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Abstract—To deal with dynamic load balancing in large scale
distributed systems, we propose to organize computing resources
following a logical peer-to-peer overlay and to distribute the
load according to the so-defined overlay. We use a tree as a
logical structure connecting distributed nodes and we balance
the load according to the size of induced subtrees. We conduct
extensive experiments involving up to 1000 computing cores
and provide a throughout analysis of different properties of
our generic approach for two different applications, namely,
the standard Unbalanced Tree Search and the more challenging
parallel Branch-and-Bound algorithm. Substantial improvements
are reported in comparison with the classical random work
stealing and two finely tuned application specific strategies taken
from the literature.

I. INTRODUCTION

A. Motivations and Goals

In this paper, we jointly address two challenging issues at
the crossroads of two scientific computing fields: (i) design-
ing generic distributed dynamic load balancing protocols for
computing intensive applications and experimentally assessing
their performance, and (ii) designing effective parallel algo-
rithms for solving hard combinatorial optimization problems.

On one side, more and more computing resources are
nowadays available in the form of aggregated clusters, grids,
and personal computers scattered over possibly large scale dis-
tributed platforms connected via a network. This huge amount
of computational resources offers an impressive computing
power which is in theory sufficient to tackle many computing
intensive problems. However, achieving high performance and
scalability on large scale distributed systems is a difficult task
especially when parallelizing highly irregular applications pro-
ducing, dynamically at runtime, a set of unbalanced tasks. For
such applications, no knowledge about the number/location of
tasks generated over all execution time, neither their relative
computing complexity nor difficulty can be assumed initially.
Thus, load balancing strategies in which parallelism unfolds
dynamically throughout the application execution greatly con-
tributes in gaining substantial speed-up.

On the other side, many real-life problems coming from var-
ious domains, e.g., bio-informatics, logistics, health sciences,
business intelligence, etc, are reputed to be hard combina-
torial optimization problems. Many search and optimization

algorithms for solving such problems require the enumeration
of a huge space which is further of unpredictable structure.
Consequently, sequential approaches often fail providing good
performances in a reasonable time. Within this context, parallel
and distributed computing are essential, not to say the key to
efficiently solve the underlying computing challenges.

In particular, the well studied Branch-and-Bound (B&B)
technique can be essentially viewed as a specific traversal
of a tree representing a candidate solution space. Roughly
speaking, branching in B&B allows one to decide which
branch of the tree to explore next, and bounding allows one
to decide whether to continue the exploration or to discard
a whole part of the tree. Although B&B can be endowed
with sophisticated mechanisms allowing to significantly reduce
the number of branches to be explored, the size of the
remaining tree is still huge when tackling large instances,
thus making its sequential traversal very time consuming.
More importantly, a B&B tree is unpredictable and extremely
imbalanced. In fact, the variance in the size of the B&B
subtrees is typically very high making it very difficult to
evaluate the required computation for different subtrees to
be traversed. Thus, besides B&B specific technicalities which
are difficult to design and implement, B&B is extremely
difficult to parallelize while achieving high performance and
scalability. This is why effective and efficient dynamic load
balancing strategies are important.

Designing efficient load balancing protocols is in fact a
challenging research issue which is being actively studied
for different computing intensive applications and in different
distributed contexts such as distributed memory architectures,
clusters, grids, and more generally global distributed systems
harnessing a huge amount of computing resources. In this
context, work stealing can be considered as a corner stone in
most existing approaches. Work stealing is based on a very
simple idea that idle processes (thieves) should attempt to
acquire work by stealing it from other processes (victims), thus
allowing workload to be transferred dynamically at runtime.
However, considering a fully distributed environment, it is well
understood that for such an approach to reach scalability and
high performance, different interdependent tasks have to be
carefully mixed and tuned, e.g., where to find work while
avoiding synchronization delays, how to detect termination



without disturbing computations, what is the amount of work
to transfer to distribute the load evenly.

In this paper, we describe a new generic message passing
approach dealing with the previous issues. With respect to
previous works, we show that our approach is extremely
competitive to: (i) efficiently parallelize the state-of-the-art
adversary benchmark for dynamic load balancing, and also
(ii) to solve challenging combinatorial optimization problems
using B&B. In the following, we describe in more details our
contributions and results. Afterword, a throughout discussion
on related work and techniques is given.

B. Contribution Overview and Results Summary

We consider the idea of dynamically balancing the load by
structuring computing nodes in a peer-to-peer like topology,
namely a tree, and distributing work according to the so-
defined overlay. More precisely, we propose to dynamically
adjust the amount of work transferred from a node to another
according to the size of overlay subtrees. In other words,
we make work flow over tree paths and we cooperatively
balance the load according to the size of each peer subtree.
To avoid that computing nodes stay idle for a long time,
we further consider to extend the tree overlay with few long
links in order to speed up work flow, thus reducing delays
and gaining in parallel efficiency. The main idea behind our
protocol is based on the simple observation that idle nodes
should not be selfish when searching for work, but should
acquire enough work to serve their neighboring peers. To study
the properties of this overlay-centric approach, we conduct
extensive experiments using two different applications, three
highly competitive approaches taken from the literature, and
up to 1000 real computing cores.

As parallel applications, we consider the Unbalanced Tree
Search (UTS) benchmark and the challenging B&B algorithm.
UTS was specifically designed to be a reference adversary for
dynamic load balancing strategies [19]. The results obtained
with UTS aims at proving that our approach is fully generic
and can be used to effectively tackle a wide range of highly
irregular applications. As discussed previously, Parallel B&B
is such a challenging application which has been addressed by
its own as a whole piece of research [5], [12], [14], [21].

To evaluate the relative performance of our approach, we
implemented the generic Random Work Stealing (RWS) which
is the state-of-the-art reference protocol in dynamic load-
balancing. We further consider two specific B&B distributed
approaches: the Master-Worker (MW) approach described
in [17], and the Adaptive Hierarchical Master Worker approach
(AHMW) recently studied in [2], [3]. For clarity, the detailed
description of these two approaches is delayed to later in the
paper. One should notice that MW is an extremely competitive
B&B-specific approach, which was used in the past to solve
for the first time a 22-years unsolved hard combinatorial
optimization problem instance. The general idea of AHMW is
similar to our approach in the sense that it explicitly organizes
masters and workers in a multi-level tree overlay, and adapts
the B&B load according to masters hierarchy.

Through extensive experiments, and using up to 1000 real
cores of the Grid’5000 clusters [13], we report the relative
performance of our approach under different overlay con-
figurations and different scales. We show that substantial
improvements are obtained for both UTS and B&B while
compared with RWS and application specific schemes (MW
and AHMW). For instance, while the parallel efficiency of
our approach for UTS (96%) is comparable to RWS at the
low scales, it scales significantly better achieving 77% against
64% for RWS at the higher scales of 512 cores. For B&B, it is
even more impressive since we achieve up to 96% of parallel
efficiency against less than 70% for RWS in the scale of 1000
cores. Specific to B&B, we consider ten different instances of
the well known Flowshop problem and solve them using our
approach, AHMW and MW. Using 200 cores, our approach
is substantially better than AHMW (10 times faster overall).
Compared to MW, our approach performs significantly better
on 7 out of 10 instances, and slightly worse on the three others.
But, when scaling the network up to 1000 cores, our approach
continues scaling smoothly, while the performance of MW
deteriorates and the execution time is even getting worse.

C. Related works and discussion

1) Work stealing: From the dynamic load balancing side,
work-stealing is a reference approach among the particularly
rich literature [4], [6], especially in the shared memory
computing model [9], [19], [20]. In random work stealing,
an idle node tries to steal work from the queue of other
processes selected uniformly at random. This very simple
approach is actually proved to have optimal performances
under some circumstances [4]. At the price of a very fine
tuning, random work stealing can be extended to the dis-
tributed memory context, e.g., [15], [8], [20]. However, it is
generally known that straightforward extensions are not well
suited to optimally exploit network resources of possibly many
heterogenous platforms forming giant distributed systems, e.g.,
global infrastructures, large scale peer-to-peer networks, etc.
This is mainly due to the high communication cost raised
by the nature of such computing environments, e.g., inter-
node communication, network bandwidth, heterogeneity, etc.
ATLAS [1] and SATIN [26] are such two frameworks provid-
ing global load balancing based on hierarchical work-stealing.
To the best of our knowledge, although existing hierarchical
frameworks implicitly induce a multi level tree, we did not
find any specific study on how tree overlay properties can be
used to decide on the amount of work to be distributed.

The only work explicitly embedding an overlay structure in
work stealing was conducted very recently in [24]. The authors
therein use a hyper-cube as a lifeline graph to minimize
missed stealings, thus allowing random work stealing to scale
better. The authors implemented their approach using X10
programming language and validate it on two supercomputers,
namely, a Blue Gene/P and a Power-7 infiniband cluster. When
using 128 cores of a smaller x86 cluster, comparable to the
ones used in this paper, they report 94% of parallel efficiency
with the UTS benchmark. At the same scale we report 96%



of parallel efficiency for UTS and we further push our study
at larger scales and for the more challenging parallel B&B
application as will be discussed later.

Very recently, several hybrid and hierarchical approaches
exploring the locality and the heterogeneity of hardware are
being actively developed, e.g., [18], [22], [23]. To the best
of our knowledge, most approaches dealing with the hetero-
geneity of hardware are essentially exploring the following
idea. Basically, their proposals define a hardware hierarchy
for stealing work in order to get benefits from the multi-
level architecture of computing nodes. Typically, a random
stealing policy is performed from the lowest to the highest one
based on the hardware hierarchy, e.g., inside a multi-core node,
across multi-core nodes. The amount of work (granularity)
to be transferred from a node to another can then be tuned
differently/separately depending on where the stealing occurs,
e.g., [18]. Thus, this kind of approaches implicitly implies
structuring parallel resources in some specific way. Most of
previous works only report computational results in relatively
small scales, i.e., not more than 256 cores, and for pure parallel
benchmarks, e.g., UTS. Although those approaches are being
designed in different distributed and computing contexts, they
are complementary to ours in the sense that they could for
instance be mixed and combined to deal with large scale
hierarchical resources composed of several multi-core, multi-
CPU, multi-cluster, multi-site, computing plate-forms, without
changing the underlying algorithmic ideas or principles.

A crucial parameter common to all dynamic load-balancing
schemes concerns the amount of work to be transferred from
one node to another at runtime. Generally, when the sharable
amount is very small, the large overhead is observed since
many load balancing operations are performed. At the oppo-
site, when it is very large, too few load balancing operations
will occur, thereby resulting in large idle times when acquiring
work despite the fact that surplus work is available. For
instance, in [19], the authors made the observation that there
may exist a fixed amount of work that results in the best
performance. In fact, it is a critical parameter that can cause
load imbalance if not tuned very carefully according to the
application context. In [15], the steal-1 (one work unit at
a time), steal-2 (two work units at a time) and steal-half
(half of available work) strategies are analyzed. The authors
argued that steal-half gives the best performance which is
consistent with many other reported results, e.g., [20], [24].
To our knowledge, no previous work have explored the idea
of adapting workload according to a logical overlay connecting
computing resources.

Specific to load-balancing, our approach builds on previous
studies by exploring the simple and intuitive idea that structur-
ing networked resources and taking into account their induced
logical computing power should allow them to efficiently self-
coordinate their actions as proved in the context of peer-to-peer
data-centric distributed systems. Such an approach is however
not trivial to prove nor to effectively implement/experiment
especially in large scale distributed message passing systems.
In our study, we consider a simple tree overlay and adapt the

load according to the size of induced subtrees, i.e., the bigger
a subtree of a node is, the stronger computing power a node
has. We did not take into account hardware issues, e.g., CPU,
RAM, Network links, etc, though the computing ability and
the mapping of hardware/network resources could be refined
without changing the main design ideas.

2) Parallel B&B: While the load-balancing approach pre-
sented in this paper is well motivated from a pure parallel point
of view, proving its effectiveness and its efficiency for Branch-
and-Bound is to be considered as a contribution of independent
interest. In fact, parallel B&B is more than a benchmark appli-
cation with difficult combinatorial and computing challenges,
e.g., see [5], [10], [12], [14], [21]. Due to lack of space, the
reader is referred to [5], [12] for a more comprehensive and
extensive discussion on the subject. Generally speaking, and
besides specific bounding policies, special care has to be taken
for the following tasks when parallelizing B&B: (i) efficient
diffusion of best known bound, (ii) efficient work encoding to
minimize message size and decrease communication latency,
(iii) efficient work exploration and sharing policies. In [17],
an extremely compact work encoding scheme for B&B is
introduced. The authors therein also consider a master-worker
model for parallelizing their B&B and successfully applied it
to the Flowshop problem. In this paper, we use the same B&B
work encoding proposed in [17], but our parallel exploration
and work sharing policies are different. As will be argued
later in our experimental study, the B&B Master-Worker
scheme of [17] is extremely competitive and is found to
even outperform the classical random work stealing approach.
Among the hierarchical approaches dealing with B&B, the
adaptive approach studied extensively in [2], [3] is the most
recently and related to ours. That approach explicitly organizes
masters in a tree like topology and adjust the load at each
master according to its level in the hierarchy. In [17], the
authors report 97% parallel efficiency of workers for their cen-
tralized architecture while solving a B&B instance generating
extremely high coarse-grain works, i.e., the experiment was
performed for a very big instance (Flowshop Ta56): 22 years
of sequential execution and 25 days of parallel execution.
It is however not clear how that system would act when
dealing with applications generating fine-grain works, which
are known to be more challenging to schedule. Actually, the
comparative study conducted in this paper shows that the
approach of [17] leads to relatively good results at relatively
small scales, but it can dramatically deteriorates for the higher
scales. Besides, our generic approach is found to perform
better both at the lower and higher scales, thus being accurate
for balancing both fine and coarse grain works. In [2], [3], the
authors report 99% of parallel efficiency for their workers,
with masters being excluded. They also remarked that around
10% of deployed nodes were playing the role of masters. As
discussed previously, the comparative study conducted in this
paper reveals that substantial improvements are achieved by
our approach.



D. Outline

The remainder of the paper is organized as follows. In
Section II, we describe the high level design components of
our overlay-centric load balancing approach. In Section III,
we recall the UTS benchmark and discuss some B&B specific
issues. In section IV, we present the results of our experiments.
In Section V, we conclude the paper.

II. DESCRIPTION OF OUR OVERLAY-BASED APPROACH

Let us assume that we are given an application which
can recursively generate works without any initial knowledge
about the number nor the complexity of work unit being
processed. A work unit (or a task) in our terminology may
(or may not) generate an unpredictable number of tasks at
runtime. In this context, we describe the high level issues of
our overlay-based approach. Because the lack of space, we
only sketch some technical issues and do not give the detailed
and technical message passing distributed protocols.

Generally speaking, logical overlays provide the property of
structuring network resources in some specific way that helps
the efficient execution of distributed tasks. This is typically
the case for data centric peer-to-peer architectures where the
logical overlay connecting available resources can be used at
the aim of speeding up information query, routing tasks, etc.
An overlay is in fact nothing else than a logical intercon-
nection graph defining how nodes should cooperate locally
to efficiently perform a given task. For high performance
computing, overlays can also be viewed as basic tools to
speed-up computations by enabling efficient work distribution.

In this paper, we basically structure the computing resources
into a tree overlay. As will be argued later, a tree allows us
to cope with basic distributed tasks, such as work distribution,
and termination detection, in a simple and flexible manner
without paying so much communication cost.

A. Basic work distribution in a structured tree overlay

Having packed the computing resources into a logical tree
overlay, the application is initially pushed at the root node.
Throughout the algorithm execution, an idle node first chooses
a target peer among its neighbors to send a request asking
for a piece of work. Actually, the strategy for peer selection
plays a key role. In our distributed protocol, an idle node sends
work requests downwards and upwards in the tree. In the down
phase, every idle node first requests its children. Work requests
are sent sequentially by choosing a child uniformly at random
at each step. Then, if and only if all children are idle, a request
is sent at last upwards to the parent. Notice that if a child has in
parallel sent a work request to its parent, then the parent needs
not to request that child, thus saving some communication
steps in our protocol. Actually, this corresponds to a random
work stealing strategy, but considering only the set of children
which has not sent a request upwards yet.

This mechanism explores the locality induced by the over-
lay, as work inside a subtree will always be fully completed
before getting more work from parent node. In addition, this
allows us to easily cope with the difficult termination detection

issue [7] without paying any further communication cost.
In fact, the recursive nature of the distributed work request
protocol guarantees that whenever a node receives a request
from a child then all nodes in the sub-tree of that child have
actually finished their work. Hence, when all the children of
the root make a work request upwards to their root parent and
the root itself has no more work to share, then the root can
declare termination by sending a terminal signal to its children
who further pass on the signal to their children and so on.

B. Cooperative overlay-dependent load-balancing

A challenging issue in dynamic load balancing is to avoid
the situation where many nodes have few amount of work
which is further split into fine grain units, while most of the
work is being processed by few other nodes. This would in
fact lead to the situation where many load balancing operations
are performed, thus inducing a loss in parallel efficiency.

A tree overlay achieves network connectivity at the min-
imum communication cost. It tends to let workload flow
from overloaded nodes to idle ones, thus naturally reducing
imbalance caused by application irregularity while minimizing
communication cost. However, one important limitation of a
tree overlay is to force work to travel only across tree paths.
In our approach, we consider to exploit the tree overlay into
three different and complementary ways at the aim of reducing
workload imbalance and speeding up the computations.

1) Tree degree/diameter: We study the issue of how the
tree should be balanced for optimal performances. For that
purpose, we consider to study different tree structures by
essentially varying the degree of nodes. Intuitively, the higher
the degree of a node is, the smaller diameter of a tree is, so
it let work flows more quickly to achieve better efficiency.
However, there is a threshold value, since if the degree of a
node is beyond this value, the protocol is no longer scalable,
e.g., Master-Worker or Star Topology.

2) Work sharing: We address the issue of what is amount of
work to transfer when distributing the load. We consider the
overlay-dependent strategy where a node divides its current
work into the ratio of its own tree size and the tree size of the
requesting node. Specifically, let u and v be two neighboring
nodes with subtree size Tu and Tv , then either u is the children
of v, or u is the parent of v. In the first case, the amount
of work transferred from v to u is proportional to Tu/Tv .
In the second case, it is in the ratio of (Tu − Tv)/Tu. One
should notice that each node must know the size of its own
subtree and also the size of its parent subtree. This is computed
in a fully distributed manner using a classical converge-cast
process starting from leaf nodes until reaching the root.

3) Bridge edges: We propose to extend the overlay tree
to speed-up work flow from overloaded subtrees to under-
loaded ones. For that purpose, we propose to connect nodes
being far away each other in the tree using bridges. Those
bridge edges are to be viewed as logical shortcuts that can be
traveled by work to reach under-loaded subtrees more quickly.
Actually, bridge edges tend to minimize the dependency of



our protocol on the tree diameter, thus leading to the best
achievable performance of the overlay.

In our message passing distributed implementation, we
allow every node v to further request work from one node u
through a bridge edge bv→u chosen at random. More precisely,
in parallel while requesting its neighbors in the tree, every idle
node v asynchronously sends a work request over bv→u. If u
owns work, then it immediately services v with an amount of
work in proportion to Tv/(Tu + Tv). If u is idle, then this
means that u has already sent an asynchronous work request
through its bridge edge. Whenever an idle node, say r, gets
work from its neighbors or through its bridge, then it services
all nodes from which a work request was received. Let us
remark that this distributed strategy operates in a recursive
manner, implicitly building up a logical cluster of idle nodes.
Consequently, all idle nodes are more likely to cooperate
efficiently in searching for fresh work units.

From a more technical point of view, asynchronous work
requests may cause deadlock issues, e.g., u chooses v as its
bu→v , simultaneously v chooses u as its bv→u and neither u
nor v could get new works. Since the designed overlay assures
that if there is a place which has work, there is always a path
from it to other places in the system, so that this kind of
issues can never happen in our approach. Notice also that
a node could acquire more than one piece of work (from
both a neighbor and a bridge), which we logically append
to each other when computing the amount of work to send to
other requesting nodes. Finally, extending the tree with bridge
edges requires to slightly modify the termination detection
mechanism. In fact, nodes always request their respective
parents at last, but they have to distinguish the case where
some work has been transferred asynchronously over a bridge
edge. This is addressed by simply using aggregated work
request messages without paying further communication cost.

III. APPLICATION CONTEXT

A. Unbalanced Tree Search

As stated previously, UTS [19] was designed to be the rep-
resentative of dynamic applications producing highly irregular
workload. It consists in the parallel exploration/counting of
all nodes of a tree with extreme variation/imbalance in the
relative size of its induced sub-trees, thus making UTS be an
excellent adversary benchmark application for dynamic load
balancing schemes. The reader is referred to [19] for further
details on how UTS benchmark instances are generated.

B. Parallel Branch and Bound

B&B is a technique to find optimal solutions for hard
combinatorial optimization problems coming from several
application fields. It can be viewed as a divide and conquer
algorithm, performing an implicit enumeration of the solution
space corresponding to a given optimization problem. Gen-
erally speaking, B&B is similar to UTS since it consists in
exploring the branches of an irregular/dynamic tree represent-
ing a solution space. However, B&B is more than a benchmark
application with many challenging design issues, e.g., see [12],

[14], [21]. In the following, we sketch the very general outline
of our parallel B&B algorithm. For the sake of simplicity,
we consider a permutation like combinatorial optimization
problem of size s, where the goal is to find one permutation
over s! that maximizes (or minimizes) a given objective
function. The B&B search process can be viewed as exploring
a tree where the root represents the problem to be solved, a
leaf represents a solution (a permutation) and an inner node
represents a partial permutation, i.e., a sub-problem where only
some variables of the permutation are fixed. We then use the
B&B job encoding introduced in [17]. More precisely, the
B&B tree is labeled in such a way, any subtree, corresponding
to a sub-problem, can be uniquely encoded by an interval in
[0, s![. Processing an interval consists in executing a sequential
B&B for the sub-tree relative to the interval. In particular, we
use the well-known algorithm proposed in [16] for bounding
and a DFS traversal for branching. From a parallel point of
view, the interval-based encoding is used as a compact and
flexible data structure allowing us to parallelize the sequential
B&B. In our implementation, we simply consider that the
amount of work, which a node is processing, corresponds to
the length of the interval. Then, a node can divide its interval
into many pieces among idle neighbors at runtime following
the discussed overlay dependent strategy. It is important to
remark that the length of an interval is not representative of
its relative complexity, since B&B can perfectly prune long
intervals very quickly, and the opposite holds as well.

One crucial issue in parallel B&B is that a work (interval)
should not be processed in a completely independent manner
since the upper bound found during the search can impact the
branching and the pruning when processing other works in
parallel. Moreover, different work sharing strategies can lead
to different upper bounds at runtime, thus making the perfor-
mance of parallel B&B sensitive to the parallel exploration
strategy. Thus, unlike UTS, the amount of work relative to a
fixed B&B instance is sensitive to the way work is processed
and shared. In our implementation, we run B&B from scratch
without any specific upper bound. We further use a diffusing-
like distributed protocol allowing each node to share at runtime
the best found upper bound with its neighbors.

As benchmark application, we consider the NP-hard Flow-
shop problem [25], which schedules a set of n jobs over
m machines in order to minimize the total completion time,
i.e., makespan. We consider the well-known Taillar’s instances
(Ta21, · · · , Ta30) of the family Ta-20 ∗ 20, i.e., 20 jobs and 20
machines [25]. Each instance of this family can require up to
around 24 hours to be solved sequentially using one processor.

IV. EXPERIMENTAL ANALYSIS AND RESULTS

All protocols were implemented using low level c++ li-
braries. Two clusters C1 and C2 of the Grid’5000 [13] were
involved in our experiments. Cluster C1 (resp. C2) has 92
nodes (resp. 144 nodes), each one equipped with 2 CPU of
2.5 Ghz intel xeon processor with 4 cores per cpu (resp. 1
CPU of 2.6 Ghz intel xeon processor having 4 cores) and a
network card infiniband-20G. Once some nodes of clusters C1



n Overlay B&B UTS
tavg σ tmax tmin tavg σ tmax tmin

100
TD

dmax = 2 1742.9 35.3 1787 1760 2144 247.14 2506 1863
dmax = 5 927.7 91.07 1049 833 1879.4 47.76 1944 1813
dmax = 10 834.8 27.8 870 799 1756 66.4 1861 1699
TR 1412.4 322.06 1629 774 2162.2 291.88 2555 1862

200
TD

dmax = 2 1231.5 31.09 1265 1180 1617.6 239.6 1877 1278
dmax = 5 670.6 33.06 721 612 1232.8 92.63 1325 1114
dmax = 10 462.2 30.8 512 427 1121.2 64.3 1193 1021
TR 1204.8 253.45 1585 977 1495.8 136.4 1734 1389

TABLE I: Results using B&B Flowshop instance Ta21 and UTS with Binomial benchmark of size 157 billion nodes, i.e.,
generator parameters: (b=2000 q=0.4999995 m=2 r=599). tavg (resp. σ, tmax, tmin) refers to the average (resp., standard
deviation, maximum, minimum) execution time over 10 trials.

or C2 are reserved through the Grid’5000 reservation system,
they are exclusively owned by the user, but the network is
not completely dedicated to that user. In the following ex-
periments, all overlays are built before application execution,
where each core is playing the role of a peer. No specific
binding between peers and cores is adopted, i.e., peers are just
thrown randomly on available cores. After completely built,
the application (UTS or B&B) is pushed into an initial node,
i.e., the root node in case of our approach, MW and AHMW, a
random node in case of RWS, to start the parallel computation
phase. For scale n < 800 cores, we use cores of cluster C1.
For scale n ≥ 800, we use cores from both C1 and C2.

In the remainder, we use notation TR to refer to our
distributed protocol running over a randomized tree overlay
constructed as following. Starting with the first node as root,
each subsequent node chooses uniformly at random a node in
the already constructed tree to be its parent. We use TD to
refer to a deterministic tree overlay with a fixed upper bound
dmax on the maximum number of children per node. More
precisely, depending on the number of peers, the overlay tree
is constructed starting with a root node and packing at most
dmax nodes in the first level. Then, we loop over the nodes of
the new level packing again at most dmax children per node,
and so on. We use BTD to refer to the extended version of TD
(see Subsection II-B), where each node in TD further chooses
a random bridge edge to ask in parallel for work.

A. Property analysis of our approach

We start our experimental study by analyzing the impact of
overlay properties and work sharing policies on performances.
In our first set of experiments, we fix one benchmark instance
for each of B&B and UTS and we study the performance of
TD and TR under different overlay configurations. Results are
summarized in Table I. We see that the execution time of the
distributed protocol highly depends on the shape of the tree
overlay. For a deterministic tree, execution time decreases as
we increase the degree. Overall, a deterministic tree performs
better compared to a randomized one (TR). We also observe
that as we increase dmax, the protocol becomes more stable,
i.e., the standard deviation σ decreases. In fact, as the degree
of the tree increases, the distance between computing nodes
decreases, thus making workload flows more quickly.
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Fig. 1: Top: Execution time using 500 cores as a function of
dmax for two B&B instances (Ta21 and Ta23). Bottom: Num-
ber of messages sent by each peer respectively for instance
Ta21 and Ta23. The x-axis refers to node identifiers where
nodes are numbered in a BFS manner, i.e., the root has id 0,
nodes in the first level have ids 1 to 10, and so on.

To fully understand the impact of tree degree and diameter
on execution time, load distribution and any congestion in the
network, we conduct a second set of experiments at the higher
scale of 500 cores. One can clearly see (Fig. 1 Top) that by
increasing tree degree we gain in execution time, but quickly
the gain becomes marginal as we increase the degree beyond
some threshold (around 6). In fact, workload flows faster for
large degree since the distance between nodes is minimized.
However, this has a price, as confirmed by the distribution
of message requests over tree nodes (Fig. 1 Bottom). Al-
though execution time tends to decrease for larger degrees,
communication load gets higher at intermediate nodes, i.e.
message traffic is mostly supported by non-leaf tree nodes,
thus inducing communication delays at those nodes.

In our third set of experiments, we focus on the performance
of our strategy compared to the situation which the amount of
transferred work is fixed by a parameter. More specifically,
we consider the widely used strategy of dividing work in



two halves. We report execution time obtained for ten B&B
instances at a scale of 200 cores and for UTS up to a scale
of 128 cores in Fig. 2 Top Left and Bottom, respectively.
One can clearly see that our subtree proportional work load
distribution performs substantially better than the steal-half
strategy, independently of B&B, UTS and network scale.
In Fig. 2 Top Right, we draw the total number of work requests
injected to the network by both strategies. We can clearly see
that execution time and work requests are perfectly correlated.
Thus, we can say that the overlay proportional strategy tends
to guide the load balancing operations in order to result in
the best performance. Recall that too few or too many load
balancing operations both cause the imbalance situation from
which the performance can fall down [19], [20].

We conclude this section by remarking that although the
ten B&B Flowshop instances have the same theoretical size,
their effective complexity may vary substantially making some
instances harder to solve than the others. This can be attributed
to two facts: (i) depending on the instance, B&B is able prune
the search space more or less quickly, and (ii) work distribution
implies starting exploring one region in the solution space
before another one which can impact the best found solution
upper bound, thus execution time.
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Fig. 2: Comparison with steal-half: Top Left (resp. Right) :
Execution time (number of work requests) using 200 cores for
the 10 B&B instances. Bottom: Execution time for UTS as a
function of overlay size n.

B. TD and BTD vs Hierarchical Master-Worker for B&B

In this section, we compare our approach with the so-
called adaptive hierarchical master-worker (AHMW) approach
studied very recently in [2], [3], specifically for B&B. AHMW
is mostly related to our work since it explicitly organizes
computing nodes in a tree hierarchy, and then adapts the
computations according to that tree. For the paper to be
self-contained we recall the design principles and distributed
policies used for AHMW. For further details on AHMW,
the reader is referred to [2], [3]. Let us first notice that the
parallel B&B-specific search algorithm induced by AHMW

is conceptually different from our overlay approach in all
aspects, i.e., work coding, work processing and work-sharing.
In AHMW, computing nodes are organized in a hierarchical
topology, thus inducing a tree backbone. Every node can both
play the role of a master and/or a worker, depending on its
height in the hierarchy. Furthermore, masters belonging to
the same hierarchy level can directly communicate and share
work with each other. The global B&B search tree is then
decomposed into B&B subtrees which are mapped into the
master hierarchy dynamically at runtime. In fact, the general
idea of AHMW is to adapt the size of the B&B sub-trees being
processed by each master/worker in an attempt to balance
the load evenly. Roughly speaking, each master owns a work
pool corresponding to sub-problems partially explored in its
corresponding B&B sub-tree. When the work pool becomes
empty, a master steals a sub-problem from its parent. It then
re-generates a new work pool, and so on. B&B work grain
plays a crucial role in AHMW. It corresponds to the depth at
which a master/worker is allowed to explore a sub-problem. It
is tuned to be a function of every master level in the overlay
hierarchy which is shown to allow efficient and adaptive B&B
work distribution among masters. (Notice that AHMW [2], [3]
is argued to perform best when the tree hierarchy has degree
10, which is in a way consistent with our study). The results
obtained with AHMW at scale of 200 cores in comparison with
our approach for configurations TD, BTD and dmax = 10, are
summarized in Table. II.

TD, dmax = 10 BTD, dmax = 10 AHMW [2], [3]

Ta21 499 354 15804

Ta22 430 224 438

Ta23 1183 791 776

Ta24 368 194 3352

Ta25 762 404 2652

Ta26 664 472 3231

Ta27 523 346 445

Ta28 112 65 1208

Ta29 330 68 325

Ta30 55 29 303

TABLE II: Execution time (in seconds) of TD and BTD
compared with AHMW at scale of 200 cores. Bold style refers
to execution time better than AHMW.

Using TD, we perform substantially better than AHMW for
7 out of 10 instances. Using BTD, our approach performs better
than AHMW for 9 out of 10 instances. One can clearly see
the relatively huge gap between AHMW and our approach,
e.g., over all instances, BTD (resp. TD) is approximately 10
(resp. 5) times faster than AHMW. This set of experiments
also shows that BTD performs significantly better than TD.
This is naturally attributed to the bridge edges which are fully
playing their role of speeding up workflow through the tree.

C. BTD vs Master Worker vs Random Work Stealing for B&B

From a combinatorial point of view, the B&B search
induced by AHMW is conceptually different from the one
induced by our work coding and work sharing approach.
In addition, the load-balancing policy developed in AHMW



specifically for B&B cannot be applied with the B&B interval-
based work encoding used in our approach. Thus, to fully
appreciate the performance of our approach independently
from any B&B specific technicalities, we further compare it
to the Master Worker (MW) approach studied in [17] and the
well-known Random Work Stealing (RWS). For completeness,
the important implementation issues raised by these two
approaches are sketched below.

Firstly, the B&B specific operations used in MW [17] are
similar to our approach in all aspects. However, the load-
balancing and work distribution operations are fundamentally
different. In particular, they are tuned to take into account
specific properties of B&B works. This makes the MW
approach to be an interesting candidate for evaluating the
performance of our generic load-balancing scheme. In MW,
there is a unique master playing the role of managing a global
work pool for workers. The work pool at the master consists
of a set of unprocessed B&B intervals and their corresponding
workers. Workers periodically communicate with their master
in order to update those intervals which have already been
completed, and to acquire fresh work whenever their local
work pool becomes empty. Whenever a master is asked for
work, it chooses a B&B interval having the largest length and
splits it to two halves. The right half is then transferred to the
requesting worker, and the worker owning the original interval
is notified. Actually, this corresponds to an asynchronous steal-
half approach which is tuned at the aim of minimizing the
communication bottleneck around the master. However, be-
cause the master could assign works which are not completely
disjoint to different workers, some kind of redundancy may
appear when executing the B&B in parallel. This issue is well
studied in [17] and was shown to have very negligible impact
on overall performance, i.e., the redundancy reported in [17]
is of only 0.39% (in terms of B&B explored nodes).

Secondly, in RWS, an idle node selects at random another
node and tries to steal work from it. We consider the standard
steal-half strategy when transferring work among nodes. Be-
sides, a critical issue relative to RWS, is to distributively detect
termination without disturbing non-idle nodes and without
congesting the network. In our implementation of RWS, we
use the standard tree based Dijisktra termination detection
algorithm taken from previous work stealing studies [11], [15].
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Fig. 3: Execution time of BTD, RWS and MW for B&B
instances at scale of 200 cores.

The performance of BTD, MW and RWS for B&B is
evaluated through a set of experiments at scale of 200 cores

as reported in Fig. 3. Two conclusions can be withdrawn
from this set of experiments. On one side, BTD performs
essentially better than MW and RWS. More precisely, BTD
outperforms on 7 out of 10 instances (Over all instances,
BTD is able to improve performance by up to 16% and 22%
when compared to MW and RWS, respectively). On the other
side, one can also see that the relative performance of the
three approaches varies depending on the considered instance.
Particularly, although the MW may seem rather simplistic at
a first side, it is actually very competitive against RWS which
is a reference approach for dynamic load balancing. This can
be attributed to two facts: (i) The MW approach of [17] is
well tuned to perform efficiently for B&B, and (ii) Such a
centralized approach, which all dependencies are concentrated
at a single point (the master), works well at a relatively low
network scale. In next section, the relative scalability of the
three approaches is analyzed in detail for both B&B and UTS.

D. Scalability of BTD vs MW vs RWS for B&B and UTS

We start studying the relative scalability of our approach
for parallel B&B and then we conclude with UTS. For B&B,
we consider instance Ta21 and Ta23, for which we found
that MW and RWS perform better than our BTD scheme at
scale 200 cores. Then, we push our experiment further by
scaling up to 1000 cores. As it can be observed in Fig. 4,
the performance of MW starts to slow down while scaling up.
Specifically, when using more than 600 cores, the execution
time of Ta21 starts to increase rapidly and the execution time of
Ta23 decreases very marginally. This is attributed to the severe
communication bottleneck at the master caused by fine-grain
works. This contrasts with our BTD scheme which is fully
distributed so that it continues scaling for both Ta21 and Ta23
while efficiently distributing communication load with fine-
grain works.
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In Fig. 5 Top, we report the execution time and the cor-
responding parallel efficiency of BTD against RWS for the
two instances Ta21 and Ta23. One can clearly see that RWS
stays competitive up to 400 cores, but then it deteriorates dra-
matically compared with BTD. Specifically, while the parallel
efficiency of BTD decreases marginally and stays above 90%
(resp. 96%) for Ta21 (resp. Ta23) in the scale of 1000 cores,
it drops down quickly for RWS reaching 52% (resp. 63%) for
Ta21 (resp. Ta23). The relative scalability of BTD is confirmed
when executed for the UTS benchmark as shown in Fig. 5



Bottom. The parallel efficiency of BTD is in fact substantially
better than RWS, i.e, 77% vs 64%, using 512 cores.
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Several conclusions can be drawn from this last set of exper-
iments. For relatively low network scales, RWS is confirmed to
be very competitive which is consistent with previous studies.
However, there is still an opportunity for further improvements
as demonstrated by our BTD scheme which carefully explores
the tree overlay properties. In fact, by simply extending tree
paths with bridge edges, we allow work to flow more quickly.
The load is then balanced more efficiently improving on
RWS. At larger scales, RWS reaches its limits, since idle
nodes try to catch victims ’blindly’ using random requests.
RWS can in fact be considered as operating over a fully
connected overlay which implies communication overheads to
find work. In contrast, our overlay centric approach tends to
minimize communication delays by distributing the load in a
more deterministic/cooperative manner and the gain in parallel
efficiency, thus in speed-up, becomes substantial as we scale
up the network.

V. CONCLUSION AND FUTURE WORK

In this paper, we adopt an overlay-centric distributed strat-
egy for dynamic load balancing in order to counteract the
unpredictable nature of work induced by highly irregular ap-
plications. We study the properties of our approach compared
to three state-of-the art approaches by conducting extensive
real and large scale experiments using parallel B&B and UTS.
In particular, by tightly coupling transferred workload and
overlay properties, we are able to improve on previous results
while scaling up to 1000 cores. As future work, we are aim-
ing at designing new overlay based load-balancing strategies
specific to large scale heterogenous distributed environments.
In fact, we believe that mapping computing nodes into an
overlay structure which is specifically adapted according to the
nature of computing resources (e.g., multi-core, clusters, GPU,
etc) would greatly help in guiding distributed load-balancing
protocols through high performance and scalability.
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