the pessimistic one permits only a single e1 in a round and abandons
subsequent ones. Both of the protocols permit e3, but not e2, which means that a node can
send only one push in a round.

Rao et al. encouraged the length of the loosely synchronized rounds to be as long as the
maximum round trip time (RTT)1. For secure aggregation, the long round lengths were chosen
in the papers [20][19][21], i.e., about from 0.8 to 1.7 sec, and thus there is a limitation to accelerate
convergence speeds.

1(RTT) According to the recent study [11], 0.2, 0.5, and 1 sec are taken for about 50%, 90%, and 95% of
messages to complete a round trip, respectively. The maximum RTT is far longer than 1 sec.

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 9

Mehyar et al. proposed A1 and A2 algorithms in the distributed averaging domain, which is
in principle equivalent to the distributed aggregation [15]; A1 is a push-pull type while A2 is a
push-only one.

In A1 protocol, a node that is in the middle of a pairwise update blocks every e1 event
and sends back a negative acknowledgment. As no overlapping updates are allowed, all the
events e1, e2, and e3 could not happen in A1 protocol. Unlike the protocol of Jelasity et
al. [5] doing the homogeneous updates, a pair of nodes in A1 protocol updates their estimates
heterogeneously; after one of the pair updates its estimate by using both of the estimates, the
other node compensates the counterpart update. In fact, this pairwise update is similar to our
proposed protocol’s. However, they missed the significant aspect of such heterogeneous updates,
which will be explained in Section 4, and thereby A1 pursues the synchronous communication
by the blocking mechanism, though it needs no synchronized rounds.

A2 protocol indirectly computes estimates by using additional symmetric values between
neighbors. Authors claim that maintaining a symmetric value for every neighbor enables to
conserve the system mass in case of node crashes, but symmetric links need to be predefined
among nodes. Hence, it is difficult to take advantage of the gossip mechanisms that make
protocols topology-independent, scalable, and reliable. In A2, each node not only periodically
broadcasts STATE messages containing its estimate to all its neighbors, but also send a REPLY
message in order to update symmetric values. Though it is unclear how to treat e2 and e3 events
in the paper, a node can send a REPLY again to the same neighbor after having received the TCP
ACK of the previous REPLY. A2 is asynchronous because it requires no blocking constraints and
no synchronized rounds like our proposed protocol. In Section 7.2, we compare our protocol with
A2, and give a further analysis with Experiment 2.

Recently, Jesus et al. [6] introduced Flow-Updating to enhance fault-tolerance. Flow Updat-
ing is progressive as it is resilient to message loss. Similarly to A2, Flow Updating uses symmetric
values called flows. If a crashed node is detected by failure detectors in all its neighbors, the
protocol has a way to recover from the damage of the system mass. However, implementing such
a practical and instantaneous failure detector is not a simple issue [12]; we will discuss this issue
in Sections 6 and 7.

Flow-Updating requires synchronized rounds, in which flows and estimates should be sym-
metrically pushed to every pair of neighbors (push-only). Though the length of rounds in Flow-
Updating can be taken as a half of RTT, round synchronization also imposes some restrictions
on the deployment in real-world overlay networks. In addition, Flow-Updating must maintain
symmetric links among neighbors, via which node i has to send its flow and estimate to node
j if node j sends its ones in the same round. Therefore, before starting Flow-Updating, nodes
in overlay networks should set up the symmetric links. This means that Flow-Updating needs a
preliminary configuration and has a difficulty in being used in dynamic topology networks. In
Section 7.2, Experiment 6 will illustrate such difficulty.

In Table 1, we summarize the constraints of the existing iterative aggregation protocols.
Notice that there is no iterative protocol that is not only fully topology-independent, i.e., gossip-
based, but also round-free and completely asynchronous. In Sections 4 and 5, we propose a
gossip-based round-free push-pull aggregation protocol supporting asynchronous communication.

RR n° 8044



10 Roh & Ignat

Type Protocols Topology Allowed Roundsdependency events

pu
sh

-o
nl
y

push-sum [9] gossip none sync.
Rao’s push-sum[20] gossip e1 loosely sync.

A2 [15] symmetric async. round-free
FU [6] symmetric e1, e2 sync.

pu
sh

-p
ul

l

Jelasity [5] gossip none sync.
Rao’s push-pull[20] gossip e1 loosely sync.

Rao ’10 [19] gossip e1, e3 loosely sync.
Rao ’11 [21] gossip e1, e3 loosely sync.

A1 [15] gossip none round-free

Table 1: Constraints of iterative aggregation protocols

4 Pair Mass Conservation
Let us consider an asynchronous update precisely; in Fig. 2, between two nodes i and j, there are
three timings t1, t2 and t3; (t1) when node i sends a push with a parameter ps; (t2) when node j
pre-updates v̂j and sends back a pull with a parameter pl; and (t3) when node i post-updates v̂i.
Regarding the estimates at these timings, we can present a simple property of a pairwise update.

Definition 1. [Pair mass conservation] For v̂i(t) and v̂j(t) that are the estimates of nodes i and
j, the pair mass conservation holds on the pairwise update iff:

lim
t→t−3

v̂i(t) + lim
t→t−2

v̂j(t) = v̂i(t3) + v̂j(t2). (2)

In the above one-sided limits of estimate functions, t−3 and t−2 represent the times immediately
before the updates. Hence, this definition means that a pairwise update, i.e., the pre-update and
post-update occurring on the both sides of a pull, should conserve the mass of their estimates.
In our proposed protocol, the pair mass conservation is ensured by delivering a pull with the
following parameter pl:

pl ← v̂j(t2)− lim
t→t−2

v̂j(t)

After that, node i subtracts pl from v̂i. Thus, regardless of the pre-update, the post-update can
be defined as follows:

v̂i(t3) = lim
t→t−3

v̂i(t)− pl = lim
t→t−3

v̂i(t) + lim
t→t−2

v̂j(t)− v̂j(t2)

Note that v̂j is updated at t2 but until t3 v̂i is not, which results in the change of the amount
of the system mass between t2 and t3. In the asynchronous communication, such a change of
the system mass is inevitable, and the system mass would not be conserved transiently. For
instance, in Fig. 1-(b), at t1 before interferences happen, the system mass is not preserved as
x1 + y1 + z1 = 0.3 + 0.25 + 0.25 = 0.8. We consider that the rest of the mass 0.2 is migrating.
This paper, therefore, introduces von(t) as a global online value being in transit, which is also
included in the system mass as follows:

Definition 2. [System mass] System mass is defined as

M(t) =
∑
∀k∈N

v̂k(t) + von(t). (3)

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 11

Node i Node j

push[ ]

pull[ ]

Figure 2: Asynchronous pairwise push-pull update.

After a pre-update, the parameter of a pull, pl is added to von, and conversely pl is subtracted
from von after a post-update. Then, we can present a definition of the system mass conservation
for asynchronous protocols.

Definition 3. [System mass conservation] For any times t1 and t2 (t1 6= t2), the system mass
conservation is ensured iff: M(t1) = M(t2).

The system mass conservation can be guaranteed if every pairwise update satisfies the pair
mass conservation. Intuitively, this also can be understood by the idea that pulls induce system
mass to migrate among nodes via von. Remind that pull[x0] in Fig. 1-(b) conveys estimate x0
that will be used in computing the arithmetic mean, but the post-update of e3 cannot exactly
calculate the mass change in its corresponding pre-update due to asynchrony. Contrarily, in
our approach pulls deliver mass changes caused by pre-updates, instead of estimates, and post-
updates can exactly compensate the change. In other words, each of our pull and post-update
based on the pair mass conservation involves only two nodes in a mass migration. Even if
multiple updates are asynchronously mingled, each migration is isolated and never interferes
with the others. We can prove the following theorem by tracing migrations of the mass.

Theorem 1. If the pair mass conservation holds for every asynchronous update, the system
mass conservation is guaranteed.

Proof. For any two times t1 and t2 (t1 < t2), assume M(t1) =
∑
∀k∈N

v̂k(t1)+von(t1) and M(t2) =∑
∀k∈N

v̂k(t2) + von(t2). Given any pull[pl] between node i and j, let ts be the time when node i

invokes the pull[pl], and te be the time when node j receives the pull[pl]. Then, the following four
cases can affect M(t1) and M(t2):

• ts < t1 ≤ te ≤ t2: pl moves from von to v̂j at te.

• ts < t1 < t2 < te: No mass moves.

• t1 ≤ ts < te ≤ t2: pl moves from v̂i to von at ts, and after then moves from von to v̂j at te.

• t1 ≤ ts < t2 < te: pl moves from v̂i to von at ts.

RR n° 8044



12 Roh & Ignat

In any case, this pull does not change the system mass. Hence the system mass conservation is
guaranteed.

In fact, the updates of A1 protocol also satisfied the pair mass conservation, but Mehyar et
al. [15] apparently never recognized the property in terms of the asynchronous communication;
hence, they provided even a blocking mechanism in order to prevent A1 from actual asynchronous
communication (see Section 3). None of previous works [20][19][7][21] recognized the property
of A1. In this regard, it is worthy emphasizing the significance of recognizing the pair mass
conservation, which is a basis of our proposed protocol making the best use of the asynchrony in
the next Section.

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 13

5 Multi-pair asynchronous push-pull aggregation

The goal of the average aggregations can be written as

v̂i(t) ≈
M(t)

n
for ∀i ∈ N and t > 0

In other words, the estimates of all the nodes should reach the convergence on the average. In
our protocol, pulls convey the changes of estimates, and von(t) indicates the mass of ongoing
pulls; hence, von(t) should approach to zero in the stage of the convergence. To this end, the
pre-update needs to be designed so that von converge to zero. Obviously, taking an arithmetic
mean of a pair of the estimates in the pre-updates can make von converge to zero if estimates
are getting equal.

Algorithm 1 Multi-pair asynchronous push-pull aggregation protocol
1 Let i and v̂i be the index and the estimate of this node;
2 Let Gi be the set of neighbors;
3 Let m be the value of multi-pair asynchrony (m < |Gi|);
4
5 PeriodicPushing( ){
6 agg.v̂ ← v̂i;
7 agg.mode ← PUSH;
8 Let M be a set of m nodes randomly selected from Gi;
9 foreach(node j ∈M) SEND agg to node j;

10 }
11
12 EventReceiving(agg from node j){
13 if(agg.mode = PUSH){ // pre-update
14 diff ← (agg.v̂ − v̂i)/2m;
15 v̂i ← v̂i + diff;
16 agg.v̂ ← diff;
17 agg.mode ← PULL;
18 SEND agg to node j;
19 } else if(agg.mode = PULL){ // post-update
20 v̂i ← v̂i - agg.v̂;
21 }
22 }

To boost the benefits of the asynchrony, we propose multi-pair asynchronous push-pull ag-
gregation (MAPPA), which allows every node to send multiple pushes concurrently to different
neighbors. MAPPA introduces m as the value of the multi-pair asynchrony. In Algorithm 1,
PeriodicPushing method, which is called by each node every cycle, sends m pushes concurrently.
Each pre-update takes an arithmetic mean of a pair of only 1/m of estimates, and adds it to the
rest (m-1)/m of the estimate. Thus, the pre-update that node j receives ps = v̂i(t1) at t2 in Fig.

RR n° 8044



14 Roh & Ignat

Node a
Node b

Node c
Node dNode e

Node f

Node g

Figure 3: Asynchronous communication of MAPPA for m = 2. Only the pushes and pulls
associated with node a are given.

2 is computed as follow.

v̂j(t2) =
(m− 1)

m
lim
t→t−2

v̂j(t) +
1

2

(
limt→t−2

v̂j(t)

m
+
v̂i(t1)

m

)

= lim
t→t−2

v̂j(t) +
1

2m

(
v̂i(t1)− lim

t→t−2

v̂j(t)

)
(4)

In formula (4), the right term corresponds to the change in the updated estimate, which becomes
the parameter of the responding pull. In Algorithm 1, the pre-update is presented in lines 14–18
inside EventReceiving method that is invoked upon arrival of messages. Since the post-update of
line 20 satisfies the pair mass conservation, the system mass is conserved in MAPPA despite the
multi-pair asynchrony.

In Fig. 3, the asynchronous communication of MAPPA is illustrated for m=2, where we
present the pushes and pulls related to only node a for simplicity’s sake. At t1, node a sends two
pushes at once to neighbors c and g (e2), and asynchronously receives their responding pulls.
Node a receives two pushes from nodes b and e, and responds to them with pulls (e1). At t2
when a cycle passes, node a can send m=2 pushes again regardless of cycles of the other nodes
(round-free), even if some pulls replying to the previously sent pushes, e.g., the pull from node
c, have not yet arrived (e3). In result, MAPPA is round-free and permits all the asynchronous
event types.

Although each node chooses different m, estimates can converge to the correct value. Never-
theless, if a node pushes its estimates in parallel to m neighbors by PeriodicPushing method, it
is natural that each of the m neighbors uses the same m in EventReceiving method because it is
considered that m parallel arithmetic means are taken by dividing the estimate into m pieces. If
each node uses different m, it should send every push with its m. Therefore, we fix the values of
m at all the nodes for convenience sake and for simplicity in the analysis.

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 15

In principle, the average aggregation comes close to the average by distributing extremely
segmentalized shares (pieces) of the initial values v={v1, v2, · · · , vn} to all the nodes. MAPPA
accelerates the convergence by encouraging an estimate to be more extensively distributed to
other nodes and to be mixed with numerous shares. In Fig. 3, at the second cycle t2, the
estimate of node a would be reconstituted with the shares of the values of nodes b, e, and g, but
not yet c.

Just for analysis purpose, let us assume that cycles are synchronized and every pairwise
update is completed at the end of each cycle. Initially, an estimate of each node has a single full
share of its own initial value. By m pairwise updates in a cycle, an estimate is mixed with the
shares of m estimates belonging to the neighbor set G. On the other hand, as every node sends
m pushes, a node asymptotically receives m pushes from other nodes on the assumption that
each node has uniformly random neighbors. As a result, at the end of a cycle, the estimate of a
node includes the shares of 2m+1 estimates of the previous cycle. Let Sm(c) be the function that
returns the number of shares of initial values which an estimate includes at cycle c, permitting
duplicates of initial values. Based on these inferences, at each cycle, Sm(c) can be derived as a
geometric sequence:

Sm(0) = 1

Sm(1) = (2m+ 1)Sm(0) = (2m+ 1)

Sm(2) = (2m+ 1)Sm(1) = (2m+ 1)2

· · ·
Sm(c) = (2m+ 1)Sm(c− 1) = (2m+ 1)c (5)

According to this formula, the number of shares grows exponentially with growth rate m. Thus,
a larger value of the multi-pair asynchrony m leads to a more rapid convergence. For example,
regarding m=1, 4, and 13, S1(c) = 3c, S4(c) = 9c = 32c, and S13(c) = 27c = 33c which means
MAPPAs with m=4 and 13 could take half cycles and one-third cycles of m=1, respectively, to
include the same number of shares.

Indeed, shares are more rapidly mixed than the indication of the formula because updates
are asynchronously (immediately) reflected on estimates. In Fig. 3, when node a receives a push
from node b, the estimate of node a has already included the shares of nodes e and g; hence, the
pre-update of the push is delivered with those shares. Though such nondeterministic cases are
difficult to be modeled by a formula, Experiment 4 in Section 7.2 shows that MAPPA with m=4
takes far less cycles than the expectation of formula (5).

The initial values in v = {v1, v2, · · · , vn} can be selected as shares, allowing duplicates.
The probability for a certain value in v to be chosen depends on the characteristics of network
topologies. If the underlying topology is a purely random graph, built according to the Erdős-
Rényi (ER) model [2], any initial values could be selected with a similar probability; thus,
estimates can rapidly converge. Meanwhile, if the topology is a locally clustered graph such as
Watts-Strogatz graph with β = 0 [22], geographically dispersed initial values are difficult to be
mixed into an estimate, which ends in a slow convergence (see Experiment 5).

Meanwhile, under the asynchrony, some pathological problems impeding convergences are
also observable as shown in Fig. 4. First, look at the two pairwise updates between nodes
1 and 2 (see the chunky arrows). If two pairwise updates cross, both of the effects are offset
each other; in the post-updates, nodes 1 and 2 recovers as much values as the ones changed
by the corresponding pre-updates. Besides, if the initial deviation of estimates is large and if
the cycle of sending pushes is much shorter than the period of a pairwise update, a respectable
amount of the system mass might hover in transit. If M(0)=1 in Fig. 4, von(t1)= 31

32 at t1 due to
the ongoing pulls. As subsequent updates cannot reflect the whole system mass, estimates may

RR n° 8044



16 Roh & Ignat

Figure 4: Pathological problems of asynchronous pairwise updates. Assume that except node 2,
all the other nodes have initial value 0.

oscillate without convergence (see Experiment 3). To make things worse, if some of those pulls
accompanying a large portion of system mass are lost, the system mass is seriously damaged,
which means the aggregation is fault-intolerant.

Consequently, various factors, such as multi-pair asynchrony values m, cycle lengths, and
network topologies, should be considered for the convergence. Since analytic analysis has a
limitation on the consideration of all of those factors, we will present various evaluation results
in Section 7.

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 17

6 Asynchronous overlapped restarting technique
Aggregations can be used for continuous monitoring that unceasingly provides effective estimates.
In dynamic systems, however, network churns incurred by crashes and inflows of nodes lead to
changes in the system mass. The mass added by a newly joined node is spontaneously reflected
to the aggregation. Though the sign-off technique can deal with voluntary departures of nodes
[21], a sudden crash of a node results in damage of the system mass, which cannot be recovered
in the push-pull aggregation by itself. To recover from the damaged mass of dynamic networks,
Jelasity et al. proposed the restarting technique [5].

Although A2 protocol [15] and Flow Updating [7] can correct damage of crashes by main-
taining symmetric values (see Section 3), such a correction is only possible when every node
can detect failures of its neighbors. However, it also takes a certain amount of time to detect
failures securely, as stated in the paper [12], after then additional time is needed for estimates
to re-converge to the corrected one. If the convergence time from restarting is shorter than the
sum of the failure detection and re-convergence times, the restarting technique might be effective
rather than A2 and Flow Updating.

In the restarting technique of Jelasity et al., all nodes have to synchronize their restarts based
on epoch, which is a fixed number of rounds. As no synchronized rounds are used, MAPPA
restarts aggregations asynchronously based on hops. An instance of an aggregation records hops
which increase whenever sending a push. If the hop of a local instance is different from the
one of any received push or pull, the larger one becomes the hops of the local instance and the
responding pull.

Instead of restarting a new instance in series, we let two instances of aggregations to overlap
their lifetimes so that a new instance should warm up for a certain period. Note that all of the
iterative aggregations go through a disequilibrium in which nodes have unstable and untrustwor-
thy estimates. To avoid such a disequilibrium, we let each node to prepare two instances in an
aggregation called adult and child, and only the value of adult is used as an estimate. Initially,
both of adult and child begin the same pairwise updates. If a child reaches to a predefined number
of hops, the child is promoted to adult, and a new instance is generated so that a child should
restart with its initial value.

An aggregation containing an adult and a child has a generation number. If a node promotes
its child, it augments the generation number of its aggregation. If a node receives a push or a
pull with an aggregation of a higher generation number, it tunes its aggregation to the received
one by promoting its current child and restarting a new child. In the opposite case that a node
receives a push of a lower generation number, the node likewise tunes the aggregation of the
responding pull to its own aggregation. If a node receives a pull of a lower generation number,
its aggregation is updated by considering the generation number of the pull.

In this way, MAPPA can asynchronously restart new instances in the overlapping manner.
This can ensure all the nodes monitor convergent estimates most of the times. In Experiment
7, we will show the effects of this asynchronous overlapped restarting technique and compare it
with the behaviors of Flow-Updating protocol.

RR n° 8044



18 Roh & Ignat

7 Evaluation

7.1 Experimental setup
We implemented MAPPA with the event-driven simulator, Peersim [17]. Every node sends pushes
on the same length of cycle, but the cycles of nodes are not synchronized. We let the propagation
latency of any push or pull to be distributed uniformly between 50 and 350 ms. Considering that
about 90% of messages complete a round trip within 500 ms [11], this unidirectional latency is
reasonable and long enough.

In our evaluation, the count aggregation, which estimates the network size n, is carried out
because it is the most representative and extreme case of the average aggregation [5]. It begins
over the network which has only one node with value 1 and the other n− 1 nodes with value 0.
As the aggregation proceeds, each estimate approaches to the average 1/n; thus, we can obtain
the network size by taking the reciprocal.

We have MAPPA run generally on Erdős-Rényi (ER) random graphs [2] as underlying net-
works, but also evaluate Watts-Strogatz (WS) model networks [22] in Experiment 5. Most of
our experiments are performed with n=1000 nodes, and every node has twenty gossip neighbors,
i.e., |G|=20. Following the gossip principle, each node sends pushes to only m neighbors in G.
The size of G rarely affects the performance of MAPPA, which can be identified in Experiment
2. Instead, a large number of neighbors reinforces reliability against node crashes. According to
the paper [8], the network where each node has log n neighbors can avoid a partitioning, even
if half nodes suddenly die. To emulate dynamic topologies in Experiment 5 and to eliminate
crashed neighbors in Experiment 7, we use Simple Newscast [4].

We have conducted each experiment 30 times with different random seeds, and took averages
of the estimates of the 30 runs for each individual node. This section presents two sorts of time-
series graphs: estimates distribution graph and coefficient of variation of the root-mean-square
deviation, abbreviated to CV(RMSD), graph. The former illustrates how estimates diverge and
converge along time by marking spots of the reciprocals of estimates of all nodes. Meanwhile,
CV(RMSD) is a normalized RMSD to a correct mean, i.e., RMSD/v̄. Unlike the standard
deviation relying on the mean of given populations, RMSD is a deviation from a given mean v̄,
and is computed by the following formula.

RMSD(t) =

√∑n
i=1(v̂i(t)− v̄)2

n
(6)

CV(RMSD) is a good measure to compare convergence speeds; the faster the values of CV(RMSD)
approach to zero, the more rapid its convergence speed is.

This section presents seven experiments with the following six parameters on the count ag-
gregations.

• n: the number of nodes in the network.

• c: the cycle length.

• m: the multi-pair asynchrony value.

• e: the ratio of message loss in delivery.

• tc: the length of the cycle at which the network topology changes by Simple Newscast
protocol. If tc =∞, network topology is static.

• h: the number of hops to restart a child instance (see Section 6).

The parameters fixed in each experiment are specified in the caption of the graph of each result.

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 19

7.2 Experiment results

Experiment 1: Pair vs. Fair asynchronous push-pull aggregations [Fig. 5]

Figure 5: [Exp. 1: n=1000, c=400ms, e=0.0, tc=∞, h=∞] Estimates distribution graphs (left
y-axis) and CV(RMSD) graphs (right y-axis) of MAPPA and single fair asynchronous push-pull
aggregation (SFAPPA).

Let us call the asynchronous push-pull aggregation following Jelasity et al. as “single fair
asynchronous push-pull aggregation (SFAPPA)" because each node sends a single push and both
of nodes fairly update their estimates by arithmetic means. As interferences among asynchronous
updates hinder SFAPPA from satisfying the system mass conservation, all the estimates converge
to incorrect values, as shown in estimates distribution graphs of Fig. 5. As a result, high values
of CV(RMSD) is lasting in the convergence state because (v̂i(t) − v̄)2 in formula (6) does not
approach to zero.

In meantime, our proposed protocol MAPPA always converges to the correct network size
thanks to the pair mass conservation. Notice that in the convergence state, due to the post-
update wherein differences are subtracted, estimates can be negative; hence, as estimates oscillate
between wider range, MAPPA withm=1 somewhat slowly converges than SFAPPA. Surprisingly,
convergence speeds are significantly improved if a node concurrently sends multiple pushes. If
m=4, it takes only less than 5 sec to reach the CV(RMSD) to 0.01, while m=1 takes more than
13 sec.

RR n° 8044



20 Roh & Ignat

 1e−18

 1e−16

 1e−14

 1e−12

 1e−10

 1e−08

 1e−06

 0.0001

 0.01

 1

 100

 10000

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150

C
V

(R
M

S
D

)

sec

A2 (|SL|=4, γ=1/4, φ=1)
A2 (|SL|=8, γ=1/8, φ=1)
Flow−Updating(|SL|=4)
Flow−Updating(|SL|=8)

MAPPA (|G|=4, m=1)
MAPPA (|G|=4, m=4)

Figure 6: [Exp. 2: n=1000, c=400ms, e=0.0, tc=∞, h=∞] CV(RMSD) graphs of MAPPA, A2,
and Flow-Updating.

Experiment 2: Comparison with other aggregation protocols [Fig. 6]

We compare MAPPA with some other aggregation protocols. As a comparison group, A2 and
Flow-Updating are chosen because each of them is, respectively, the only round-free asynchronous
protocol and one of the up-to-date protocols. Since these two protocols exchange messages only
through predefined symmetric links, we predefined a set of symmetric links SL for each node
(see Section 3). We run the two protocols over the networks of |SL|=4 and |SL|=8 utilizing all
the links. On the other hand, MAPPA works on asymmetric networks, wherein each node has a
set of neighbors G. We constraint |G|=4 for the sake of fairness, and each node pushes to only
m=1 or m=4 neighbors. It is worthy noting that the performance of |G|=4 is similar to that of
|G|=20, i.e., the default size of G in other experiments.

According to the paper [15], A2 requires two parameters γ and φ for updating estimates and
symmetric values. The authors claim they should satisfy the conditions 0 < γ < 1

|SL|+1 and
0 < φ < 1

2 in order to achieve the convergence, but no exact values were recommended in the
paper. Moreover, it is unclear whether each node pushes REPLY messages to multiple links or
randomly chosen one. After implementing A2 with event-driven Peersim, we have tried to tune
the protocol, and found out two facts not given in the paper [15]. First, concurrent pushing to
multiple neighbors reduces convergence time also in A2. Second, even if the conditions of the two
parameters hold, estimates frequently diverged. Instead, we found that if γ = 1 and φ = 1

|SL| ,
A2 can always achieve more rapid and stable convergence. In fact, these conditions make A2 be
similar to MAPPA.

In A2 protocol, we make REPLY messages toward each neighbor be propagated like a relay
race; that is, each node sends a new REPLY immediately after receiving an ACK of the previous
REPLY. Estimates are accompanied with REPLY and ACK and updated every 100 ms. In
Flow-Updating, we let the round length be 500 ms so that messages of the maximum 350 ms
delay should be delivered even if rounds are slightly out of step.

Fig. 6 shows that MAPPA is faster, despite m=1, than the other protocols. Like m of
MAPPA, a larger |SL| of A2 leads to a more rapid convergence. Interestingly, Flow-Updating
is much faster with |SL|=4 than with |SL|=8; namely, parallel updating rather impedes con-
vergences. For rapid aggregations, Flow-Updating would need to constitute network topologies
of few links, but of short node-to-node distances (see Experiment 5). However, since over-
lay networks need enough links to avoid a partitioning against network churns, Flow-Updating

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 21

could encounter a tug-of-war between reliability and performance. In any case, even if message
overhead is considered and the round synchronization time is not included, MAPPA with m=4
outperforms all the other aggregation protocols.

Experiment 3: The effects of the cycle length [Fig. 7]

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0  10  20  30  40  50  60

C
V

(R
M

S
D

)

C
V

(R
M

S
D

)

(a) single asynchronous(m=1)

c=100 ms
c=250 ms
c=400 ms
c=550 ms
c=700 ms

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

0 10 20 30 40 50 60
 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

C
V

(R
M

S
D

)

C
V

(R
M

S
D

)

(b) multi asynchronous(m=4)

c=100 ms
c=250 ms
c=400 ms
c=550 ms
c=700 ms

Figure 7: [Exp. 3: n=1000, e=0.0, tc=10 sec, h=∞] CV(RMSD) graphs with respect to cycle
lengths c.

The result of Fig. 7 indicates that cycle lengths are a sensitive factor affecting convergence
speeds. As aforementioned in Section 5, if cycles are too short, aggregations heavily go through
the pathological problems such as excessive wafting of the system mass to von; hence, conver-
gences are delayed, or estimates rather diverge as illustrated in the graph of c=100 ms in Fig.
7-(a) where m=1. If m=4, as segmentalized estimates are distributed to more nodes, negative
effects are slightly suppressed; thus, even under c=100 ms, MAPPA with m=4 converges. In
any case, the convergence speeds increase to some degree of cycle lengths, but there exist certain
cycle lengths when convergence speeds go into reverse; regarding m=1, the cycle length of the
fastest convergence speed is c=550 ms, and then longer cycle lengths make convergences slower.

Meanwhile, we observed that the convergence with 550 ms cycle insignificantly is faster than
that of 400 ms cycle over a static topology (tc=∞), but over the dynamic topology (tc=10
sec) the convergence is faster with 400 ms cycle than with 550 ms one as shown in Fig. 7-
(b). According to additional experiments, against the propagation delay of 50∼350 ms, MAPPA
with c=400 ms is generally fastest regardless of multi-pair asynchrony (m > 1) and network
topologies. As a result, we choose 400 ms as a default cycle length. The effects of dynamic
topologies will be precisely discussed in Experiment 5.

RR n° 8044



22 Roh & Ignat

Experiment 4: The effects of multi-pair asynchrony and network size [Fig. 8]

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 3 6 9 12 15 18 21 24 27 30

C
V

(R
M

S
D

)

C
V

(R
M

S
D

)

sec

(a) effects of multi-pair asynchrony
m=1, n=1000
m=2, n=1000
m=4, n=1000
m=8, n=1000

m=13, n=1000

1e-08

1e-06

0.0001

0.01

1

100

0 3 6 9 12 15 18 21 24 27 30
1e-08

1e-06

0.0001

0.01

1

100

C
V

(R
M

S
D

)

C
V

(R
M

S
D

)

sec

(b) effects of network sizes
n=1000, m=1

n=10000, m=1
n=100000, m=1

n=1000, m=2
n=10000, m=2

n=100000, m=2
n=1000, m=4

n=10000, m=4
n=100000, m=4

Figure 8: [Exp. 3: c=400 ms, e=0.0, tc=∞, h=∞] CV(RMSD) graphs with respect to different
levels of multi-pair asynchronism and different network size.

Clearly, Fig. 8-(a) proves that multi-pair asynchrony can improve convergence speeds. As
discussed in Section 4, the convergences are accelerated more than the prediction of formula
(5): Sm(c) = (2m + 1)c. For example, the rise of m from 1 to only 2 almost halves the cycles
required to reach the same convergence states. However, according to the formula, we can infer
that increasing m logarithmically reduces c required to have the same number of shares. In
other words, as m is getting larger, the amount of the reduction in convergence times declines
sharply. Therefore, m should be chosen considering the trade-off between performance and
message overhead that is proportional to m; so, we use m=4 as default in our evaluation.

Network size has a weaker correlation with convergence speeds than the multi-pair asynchrony
as shown in Fig. 8-(b). Though a larger network converges a little slowly, the inclinations of
CV(RMSD) graphs are invariable with respect to n. Considering the results of Fig. 8-(b), it is
highly expected that the graphs are horizontally shifted to the right proportionally to log n.

Experiment 5: The effects of the network topologies[Fig.9]

To enhance scalability and reliability in overlay networks, gossip mechanisms encourage topolo-
gies to be altered dynamically [3][4]. In this experiment, we make each node dynamically change
its neighbors every tc second by the Simple Newscast protocol [4]. Fig. 9-(a) shows that although
too frequent changes of topologies retard the latter half convergence, the delays of the primary
stage are negligible. As stated in Experiment 3, the cycle length c influences convergence in
dynamic topologies. Short cycle lengths make convergence speeds almost identical, but with
long cycle lengths the latter half of convergences, at which enough accuracy is already secured,
is slightly slacker.

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 23

1e−18
1e−16
1e−14
1e−12
1e−10
1e−08
1e−06
0.0001

0.01
1

100

1e−18
1e−16
1e−14
1e−12
1e−10
1e−08
1e−06
0.0001
0.01
1
100

0 2 4 6 8 10 12 14 16 18 20 22 24

C
V

(R
M

S
D

)

(a) Dynamic topologies (m=4)

tc=1.0s
tc=2.0s
tc=4.0s
tc=8.0s

tc=16.0s
tc=inf.

1e−18

1e−16

1e−14

1e−12

1e−10

1e−08

1e−06

0.0001

0.01

1

100

0 2 4 6 8 10 12 14 16 18 20 22 24
1e−18

1e−16

1e−14

1e−12

1e−10

1e−08

1e−06

0.0001

0.01

1

100

C
V

(R
M

S
D

)

(b) Static topologies

ER m=1
ER m=2
ER m=4
ER m=8

WS β=0.00, m=1
WS β=0.00, m=2
WS β=0.00, m=4
WS β=0.00, m=8

WS β=0.15, m=1
WS β=0.15, m=2
WS β=0.15, m=4
WS β=0.15, m=8
WS β=0.30, m=1
WS β=0.30, m=2
WS β=0.30, m=4
WS β=0.30, m=8

Figure 9: [Exp. 4: n=1000, c=400 ms, m=4, e=0.0, h = ∞] CV(RMSD) graphs with respect
to network topologies.

Characteristics of network topologies are crucial to the convergence time. Our evaluations
have been conducted over the topologies following Erdős-Rényi (ER) model [2]. ER model
produces purely random graphs with a short average node-to-node distance and a small clustering
coefficient. Watts and Strogatz addressed small world properties that many real-world networks
have a small average node-to-node distance, but a higher clustering coefficient than the graphs
of ER model [22]. They presented Watts-Strogatz (WS) model, in which nodes are wired in the
shape of a ring lattice so that random graphs should have a high clustering coefficient. The model
also introduced a parameter β, which is a probability to rewire any pair of randomly selected
nodes. If β=0, no nodes are rewired, and thus random graphs have a long average node-to-node
distance. If β=1, all nodes are randomly rewired, thereby producing pure random graphs similar
to those of ER model.

In Fig. 9-(b), aggregations are performed over ER and WS random graphs. With respect
to β of the WS model, convergences take on significantly different aspects. If β=0, estimates
hardly converge despite a large m. Though aggregations succeed in convergence for β > 0,
there are limits, correlating with β, in reducing convergence times. If β=0.15 and β=0.3, the
convergence speeds are no longer improving for m ≥ 2 and m ≥ 3, respectively. Therefore,
we can presume that networks of WS graphs have maximum feasible convergence speeds with
respect to β, and MAPPA can make the best use of the networks. However, before the speeds
are saturated in the WS graphs, i.e., m < 2 and m < 3 for β=0.15 and β=0.3, respectively, for
equal m, the aggregations over the WS graphs almost coincides with the aggregation over the
ER graph regardless of β; e.g., for m=1, the aggregation over the ER graph almost coincides
with those over the WS graphs of β=0.15 and β=0.30.

RR n° 8044



24 Roh & Ignat

Figure 10: [Exp. 5: n=1000, c=400ms, tc=∞, h=∞] Estimates distribution graphs with respect
to different message loss and multi-pair asynchrony.

Experiment 6: The effects of message loss and multi-pair asynchrony [Fig. 10]

MAPPA makes a significant improvement in fault-tolerance. To show the effects of message loss,
we drop 5%, 10%, and 20% of messages against different levels of multi-pair asynchrony. In Fig.
10, estimates of 1000 nodes, which are obtained by averaging 30 runs per node, are distributed
for different fault ratios. Besides, a boundary of each distribution is also marked, which indicates
the maximum and minimum of estimates any node has along time without averaging 30 runs.
Regardless of fault ratios, estimates always converge to a certain value, but a higher fault ratio
leads to a larger deviation of convergence values from the correct average. Nevertheless, as we can
identify from the boundaries, a largerm remarkably reduces the deviation. Such an improvement
in the fault tolerance is originated from the fact that the parameters of pulls are getting smaller
as m grows, thereby mitigating the damage of system mass against message loss.

Meanwhile, note that the converged estimates averaging 30 runs nearly approach to the
correct value. Jelasity et al. enhanced accuracy in the presence of faults by averaging estimates
of multiple instances [5]. Our results prove that the technique is still effective in MAPPA.

Experiment 7: Continuous monitoring of a dynamic network [Fig. 11]

We compare MAPPA and Flow-Updating (FU) with a scenario of continuous monitoring over a
dynamic network. In this scenario, there are initially 1000 nodes, and we impose three types of
network churns for 200 seconds as below:

• Sudden churn: At 25 sec, 400 random nodes suddenly crash. After then new 400 nodes join
the network at 50 sec.

• Gradual churn: From 75 sec to 80 sec, 80 random nodes gradually crash every second. After
then new 80 nodes join gradually every second from 105 sec to 110 sec.

• Mixed churn: At 135 sec, the crashes of 400 random nodes coincide with the inflows of new
200 nodes. After then 200 random nodes crash, and simultaneously new 400 nodes join at
160 sec.

We run MAPPA and Flow-Updating under different conditions reflecting their characteristics.
MAPPA restarts a child instance whenever its hop count encounters h=35 and h=50 (see Section

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 25

6). Meanwhile, we let each node of Flow-Updating be connected along maximum 4 and 8
symmetric links, i.e., |SL|=4 and |SL|=8, in advance, and the links are fully utilized to exchange
messages every 500 ms round. In the case of the inflows, new nodes are connected so that |SL|
of each node should not exceed the maximum symmetric links, though those connections are
impossible without global topology information.

Fig. 11 shows the results. In graph (a), we compare CV(RMSD) of MAPPA and Flow-
Updating for the message loss ratio e=0.0. Generally, MAPPA has more accurate estimates over
the dynamic networks. The other graphs present the estimates distributions; graphs (b)-(e) for
e=0.0 and graphs (f)-(i) for e=0.1. In graphs (b), (c), (f) and (g), MAPPA allows the majority
of nodes to have nearly convergent estimates thanks to the asynchronous overlapped restarting
technique, while estimates of Flow-Updating are divergent most of times as shown in graphs (d),
(e), (h) and (i).

In detail, MAPPA can instantly compute the initial network size. If MAPPAs with h=35
and h=50 meet the crashes of the sudden and gradual churns, they reflect them after about 10
and 15 seconds, respectively. Those relatively long time-lags are originated from the warming-
up time of the overlapped restarting technique. Contrarily, the large inflows of the sudden and
gradual churns are caught up with by MAPPA in an instance. In the case of the mixed churn, the
inflow hidden by a large crash immediately increases the estimates. Since the system mass of 400
nodes, each of which estimate is about 0.001, is vanished, the remained system mass, about 0.6,
is distributed to the new 200 nodes, and thus the estimates soars around 800/0.6≈1333. After
restarting, the system mass is reset to 1. Likewise, at the end of the mixed churn, the similar
effects occur. In MAPPA, hop counts affect the responsiveness against the crashes, but take no
effects on inflows.

Flow-Updating, at the beginning, takes longer times to obtain effective estimates than MAPPA;
if |SL|=8, nodes can hardly have convergent estimates up until the sudden churn. Like MAPPA,
Flow-Updating by itself cannot reflect any crash. In these experiments, a node regards its neigh-
bor as crashed one if it receives no message subsequently 8 times, i.e., 4 seconds. We took this
specified number of times because failures were falsely detected in the presence of 10% of message
loss if the number of times is less than 8. When wholesale nodes randomly die at the beginning of
the sudden and gradual churns, some nodes were isolated over the network of |SL|=4, i.e., network
partitioning. As a result, the estimates fail to converge during the sudden and gradual churns
for |SL|=4. In the network of |SL|=8, partitioning can be avoided, but the overall aggregation
is getting slower. Regarding the inflows of the sudden and gradual churns, convergence of Flow-
Updating is relatively faster than at its initial stage, but still slower than MAPPA. Interestingly,
the gradual inflows make the estimates more divergent than the sudden inflow, and thus more
time is spent on re-converging. In the case of the mixed churn, convergence of the end is faster
than that of the beginning.

We also conducted the same experiments with 10% message loss (e=0.1). MAPPA has
aggregation errors in convergent estimates, but the errors seem not to seriously distort the
tendency of changes of the network size. In Flow-Updating, message loss retards the convergence,
and thus effective estimates are barely obtained by the end of the churns. Nevertheless, if
networks are unchanged for a long time, Flow-Updating can converge to the correct network
sizes despite message loss.

To sum up, MAPPA outperforms Flow-Updating in convergence speeds, even if the restart-
ing technique is used. The overlapped restarting technique rather enables all nodes to maintain
convergent estimates. We expect that this property is useful because algorithms operating on
distributed nodes can use almost convergent aggregated data as inputs by MAPPA. Meanwhile,
in this experiment, we identify that network churns might demand on Flow-Updating additional
configurations to repair symmetric links; thus it is not completely topology independent. Addi-

RR n° 8044



26 Roh & Ignat

tionally, the efforts to synchronize rounds would be also required to begin Flow-Updating over
large networks. Nevertheless, Flow-Updating is an innovative approach because it can compute
correct estimates in spite of message loss. In conclusion, MAPPA is in better position over
dynamic networks while Flow-Updating is better in faulty environments over static networks.

7.3 Discussion on message overhead
In our evaluation, the message overhead of MAPPA, i.e., the number of messages for a certain
period of time, is comparable to that of other iterative aggregation protocols A2 and Flow-
Updating, because they also send periodic messages in parallel to multiple neighbors. However,
from the cost-effective point of view MAPPA is superior to the other approaches, as shown in
Experiments 2 and 7.

In MAPPA, the number of messages along time t follows the formula: NM(t) = 2mnt/c.
Apparently, as the level of the multi-asynchrony increases, message overhead with respect to a
specific time rises. For instance, if m=4, the overhead is 4 times higher than that with m=1 after
the same time t. However, the message overhead required to achieve a certain level of accuracy
is acceptable in spite of m > 1. To illustrate, let us consider the time to reach the accuracy
CV(RMSD)(t) = 0.01 in Fig. 8-(a). For each ofm=1, 2, and 4, it takes about t=13.5 sec, 6.2 sec,
and 4.5 sec, respectively. According to the above formula, MAPPAs with m=2 and m=4 require
91% and 133% of messages used in MAPPA of m=1 reaching CV(RMSD)(t)=0.01. Therefore,
if the aggregation is just one-off event that computes a predefined accuracy level of estimates,
MAPPA with an appropriate m incurs affordable overhead, but provides considerable benefit
not only in the convergence time but also in the fault-tolerance, as addressed in Experiments 4
and 6.

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 27

8 Conclusion
This paper proposed the gossip-based multi-pair asynchronous push-pull aggregation protocol
(MAPPA) that allows asynchronous communication of push-pull style updates and requires no
synchronized rounds. We introduced the pair mass conservation as a property that ensures the
system mass conservation by isolating migrations of the system mass incurred by asynchronous
updates. Based on this property, we addressed the multi-pair asynchrony, which enables MAPPA
significantly to reduce convergence times and to enhance fault-tolerance to message loss. Since
MAPPA is round-free and follows the principles of gossip mechanisms, it is completely topol-
ogy independent and unconstrainedly deployable in large scale networks. In addition, we also
suggested the asynchronous overlapped restarting technique that can provide mostly convergent
estimates in dynamic networks. We have showed these achievements with a number of experi-
ments and comparisons with other iterative protocols. The comparisons show that MAPPA holds
a dominant position in the practicality and performance, compared to other iterative aggregation
protocols.

RR n° 8044



28 Roh & Ignat

References
[1] O. Babaoglu, T. Binci, M. Jelasity, and A. Montresor, “Firefly-inspired heartbeat synchro-

nization in overlay networks,” in Proceeddings of IEEE International Conference on Self-
Adaptive and Self-Organizing Systems (SASO ’07), July 2007, pp. 77 –86.

[2] P. Erdős and A. Rényi, “On the evolution of random graphs,” in Publication of the mathe-
matical institute of the hungarian academy of sciences, 1960, pp. 17–61.

[3] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Kermarrec,
“Lightweight probabilistic broadcast,” ACM Transactions on Computer System, vol. 21,
no. 4, pp. 341–374, Nov. 2003.

[4] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen, “The peer sampling ser-
vice: experimental evaluation of unstructured gossip-based implementations,” in Proceed-
ings of ACM/IFIP/USENIX international conference on Middleware. New York, NY, USA:
Springer-Verlag New York, Inc., 2004, pp. 79–98.

[5] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation in large dynamic
networks,” ACM Transaction on Computer System, vol. 23, pp. 219–252, Aug. 2005.

[6] P. Jesus, C. Baquero, and P. S. Almeida, “Fault-tolerant aggregation for dynamic networks,”
in Proceedings of the 29th IEEE Symposium on Reliable Distributed Systems (SRDS), ser.
SRDS ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 37–43.

[7] ——, “A survey of distributed data aggregation algorithms,” University of Minho, Braga,
Portugal, Tech. Rep., Sept. 2011.

[8] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal distributed hash
table,” in Proceedings of International Workshop on Peer-to-peer Systems (IPTPS), 2003,
pp. 98–107.

[9] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information,”
in Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS), Oct. 2003,
pp. 482 – 491.

[10] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. Demers, “Decentralized schemes
for size estimation in large and dynamic groups,” in Proceedings of the IEEE International
Symposium on Network Computing and Applications (ISNCA), July 2005, pp. 41 –48.

[11] D. Lee, K. Cho, G. Iannaccone, and S. Moon, “Has internet delay gotten better or worse?”
in Proceedings of the International Conference on Future Internet Technologies (CFI). New
York, NY, USA: ACM, 2010, pp. 51–54.

[12] Z. Li, L. Yuan, P. Mohapatra, and C.-N. Chuah, “On the analysis of overlay failure detection
and recovery,” Computer Networks, vol. 51, no. 13, pp. 3828 – 3843, 2007.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: a tiny aggregation service
for ad-hoc sensor networks,” SIGOPS Operating System Review, vol. 36, no. SI, pp. 131–146,
Dec. 2002.

[14] L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and A. Ganesh, “Peer counting and sampling
in overlay networks: random walk methods,” in Proceedings of the ACM symposium on
Principles of distributed computing (PODC), New York, NY, USA, 2006, pp. 123–132.

Inria



Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation 29

[15] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray, “Asynchronous dis-
tributed averaging on communication networks,” IEEE/ACM Transactions on Networking,
vol. 15, pp. 512–520, June 2007.

[16] E. L. Merrer, A.-M. Kermarrec, and L. Massoulie, “Peer to peer size estimation in large and
dynamic networks: A comparative study,” in Proceedings of IEEE International Symposium
on of High Performance Distributed Computing (HPDC), 0-0 2006, pp. 7 –17.

[17] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,” in Proceedings of IEEE
International Conference on Peer-to-Peer Computing (P2P), sept. 2009, pp. 99 –100.

[18] A. Montresor, M. Jelasity, and O. Babaoglu, “Robust aggregation protocols for large-scale
overlay networks,” in Proceedings of the International Conference on Dependable Systems
and Networks (ICDSN). Washington, DC, USA: IEEE Computer Society, 2004, pp. 19–.

[19] I. Rao, A. Harwood, and S. Karunasekera, “A gossip-based asynchronous aggregation proto-
col for p2p systems,” in Proceedings of 35th IEEE Conference on Local Computer Networks
(LCN), Oct. 2010, pp. 248 –251.

[20] ——, “Impacts of asynchrony on epidemic-style aggregation protocols,” in Proceedings of
16th IEEE International Conference on Parallel and Distributed Systems (ICPADS), 2010,
Dec. 2010, pp. 601 –608.

[21] ——, “Gossip-based asynchronous and robust aggregation protocol - a pessimistic approach,”
in Proceedings of IEEE Consumer Communications and Networking Conference (CCNC),
jan. 2011, pp. 543 –548.

[22] D. J. Watts and S. Strogatz, “Collective dynamics of ’small-world’ networks.” Nature, vol.
393, no. 6684, pp. 440–442, Jun. 1998.

RR n° 8044



30 Roh & Ignat

Figure 11: [Exp. 6: c=400ms,m=4, tc=5 sec] MAPPA and Flow-Updating in dynamic networks

Inria



RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Introduction
	Background
	System model
	Two synchronization constraints

	Related Work
	Pair Mass Conservation
	Multi-pair asynchronous push-pull aggregation
	Asynchronous overlapped restarting technique
	Evaluation
	Experimental setup
	Experiment results
	Discussion on message overhead

	Conclusion

