
HAL Id: hal-00728871
https://hal.inria.fr/hal-00728871

Submitted on 7 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TRASA: TRaffic Aware Slot Assignment Algorithm in
Wireless Sensor Networks

Ichrak Amdouni, Pascale Minet

To cite this version:
Ichrak Amdouni, Pascale Minet. TRASA: TRaffic Aware Slot Assignment Algorithm in Wireless
Sensor Networks. ICCIT 2012 – Second International Conference on Communications and Information
Technology, Jun 2012, Hammamet, Tunisia. �hal-00728871�

https://hal.inria.fr/hal-00728871
https://hal.archives-ouvertes.fr

TRASA: TRaffic Aware Slot Assignment Algorithm
in Wireless Sensor Networks

Ichrak Amdouni and Pascale Minet
INRIA Rocquencourt

78153 Le Chesnay cedex, France
Email: ichrak.amdouni@inria.fr, pascale.minet@inria.fr

Abstract—In data gathering applications which is a typical
application paradigm in wireless sensor networks, sensor nodes
may have different traffic demands. Assigning equal channel
access to each node may lead to congestion, inefficient use of
the bandwidth and decrease of the application performance. In
this paper, we prove that the time slot assignment problem is
NP-complete when p−hop nodes are not assigned the same slot,
with 1 ≤ p ≤ h for any strictly positive integer h. We propose
TRASA, a TRaffic Aware time Slot Assignment algorithm able
to allocate slots to sensors proportionally to their demand. We
evaluate the performance of TRASA for different heuristics and
prove that it provides an optimized spatial reuse and a minimized
cycle length.

I. CONTEXT AND MOTIVATIONS

A typical application in Wireless Sensor Networks (WSNs)
is data gathering. Sensor nodes are deployed in the region
of interest to periodically collect and report sensed data to a
sink node. To achieve this many-to-one communication, sensor
nodes form a data gathering tree rooted at the sink. This
communication paradigm is also known as ”convergecast” [1].

Depending on the application requirement, different objec-
tives have to be taken into account in the design of MAC
protocols. For instance, reliability is required mainly in critical
applications like fire detection. In this disaster scenario, reduc-
ing the end-to-end delays is also a major requirement. Energy-
efficiency is an important concern specially when sensors are
operating for a long period of time. It has been proved that,
under heavy traffic conditions, contention-free medium access
based on TDMA outperforms contention-based protocols.

The main task of TDMA-based MAC protocols is to assign
time slots to sensor nodes and to schedule the medium
access based on these slots. The transmission schedule allows
nodes to send and receive data packets without collision.
Further, any node can enter into sleep mode during inactive
periods, thus achieving low duty cycle and saving energy.
Although the use of TDMA requires synchronization between
cooperating sensors, it is an efficient way of mitigating the
limitations of CSMA based networks. However, the perfor-
mance of the TDMA-based medium access protocols may
dramatically decrease if the TDMA parameters are not aware
of the application requirements [2]; for example, a very long
frame may increase the latency. Moreover, traditional MAC
protocols tend to give nodes equal channel access, while
the sensor traffic demands may differ. Indeed, nodes close
to the sink forward more data than leaf nodes in the data

gathering tree. This is the ”funneling effect” [3]. Allocating
equal numbers of time slots to sensor nodes may lead to
congestion, packet loss, and inefficient use of the bandwidth.
Consequently, channel access should be proportional to the
sensor demand. That is why we investigate in this paper the
Time Slot Assignment problem, denoted TSA, regarding the
application requirements. We propose TRASA, TRaffic Aware
Slot Assignment algorithm for WSNs. Assuming a sensor
network where each node has a specific number of packets
to transmit to its parent in the data gathering tree, TRASA
assigns each node a number of slots proportional to its traffic
demand, and schedules its activity. Moreover, TRASA allows
the allocation of slots to nodes with heterogeneous demands.
Consequently, the algorithm addresses the funneling effect and
ensures a fair medium access. TRASA builds a schedule and
ensures that data reach the sink in one cycle. TRASA takes into
account both tree communication links and other interfering
links. Via simulations, we evaluate the impact of interfering
links on TRASA algorithm, and show that as the spatial reuse
decreases, the schedule length increases. Since the time slot
assignment problem is NP-complete as we will prove hereafter,
TRASA relies on an heuristic determining the priority of each
node. We compare this heuristic with another heuristic and
justify that TRASA ensures an optimized schedule length and
a good tradeoff between the schedule length, the average end-
to-end delay and the maximum buffer size required by each
node.
The remainder of this paper is organized as follows. In
section II, we provide a state of the art about the TSA
problem. In section III we describe the assumptions adopted
and define the problem statement. In section IV, we prove that
the TSA problem is NP-complete, assuming that two nodes
that are h-hop away, with h a positive integer > 1 interfere.
Section V describes the TRASA algorithm and its properties. In
section VI, we present the performance evaluation of TRASA
and conclude in section VII.

II. STATE OF THE ART

Despite the existence of a variety of scheduling schemes,
few of them allocate a number of slots proportional to node
demand. In this section, we present a state of the art of existing
schemes classified according to their awareness of the traffic
demand. This classification is illustrated in Figure 1.
◦ Protocols that do not depend on the traffic demand,
or assume that nodes aggregate all the data they have to

Fig. 1. Taxonomy of time slot assignment techniques.

transmit in a single time slot:
With these protocols, any node receives exactly one slot. For
space reasons, we do not detail here this class of algorithms.
◦ Traffic aware protocols:
In these protocols, the number of slots received by a node
depends on its traffic demand. We present some examples of
TSA algorithms classified according to their main objective.
Notice that one algorithm may satisfy more than one objective.
1) Maximizing throughput of received data at the sink:
In [3], Gahng et al. presented Funneling-MAC to mitigate
the funneling effect and boost application fidelity in WSNs.
Funneling-MAC is hybrid, TDMA is used within small num-
ber of hops from the sink (called the intensity region), and
CSMA/CA elsewhere. The sink is responsible for the schedul-
ing of the nodes in this intensity region. Funneling-MAC
allows the slot reuse between nodes distant more than 2 hops.
The main goal of TreeMAC [15] is to achieve high through-
put in real-time high-data-rate WSNs. Authors proved they
achieve at least one-third of the optimum throughput assuming
reliable links. In TreeMAC, slots are assigned from the root
to the leaves, making it not suitable for large-scale networks.
TreeMAC allows a slot reuse between nodes belonging to the
same tree branch, but not between the subtrees. From energy
point of view, authors show that TreeMAC outperforms CSMA
and Funneling-MAC [3]. However, nodes in Tree-MAC are
assigned disjoint transmitting time slots, which means that if
the node can sleep between its transmitting slots, it should
awake up many times to transmit and receive its data. The
transitions between radio states are energy-consuming, so
should be reduced.
2) Minimizing latency:
ROMAC [16] is a localized QoS-aware for high-fidelity data
center sensing networks. Like TreeMAC, ROMAC divides
the TDMA cycle into frames, each frame being composed
of three slots and allocates slots to nodes proportionally to
their demand. Compared to TreeMAC, ROMAC enhances the
localization aspect, since each node can locally determine
its frame and its time slots without relying on its parent
like in TreeMAC. The node with identifier i transmits its
own data in the frame i, and transmits the packets of any

node j in its subtree in the jth frame. Unlike TreeMAC
and Funneling-MAC, ROMAC automatically adapts to routes
changes, any node updates its set of frames every TDMA
cycle. Consequently, ROMAC achieves lower delivery latency
than these two protocols as the network size increases.
3) Minimizing schedule length:
Incel et al. [1] aimed at reducing the delays of data collection
by minimizing the schedule length. They studied scheduling
nodes where each node generates a packet at the beginning
of the TDMA frame, in convergecast scenario keeping tree
interference links only. They proved that the lower bound on
the schedule length is given by: (1) the maximum node degree
when packet aggregation at each intermediate node is consid-
ered, and (2) max(2nk − 1, N) where nk is the maximum
number of descendants of the sink children, otherwise. For
this second case, authors proposed Local-TimeSlotAssigment
algorithm in which the sink schedules an edge having the
highest remaining number of packets, and any parent node
with an empty buffer selects one child whose buffer is not
empty at random respecting tree interfering links. This way,
they ensure parallel transmissions among multiple branches
of the tree, and keep the sink busy in receiving packets.
In [20], authors proposed algorithms based on coloring. Two
centralized solutions are described. First, in the node-based
scheduling any slot is shared between nodes with the same
color and any other node that does not conflict with them.
Second, in the level-based scheduling, conflicts are defined
between levels: the same color is assigned to two levels if they
do not contain any couple of conflicting nodes. For each color,
non conflicting nodes from all the levels having this color share
the same slot. Besides other nodes that do not conflict with
already scheduled nodes are scheduled simultaneously. This
algorithm suffers from the energy waste because of the radio
switches between active/sleep states.
4) Minimizing the energy consumption:
In [17], Turau et al. proposed SPR, to schedule each path in
the routing tree separately. The slots assigned to any node are
the union of its slots in each path. Hence, the spatial reuse of
time slots is restricted to a common path, which makes SPR
not efficient in terms of schedule length for networks where

the average number of children is high. Another example in
this category is given in [18] where the energy efficiency is
achieved by reducing the number of switches between the
active and sleep states.

III. TIME SLOT ASSIGNMENT PROBLEM

In this section we present the assumptions we adopt to study
the time slot assignment problem TSA.

A. Assumptions and system model

◦ Network model: The network is modeled as a graph
G = (V,E), V is the set of vertices, and E is the set of
edges representing the communication links. T is a spanning
tree of G rooted at the sink node. We adopt the unit disk
model, where nodes are modeled as a set of points in the
2-dimensional plane. Besides, there is no message losses. A
node u receives a message sent by another node v, if and only
if, their distance is lower than a given uniform transmission
range R. Nodes u and v are then 1-hop neighbors. For any
integer h > 1, any two nodes u and v are h-hop neighbors if
and only if u is (h− 1)-hop away from a 1-hop node of v.
◦ Interfering links: Usually, in a data gathering application,
the communications of a node are limited to its parent and its
children. However, any node may have communication links
with other nodes. If these links are not taken into account
in node scheduling, collisions may occur. Hence, for a given
node, we include all its interfering links, those in the tree and
other ones. In the literature, solutions to the TSA problem for
data gathering applications tend to limit the interferences to 2
hops. However, in real wireless networks, interferences may
exceed this distance. Consequently, to generalize our study, we
assume that two nodes that are p-hop away with 1 ≤ p ≤ h
are interfering. h being a given positive integer > 1 which is
a parameter of our algorithm. Hence, we denote the studied
problem h TSA.
◦ Application data: We consider a data gathering application.
In each TDMA cycle, each node except the root has its own
data to transmit in addition to the data received from its
children. Some nodes (for example, the children of the sink),
need more than one slot to transmit their data.

B. Problem statement

We study the slot assignment problem under the assump-
tions introduced in Section III-A. The slot assignment problem
consists in assigning slots to nodes in G, such that no two
nodes that are p-hop away with 1 ≤ p ≤ h are scheduled in
the same slot while minimizing the schedule length. Besides,
this scheduling must ensure that each node transmits its own
packets, and the packets generated in its subtree.

C. Lower and upper bounds

Theorem 1: The number of slots required by the TSA
problem meets:

Number of nodes−1 ≤ Number of slots ≤
∑

node u

depth(u),

(1)

where depth(u) is the depth of node u in the tree.
Proof: In the best case, all the sink children transmit their

packets in sequence. Indeed, there is no possible spatial reuse
between sink children. Hence the lower bound. In the worst
case, each slot corresponds to a single packet transmission.
The number of slots needed by any packet generated by any
node u at depth d in the data gathering tree is equal to d.
Hence the upper bound.

IV. COMPLEXITY OF THE h TSA PROBLEM

It has been proved in [19] and [20] that the TSA problem is
NP-complete. In this paper, we generalize the study and prove
that the h TSA problem is NP-complete for any positive
integer h where any two nodes that are less than or equal
to h-hop away are not scheduled simultaneously.

Theorem 2: The h TSA problem, for any positive integer
h ≥ 1 is NP-complete.

Proof: The decision problem of h TSA is given by: Can
nodes in a graph G be assigned S time slots (S is a positive
integer) during which they can transmit their data to a sink
node, such that any two nodes that are p-hop away, with
1 ≤ p ≤ h, are not assigned the same time slot?
To prove that the decision problem of h TSA is NP-complete,
we use the knowledge that the h Color problem is NP-
complete [21]. In [21], the h Color problem is defined as
coloring a graph with the smallest number of colors (a color
is represented by an integer) such that any two nodes that
are p-hop away with 1 ≤ p ≤ h, do not have the same color.
In addition, the color assigned to any node is smaller than
the color assigned to its parent in the data gathering tree.
We need to prove that finding a solution to h TSA is
equivalent to finding a solution to h Color.

Let G be a connected, undirected graph, and T its span-
ning tree. Notice that the construction of T can be done in
polynomial time. Each node u in G has traffic demand du.
Let CG be a coloring of G solving the h Color problem and
using the colors c1, c2, . . . , cmax. Let Ni be the set of nodes
having the color ci. We can build a slot assignment for nodes
in G as follows. We sort the colors by increasing order. For
the smallest color ci not yet considered, we add to the cycle a
number of slots equal to the maximum traffic demand of nodes
in Ni, denoted maxdi. Then, nodes in Ni are scheduled during
these slots, each one has a number of slots equal to its traffic
demand. Consequently:

1) This scheduling is conflict-free, nodes that are scheduled
simultaneously have the same color, and hence do not
interfere.

2) The scheduling allows each node to transmit all the data
it has since it is assigned a contiguous number of slots
equal to its demand. Besides, this scheduling ensures
that each parent node accesses the medium after all its
children, because it has a higher color than them, and
slots are assigned to nodes having the smallest colors
first.

3) The number of slots used is equal to S =
∑cmax

i=1 maxdi.
Figure 2 illustrates the proof.

(a) (b)

Fig. 2. An example illustrating the proof of the NP-completeness of TSA
problem.

Inversely, given a scheduling of G, composed of S slots,
we need to color the graph according to the h Color problem.
We denote Ss = s1, s2, . . . , ss the sequence of slots such that
during each slot si at least one node is scheduled for the last
time in the TDMA cycle. Then, for each slot si in Ss we
assign the color i to all uncolored nodes occupying si such
that si is their last time slot. Consequently, we get a number
of colors bounded by the cardinal of Ss. The same color is
assigned to nodes scheduled in the same slot, so the coloring
is collision-free. Further, since the last slot of each parent can
not be scheduled before the last slot of any of its children,
each parent has a color greater than the color of its children.
Hence the theorem.

V. TRASA ALGORITHM: DESIGN AND PROPERTIES

A. Overview and algorithm

The requirements of data gathering applications are various:
a short TDMA cycle, a high throughput at the sink, small
delays and low energy consumption. TRASA addresses these
issues by maximizing the slot reuse in a cycle. Moreover, by
favoring nodes with a high number of descendants, TRASA
tends to minimize the TDMA cycle length and then saves
energy. Figure 3 shows the slots computed by TRASA applied
to the graph in Figure 2(a).

Fig. 3. An example of slot assignment by TRASA.

As the h TSA problem is NP-complete, heuristics must be
used. In TRASA, sensor nodes are sorted according to their
priority. The priority of a node is given by the number of its
descendants in the data gathering tree. Which means that the
nodes close to the sink have the highest priority. The reasons
for this choice are threefold: (1) Nodes with many descendants
need to forward more packets than others, so scheduling them
as soon as they have data avoids the congestion, and allows
them to use less buffers. (2) The children of the sink are
interfering, only one child can be active in a slot. They are the
most determining factors of the schedule length (their number
represents the lower bound of the number of slots). We believe
that scheduling them first achieves a higher flexibility. (3) The

Algorithm 1 TRASA algorithm.
1: Input: a connected graph G, and its spanning tree T , where

each node u has du packets to transmit
2: Output: Cycle: the TDMA frame with the assigned slots

per node
3: Cycle.endingSlot = 0 /*the last slot assigned during the

current iteration*/
4: Cycle.lastEndingSlot = 0 /*the first slot assigned

during the current iteration*/
5: while (There is at least one node having data to transmit)

do
6: Ns = List of nodes having data to transmit sorted

according to their priority
7: u = node with the highest priority in Ns

8: Cycle.addSlot(du) /*du slots are added to Cycle*/
9: Cycle.lastEndingSlot = Cycle.endingSlot

10: Cycle.endingSlot += du
11: u.schedule.add((Cycle.lastEndingSlot,du))
12: u.demand -= du
13: u.parent.demand += du
14: for node v in Ns do
15: if (v 6= u) && (v has dv 6= 0 packets) && (v

does not interfere with nodes occupying the slots between
lastEndingSlot and endingSlot) then

16: d=Cycle.endingSlot-Cycle.lastEndingSlot
17: if (dv > d) then
18: Cycle.add(dv − d)
19: Cycle.endingSlot+=dv − d
20: end if
21: v.demand -= dv
22: v.parent.demand += dv
23: end if
24: v.schedule.add((Cycle.lastEndingSlot, dv))
25: end for
26: end while

probability of the sink to be in receive state each time slot
is high, and similarly the throughput measured at the sink
increases.
The pseudo-code of TRASA is given by algorithm 1.
Once the nodes are sorted, the node u with the highest
priority is given a number of slots equal to its packet demand.
This is because we assume for simplicity reasons that a
time slot contains only one packet. Notice that TRASA is
able to take into account sensor nodes with heteregeneous
data rates. TRASA assigns node u du slots between indices
lastEndingSlot and endingSlot. Aiming at reducing the
schedule length, TRASA achieves an optimized slot reuse. That
is, a new time slot is added to the TDMA frame, if and only
if, nodes having remaining data, could not be scheduled in
the last time slot. The only limiting factor of the parallelism
is the interferences which have to be considered to achieve a
collision-free schedule. So to schedule other nodes simultane-
ously with the node u, TRASA iterates on the nodes having
data to transmit according to the descending order of their
priority. If a node v has packet(s) to send and is not interfering

with nodes already scheduled between lastEndingSlot and
endingSlot, v is scheduled in parallel with these nodes. The
number of slots assigned to v is equal to its demand dv . Notice
that dv may be higher than endingSlot − lastEndingSlot,
in this case, the TDMA cycle is extended. TRASA stops when
all nodes have transmitted all data they generated, and all data
they received from their children.

B. TRASA properties

In this section, we discuss the properties of TRASA, and
explain how it takes into account various performance criteria.
P1. Fair Access: The first key design of TRASA is to ensure a
fair medium access to all nodes. A time slot being associated
to a unique packet, a node has as many slots as packets to
transmit. In a data gathering tree, any node traffic demand is
the sum of the packets it generates and the packets generated
in its subtree. TRASA assigns each node as many slots as its
traffic demand. Hence, TRASA addresses the funneling effect
and avoids congestions.
P2. Optimized spatial reuse: TRASA assigns slots to nodes
in the order of their priority. When any node is scheduled, all
non interfering nodes are scheduled simultaneously. Hence,
the slot reuse is optimized, it is not restricted to a common
branch, like [15], or inter-branches, like [17]. This spatial reuse
provides an efficient use of the bandwidth.
P3. Optimized schedule length: In TRASA, the TDMA frame
is extended by a time slot if and only if the nodes with a packet
demand cannot be scheduled in the last added slot, because
of the interferences. This behavior reduces considerably the
schedule length. For instance, applied to the graph of Fig-
ure 2(a) for h = 2, TRASA gives a cycle length of 7 slots as
illustrated by Figure 3. The cycle length would be 12 slots
with TreeMAC.
P4. Optimized energy consumption: Minimizing the number
of slots in a cycle reduces the activity periods and allows
nodes to save energy. Besides, when any node is scheduled,
it is allowed to send all data it has, which reduces the
switches between the active and sleep states which are energy-
consuming. With TRASA, any node is awake during its slots
to transmit data and the slots of its children to receive data
they transmit, it sleeps the remaining time to save energy.
P5. Optimized buffer usage: In WSNs, nodes have low
capacity of storage. Accumulating many packets in a node
may lead to buffer overflow and packet losses. In TRASA, the
buffer usage is balanced during the TDMA frame. Indeed, only
nodes having packets to transmit compete for a given time
slot. Since the priority used is the number of descendants,
the priority of any node is higher than the priority of all its
children. Consequently a parent having data to transmit is in
general scheduled before its children, so does not accumulate
much data.
P6. Optimized delays and throughput: The optimized slot
reuse of TRASA can be seen as a parallel progress of packets
toward the sink, and in a balanced way between tree levels and
subtrees, as much as allowed by the interference constraints.
Consequently, the end-to-end delays are reduced. Furthermore,
nodes close to the sink have the highest priority. This increases

the probability that the sink receives data in a time slot, and
hence enhances the data throughput. By construction of the
cycle, TRASA guarantees that all data generated by nodes reach
the sink in one cycle.

VI. PERFORMANCE EVALUATION

A. Simulation setup

Using a graph generator, we generate random graphs for
a given number of nodes deployed in a 2D area (1mx1m),
the transmission range is set to 0.4m. The number of nodes
ranges from 20 to 100. For each graph, we build a spanning
tree defined by a maximum number of children per node.
Notice that if the graph is disconnected, the construction of
the tree is not possible. The corresponding graph is then not
considered in the simulation process. The tree is built by
adding children nodes consecutively. The first added node is
the root. Any neighbor u of the root selects it as a parent if
the maximum number of children (which is set to 3) is not
reached by the sink. Otherwise, such a node u tries to associate
to another node. This process continues until all nodes have
a parent. Notice that implicitly, each node selects the parent
with the minimum number of hops toward the sink, provided
that this parent can accept further children. We assume that
interferences are limited to 2-hops (h = 2), as usually assumed
in TSA problems. Each node generates only one packet, and
forwards packets it receives from its children. For simplicity
reasons, we also assume that a slot contains only one data
packet. Each result is the average of 40 simulation runs.

B. Simulation results

1) Choice of the heuristic: In TRASA, nodes are sorted
according to their priority which is given by their number
of descendants. This heuristic is denoted heuristic = 1.
To validate this design choice, we compare this heuristic
with another one, denoted heuristic = 2, where nodes
with the highest number of descendants have the smallest
priority. Figure 4(a) shows that heuristic = 1 outperforms
heuristic = 2 in terms of slot number. This is because
the slot reuse is increased, as illustrated in Figure 4(b).
Figure 4(d) shows that the maximum size of buffers required
by a node in heuristic = 1 is lower than in heuristic = 2.
Indeed, when leaf nodes are scheduled first, a node is likely
to accumulate packets before being able to transmit them.
Whereas heuristic = 1 gives opportunity to nodes to send
data as soon as possible, which considerably reduces average
end-to-end delays as illustrated in Figure 4(c). However,
nodes may access the medium more frequently during one
TDMA cycle, which adds an energy cost when the number of
switches between active and sleep state increases. For these
reasons, heuristic = 1 is preferable and is selected in the
following.

2) Impact of interference links: To evaluate the impact of
the interference links on TRASA performance, we simulate
two cases: (1) when all interfering links are considered;
(2) when only tree links are considered. As expected, the
schedule length in the first case is higher. For instance the

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 25 30 35 40 45 50

N
u

m
b

e
r

o
f

s
lo

ts

Number of nodes

heuristic=1

heuristic=2

(a)

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 1.32

 1.34

 20 25 30 35 40 45 50

S
lo

t
re

u
s
e

Number of nodes

heuristic=1

heuristic=2

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 20 25 30 35 40 45 50

A
v
e

ra
g

e
 d

e
la

y
(n

u
m

b
e

r
o

f
s
lo

ts
)

Number of nodes

heuristic=1
heuristic=2

(c)

 0

 5

 10

 15

 20

 25

 30

 35

 20 25 30 35 40 45 50

M
a

x
 b

u
ff

e
r

s
iz

e

Number of nodes

heuristic=1

heuristic=2

(d)

Fig. 4. Impact of the heuristic choice on: (a) Slot number; (b) Slot reuse;
(c) Average delay, (d) Maximum buffer size.

number of slots raises from 88 to 135 for 50 nodes. The
difference increases with the number of nodes as illustrated
in Figure 5(a). For the same density, any node has more
interfering links, so less nodes can be scheduled in the same
slot. This justifies the fact that the slot reuse is higher in
the second case, as illustrated in Figure 5(b). So, to avoid

interferences and achieve collision-free schedule in any real
wireless environment, the cost is the schedule length.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 25 30 35 40 45 50

N
u

m
b

e
r

o
f

s
lo

ts

Number of nodes

All interfering links
Only tree links

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 20 25 30 35 40 45 50

S
lo

t
re

u
s
e

Number of nodes

All interfering links
Only tree links

(b)

Fig. 5. Impact of the interference links on: (a) Number of slots; (b) Slot
reuse.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

s
lo

ts

Number of nodes

One packet
Three packets

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

s
lo

ts

Maximum number of children

#nodes=30

#nodes=40

#nodes=50

(b)

Fig. 6. Impact of (a) Data rate (b) Maximum number of children on the
number of slots.

3) Impact of the number of nodes, the node data rate and
the maximum number of children: For the results illustrated in
Figure 6, the density of nodes (average number of neighbors
per node) varies between 4 and 20. The Figure 6(a) shows
that the number of slots increases with the number of nodes.

This is because the density increases with the number of
nodes, which reduces the spatial reuse of the slots. However,
as the maximum number of children per node increases, the
number of slots decreases (see Figure 6(b)). Indeed, when
the maximum number of children increases, the tree depth
decreases. Consequently, the number of slots required by
each node which is proportional to its subtree size decreases.
TRASA is able to schedule nodes with heterogeneous data
rates. Figure 6(a) shows that the schedule length increases
linearly with the data rate.

VII. CONCLUSION

In this paper we proved that the time slot assignment
problem is NP-complete for any integer h > 1. We presented
TRASA an algorithm that takes into account the application
requirements to schedule nodes using an optimized number of
slots. We have shown its excellent performance on representa-
tive scenarios by simulation. We plan to extend this work by
defining a distributed version of TRASA.

REFERENCES

[1] Incel, D.O., Ghosh, A., Krishnamachari, B., Chintalapudi, K.: Fast data
collection in treebased wireless sensor networks. IEEE Transactions on
Mobile Computing, 2009

[2] Gollan, N.; Schmitt, J., Optimizing TDMA Design for RealTime Applica-
tions in Wireless Sensor Networks, In Proceedings of 6. GI/ITG KuVS
Fachgesprch ”Sensornetze”, Aachen, Germany, p87p90. July 2007.

[3] G.-S. Ahn, E. Miluzzo, A. T. Campbell, S. G. Hong, and F. Cuomo,
Funneling-mac: A localized, sink-oriented mac for boosting fidelity in
sensor networks, in Proc. 4th ACM Conference on Embedded Networked
Sensor Systems (SenSys 2006), Boulder, CO, USA, Nov. 2006.

[4] M. Cardei, D. Du, Improving wireless sensor network lifetime through
power aware organization, ACM Journal of Wireless Networks, May
2005.

[5] M. Cardei, M. Thai, Y. Li, W. Wu, Energy-efficient target coverage in
wireless sensor networks, IEEE INFOCOM 2005, Miami, Florida, March
2005.

[6] J. Carle, D. Simplot-Ryl, Energy-Efficient Area Monitoring for Sensor
Networks, Computer, vol. 37, no. 2, pp. 40-46, Febuary, 2004.

[7] W. Ye, J. Heidmann, D. Estrin, An Energy-Efficient MAC Protocol for
Wireless Sensor Networks, IEEE INFOCOM, New York, USA, June
2002.

[8] T. V. Dam, K. Langendoen, An adaptive energy-efficient MAC protocol
for wireless sensor networks, ACM SenSys’03, November 2003.

[9] G. Lu, B. Krishnamachari, C. Raghavendra, An Adaptive Energy-Efficient
and Low-Latency MAC for Data Gathering in Wireless Sensor Networks,
Parallel and Distributed Processing Symposium, April 2004.

[10] Y. Xu, J. Heidemann,D. Estrin, Geography-informed Energy Conser-
vation for Ad Hoc Routing, In MobiCom ’01: Proceedings of the 7th
annual international conference on Mobile computing and networking
Rome, Italy, July 2001

[11] L. L. Winnie, D. Amitava, C.O Rachel, FlexiTP: A Flexible Schedule-
Based TDMA Protocol for Fault-Tolerant and Energy-Efficient Wireless
Sensor Networks IEEE Transactions on Parallel and Distributed Systems,
19(6), 851-864, June 2008

[12] S. Gobriel, D. Mosse, R. Cleric, TDMA-ASAP: senssor network TDMA
scheduling with adaptive slot stealing and parallelism, ICDCS 2009,
Montreal, Canada, June 2009.

[13] I. Rhee, A. Warrier, M. Aia, J. Min, Z-MAC: a hybrid MAC for wireless
sensor networks, SenSys’05, San Diego, California, November 2005.

[14] P. Minet, S. Mahfoudh, SERENA: SchEduling RoutEr Nodes Activity in
wireless ad hoc and sensor networks IWCMC 2008, IEEE International
Wireless Communications and Mobile Computing Conference, Crete
Island, Greece, August 2008.

[15] W. Z. Song, R. Huang, B. Shirazi, and R. LaHusen, TreeMAC: Localized
TDMA MAC Protocol for Real-time High-data-rate Sensor Networks,
Journal of Pervasive and Mobile Computing, Percom 09, Vol. 5, No.
6. (2009), pp. 750-765.

[16] Huang R.; Song W.Z.; Xu M.; Shirazi B., Localized QoS-Aware Media
A ccess Control in High-Fidelity Data Center Sensing Networks, The 1st
International Green Computing Conference, 2010

[17] Turau .; Weyer C.; Renner C. Efficient Slot Assignment for the Many-to-
One Routing Pattern in Sensor Networks., First International Workshop
on Sensor Network Engineering (IWSNE’08), Santorini Island, Greece.,
June 2008.

[18] Mao J., Wu Z., Wu. X, 2007. A TDMA scheduling scheme for many-
to-one communications in wireless sensor networks. Computer Commu-
nications. 30, 4, February 2007.

[19] Choi H.; Wang J.; Hughes E. Scheduling for information gathering on
sensor network, Wireless Networks, 2009

[20] Ergen S.C.; Varaiya P. TDMA scheduling algorithms for wireless sensor
networks, Wireless Networks, May 2010

[21] Amdouni, I.; Minet, P.; Adjih, C., Node coloring in wireless networks:
complexity results and grid coloring, WMNC 2011, Toulouse, France,
October 26-28, 2011

