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Abstract
This paper deals with the lifespan modeling of heterogenous tumors

treated by radiotherapy. A bi-scale model describing the cell and tumor
lifespans by random variables is proposed. First and second-order mo-
ments, as well as the cumulative distribution functions and confidence
intervals are expressed for the two lifespans with respect to the model
parameters. One interesting result is that the mean value of the tumor
lifespan can be approached by a logarithmic function of the initial cancer
cell number. Moreover, we show that TCP and NTCP, used in radiother-
apy to evaluate, optimize and compare treatment plans, can be derived
from the tumor lifespan and the surrounding healthy tissue respectively.
Finally, we propose a ROC curve, entitled ECT (Efficiency-Complication
Trade-off), suited to the selection by clinicians of the appropriate treat-
ment planning.

Keywords: Markov chain; cancer cells; radiotherapy

1 Introduction
Cancer is a disease that affects millions of people worldwide. One of the common
therapies used to treat cancer is external beam radiotherapy. The ionizations
induced by radiation cause a variety of possible lesions in cells [3] and the most
harmful damage are the lesions which affect the DNA structure [18, 10]. Prob-
abilistic modeling is a helpful tool for describing these biological damage. For
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instance, the tumor control probability (TCP) [19, 4, 8] and the normal tissue
complication probability (NTCP) [14, 11] are used to characterize and evalu-
ate radiotherapy treatment planning. Their mathematical expressions can be
derived from different stochastic models of the tumor response such as the lin-
ear quadratic model [7, 19], cell population-dynamic models [17], mixed-effects
behavioral models [1] and cell-cycle models [13]. The main drawback of those
mathematical representations is their inability to handle biological heterogene-
ity. There are different types of heterogeneity [15] but we have chosen to focus
on the tumor damage heterogeneity. A large majority of models suppose that
the cell sensitivity to radiation is constant during the treatment and over the
entire cell population. Meaning that a surviving cell is thought to be as vi-
able as an unirradiated cell and that all cells are supposed to have the same
survival probability. However, evidence suggests that a damaged cell partially
loses its ability to resist. As stressed in [9, 6], the intratumor heterogeneity
of cell phenotypes or damage is of direct clinical importance. Therefore, the
clinical challenge is to define the suited treatment duration for each patient by
accounting for variability of the therapeutic response.

In a previous study[12], we proposed a multinomial model of tumor response
based on a discrete-time Markov chain. This model is derived from the Target
Theory and assumes there exists a number of radio-sensitive sites within the
cell, called targets. The cell death is finally caused by the deactivation of those
targets by radiation particules. We showed in [12] that the multinomial model
is a generalization of typical target models [2, 16], able to account for the het-
erogeneity of cell damage caused by the treatment. However, like the majority
of models used to measure the tumor reponse to treatment, the multinomial
model examines the number of surviving cells in the tumor and not the tumor
lifespan.

In this paper, we firstly address the stochastic modeling of the tumor lifespan.
We start by considering the lifespan of a single cancer cell that behaves as
described in [12]. It is important to emphasize that the cell lifespan is the
minimal random number of radiation dose fractions to be applied to kill the cell.
We study this random time by calculating its mean, variance and cumulative
distribution function. We then assume that a tumor is a group of independent
cells. This allows us to define the lifespan of the tumor as the maximum of
individual lifespans. In practice, the tumor lifespan is of clinical importance
since it corresponds to the minimal number of radiation dose fractions (i.e.
treatment duration) to be applied to completely eradicate the tumor. When the
initial number n0 of cancer cells is not too large, we can explicitly calculate the
mean, variance and the cumulative distribution function of the tumor lifespan.
When n0 is large, the previous parameters are no longer calculable. However,
we show that, under some assumptions, the mean lifespan of the tumor behaves
as a logarithmic function of the initial number n0. The second goal is to show
that TCP and NTCP can be completely formulated with respect to the tumor
and normal tissue lifespans. These expressions of TCP and NTCP are finally
used to propose a ROC curve, called ECT (Efficiency-Complication Trade-off),
suited to the determination of the appropriate treatment schedule.
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This paper is structured as follows: in Section 2 we give a reminder of
the individual cell behavior (cf [12]). In Section 3, we study the cancer cell
lifespan T as a random variable, determining its mean, variance and confidence
intervals and a related set of numerical results is given. We introduce the tumor
lifespan L in Section 4, taking the cell proliferation into account and we study
theoretically and numerically this random variable. Expressions for TCP and
NTCP are given in Section 5. Before concluding, we also propose the ECT
diagram.

Table 1: Main notations

Notations
Not. Definition
k discrete time related to the kth dose fraction
u0 magnitude of each dose fraction
Zk number of deactivated targets in the cell
Π transition matrix associated with the Markov chain (Zk)
P matrix associated with treatment effects
R matrix associated with cell repair process
m number of targets in a cancer cell
q probability to deactivate a target in a cancer cell
r probability for an inactive target to be reactivated in a cancer cell
T cancer cell lifespan
F cumulative distribution function of T
I 1− θ confidence interval of T
n0 initial total number of cancer cells in the tumor
L lifespan of the tumor
G cumulative distribution function of L
J 1− θ confidence interval of L
m̄ number of targets in a normal cell
q̄ probability to deactivate a target in a normal cell
r̄ probability for an inactive target to be reactivated in a normal cell
T̄ normal cell lifespan
F̄ cumulative distribution function of T̄
n̄0 initial total number of normal cells in the irradiated zone
n̄ the complication threshold number of dead normal cells
Ln̄,n̄0 lifespan of the normal tissue
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2 Behavior of a single cell
The main notations used thereafter are presented in Table 1 and log(·) denotes
the natural logarithm function. In [12], it has been proposed a multinomial
model of tumor growth relying on the target and hit modeling paradigm and
based on a discrete-time Markov chain. We keep the same modeling assumptions
stated in [12]. Since they play a crucial role in our model, we should briefly recall
them:

• a cell has m targets;

• each target may be made inactive after the application of a fraction dose
u0 with a probability q. The relationship between q and u0 is given in (5);

• the cell death, due to radiation, happens when the m targets are deacti-
vated;

• between two consecutive dose fractions (i.e. during 24h separating two
dose fractions in a conventional daily fractionated radiation schedule), if
the cell is still alive then an inactive target may repair with a probability
r;

• we suppose that cancer cells that compose the tumor all have the same
phenotype;

• to reduce complexity of the model, cell cycle positions are not accounted
for;

• we assume there is no delay effect between the radiation dose applied to
the mother cell and the damage consequences on daughter cells.

Let Zk the random variable denoting the number of deactivated targets in the
cell at time k, i.e. after the kth dose fraction. k = 0 corresponds to the
beginning of treatment. Moreover, we assume that a constant fraction dose
(typically u0 = 2Gy) is applied every day. We suppose that (Zk) is a discrete-
time Markov chain, i.e. the cell state at time k+ 1 only depends on the current
state at time k.

2.1 Probability distribution of Zk
Let Π be the corresponding transition matrix of (Zk). We briefly define Π,
interested readers can refer to [12] for details. The dynamics of (Zk) takes the
effects of dose fractions and repair mechanisms into account :

Π = PR, (1)

where P models the treatment effects and R describes repair mechanisms and
given as follows

P(i, j) =

{
(m−ij−i )qj−i(1− q)m−j i ≤ j
0 j < i.

(2)
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R(i, j) =

{
(ij)r

i−j(1− r)j j ≤ i < m
0 i < j.

(3)

When i = m, R(m,m) = 1 and R(m, j) = 0 for 0 ≤ j < m.

If we assume that the cell is initially in state i0 (i0 inactive targets), i.e.
P (Z0 = i0) = 1, then

P (Zk = i) = Πk(i0, i) i ∈ {0, . . . ,m}. (4)

One interesting feature of our model is the possible simulation of the state
trajectory k 7→ Zk by a recursive approach given in A. Moreover, the following
proposition describes the influence of the model parameters q, r and the initial
cell state i0, on the cell death probability.

Proposition 2.1 Suppose that m is fixed, the maps

1. i 7→ Πk(i,m) and q 7→ Πk(i0,m) are increasing;

2. r 7→ Πk(i0,m) is decreasing.

The proof is based on coupling and identities (33) and (33) in A.

2.2 Deactivation parameter and radiation dose
The target deactivation probability q is a parameter associated with the sensi-
tivity of cell damage to the magnitude of dose fractions u0, which is a parameter
of the radiation treatment schedule. To connect these two parameters, we use
the linear quadratic (LQ) model with parameters α and β (cf [5]). Accord-
ing to the latter, after one dose fraction u0 a cell dies with the probability
qc = 1− e−αu0−βu2

0 . However, it is clear that in our model, qc = P(0,m) = qm.
Thus, we obtain

q =
(

1− e−αu0−βu2
0

) 1
m

. (5)

Note that, we proved in [12] that the multi-target–single-hit model may be
regarded as a specific case of the multinomial model when the repair parameter
r is equal to 1. Similarly, if we fix the target number parameter m = 1 and the
deactivation target parameter q equals (5), then we recover the linear quadratic
model.

2.3 Cell proliferation modeling
Let us now describe the behavior of a given cancer cell, initially in state 0, taking
the reproduction phase into account. We suppose that the tumor is composed
of only one cell phenotype to have a simple mathematical model, which allows
us to explicit calculations. Once the kth dose fraction is applied, the cell may
be damaged, thus repair mechanisms and proliferation follow until the k + 1th

dose fraction.
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We suppose that a cell may reproduce only if it is in state 0 and still in this
state after the application of a dose fraction, which occurs with a probability
P(0, 0) = (1 − q)m. Moreover, such a cell either divides and gives birth to
two daughter cells in state 0 with probability µ or it remains unchanged with
probability 1− µ.
In the case of cell division, it is convenient for further developments to consider
the mother cell still alive and a new one (in state 0) is artificially added.

3 Lifespan of a cancer cell
The lifespan of a tumor can be expressed in terms of lifespan of independent
cells (see Section 4). This leads us to consider the lifespan of a single cell. We
do not take cell proliferation into account.
The cell lifespan is the first (random) instant T of treatment time when the cell
is dead :

T = inf{i ≥ 1; Zi = m} (6)

where (Zk) is the Markov chain introduced in Section 2.
We would like to emphasize this new viewpoint of cell mortality modeling.

Indeed, in the usual hit models and the previous multinomial model, k is fixed
and only random variables at time k are considered, for instance, the number
of deactivated targets Zk. The knowledge of T allows us to recover information
when time k for instance {T ≤ k} is equal to {Zk = m}. Moreover T reveals
the dynamical aspect of the cell lifespan, so {T = k} = {Z1 6= m, · · · , Zk−1 6=
m,Zk = m} and therefore involves the sequence Z1, · · · , Zk instead of Zk only.

Note that T is of direct therapeutic importance since it corresponds to the
minimal number of radiation dose fractions to be applied to kill the cancer cell.
However, T is a random variable and cannot be studied as a real parameter.
Nevertheless, we are able to measure the randomness of T determining its mean,
variance, distribution function and confidence intervals. These real numbers
and function permit in particular the understanding of how T fluctuates. In the
case of numerical values of q, r and m, the above quantities can be determined
explicitely (see Section 3.2).

3.1 Expected value, variance and confidence interval of T
Proposition 3.1 If the cell is initially in state Z0 = i0 ∈ {0, . . . ,m − 1}, the
random variable T of the cancer cell lifespan verifies the following properties :

1. The cumulative distribution function F of T is related to the transition
matrix Π by

F (k) = P (T ≤ k) = Πk(i0,m). (7)

2. For any k ∈ N∗ we have

qm(1− q)k−1 ≤ P (T = k) ≤ q(1− qm)k−1. (8)

Specially when m = 1, T has a geometric distribution with parameter q.
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3. For any n ∈ N∗ the expected value E(Tn) is finite and

E(T ) =
∑
k≥1

k
(
Πk(i0,m)−Πk−1(i0,m)

)
. (9)

4. The variance V (T ) is finite and given by

V (T ) =
∑
k≥1

k2
(
Πk(i0,m)−Πk−1(i0,m)

)
−
(
E(T )

)2
. (10)

The proof is given in B.

Confidence interval of T
We are interested in the confidence interval I defined as

P (T ∈ I) ≥ 1− θ, (11)

where 1−θ is the confidence level. We restrict ourselves to interval I of the type
I =]ι1, ι2]. F being the cumulative distribution function of T , then the positive
real numbers ι1 and ι2 are determined by the conditions :

ι1 = max{k;F (k) ≤ β1} and ι2 = min{k; 1− F (k) ≤ β2}, (12)

where β1 + β2 = θ. For instance, θ = 0.05, β1 = β2 = θ
2 = 0.025. We observe

thereafter that E(T ) belongs to I.

3.2 Numerical analysis
Once the parameter values of q, r and m are given, one can determine numer-
ically Π (via (1), (2) and (3)) and thus Πk for k ∈ N∗. We have implemented
the cumulative distribution function F , the expectation E(T ) and the variance
V (T ), using (7), (9) and (10), into the computing environment Matlab and we
have fixed m = 3. From F , we obtain the bounds of the confidence interval
I =]ι1, ι2] through (12)(with β1 = β2 = θ

2 = 0.025).
We present here a set of numerical results to outline the influence of the pa-

rameters q, r and the initial state Z0 = i0, on F and I. We fix two parameters
and we vary the third one.

For the fixed values q = 0.4 and r = 0.3, Figures 1-(a) and (b) show F when
Z0 = 0 and Z0 = 2 respectively. We observe that the size of the confidence
interval I slightly decreases when Z0 is larger.

Secondly, we study the influence of the parameter q on I by fixing r = 0.3
and Z0 = 0. Figures 2-(a) and (b) show F when q = 0.2 and q = 0.6 respec-
tively. We observe now that increasing q causes a drastic reduction of I.
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Fixed parameters Varied parameter E(T ) V (T ) I Figure
q = 0.4 Z0 = 0 5.77 18.77 [1, 17] 2-(a)
r = 0.3 Z0 = 2 3.64 14.98 [1, 15] 2-(b)
r = 0.3 q = 0.2 20.23 322.79 [2, 68] 3-(a)
Z0 = 0 q = 0.6 2.90 3.51 [1, 8] 3-(b)
q = 0.6 r = 0.2 2.75 2.77 [1, 7] 4-(a)
Z0 = 0 r = 0.6 3.48 6.96 [1, 11] 4-(b)

Table 2: Influence of the multinomial parameters q, r and i0 on the confidence
interval I of T with m = 3 and β1 = β2 = 0.025.

Finally, we fix q = 0.6 and Z0 = 0 to show the influence of the parameter
r. Figures 3-(a) and (b) show F when r = 0.2 and r = 0.6 respectively. In this
case, the width of I increases with r.

Table 2 presents the numerical results corresponding to the above figures. The
width of I is reduced when the initial state of the cell is fragile and when the
treatment is more efficient. Conversely, the interval I becomes larger when the
cellular repair mechanisms increases. Figures 4-(a) and (b) complete this nu-
merical analysis by showing the influence of q and r on E(T ).
It is an important aspect of our approach that we can observe and quantify nu-
merically the monotonicity of the confidence interval I, especially when either
the efficiency of the treatment or the repair mechanisms are changed.

4 Lifespan of a tumor
Our aim is to measure the tumor growth through its lifespan. We consider a
tumor initially composed of n0 cells that have an independent behaviour and
are all in state 0. We consider cell division as explained in Section 2.3 and recall
the convention that the mother cell is still alive and a new one (in state 0) is
artificially added. So at time k, nk new cells in state 0 are "added". This key
property allows us to define the lifespan L of the whole tumor as the lifespan of
n0 "mother" cells combined with the lifespan of the n1 additional cells at time
k = 1 and so on.

As application of our theoretical results, two regimes are distinguished. For
n0 "small", calculations of mean time, variance and other properties of L are
numerically possible. For large n0, the risk of numerical miscalculations becomes
significant. However, we can estimate how L behaves when the initial cancer
number n0 is large and we show that the expectation of L roughly grows as a
logarithmic function of n0.
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4.1 Lifespan of the n0 "mother" cells
For each single cell j, among the n0 ones, we associate the corresponding lifes-
pan:

T (j) = inf{i ≥ 1;Z
(j)
i = m}. (13)

Ln0
is the time when all the n0 cells are killed and can be expressed with respect

to the variables {T (j)}j∈{1,...,n0} as

Ln0
= max{T (1), . . . , T (n0)}. (14)

Under the assumption that all cells are initially in state 0 and behave inde-
pendently with the same dynamics, the random variables T (1), . . ., T (n0) are
i.i.d. and have the same distribution as T (cf (7)). Therefore, the cumulative
distribution function of Ln0 is

P (Ln0 ≤ k) = P (T (1) ≤ k, . . . , T (n0) ≤ k) =
(
Πk(0,m)

)n0
. (15)

The expected value of Ln0
is then expressed as

E(Ln0) =
∑
k≥1

k
(
P (Ln0 ≤ k)− P (Ln0 ≤ k − 1)

)
. (16)

=
∑
k≥1

k
(
(Πk(0,m))n0 − (Πk−1(0,m))n0

)
.

The next proposition gives the asymptotic behavior of E(Ln0) when n0 is large.

Proposition 4.1 For fixed parameters m, q and r, the expected value E(Ln0
)

verifies

log(n0)

− log(1− q)
+

3qm−1 − q1−m

−4 log(1− q)
≤ E(Ln0

) ≤ log(n0)

− log(1− qm)
− 2q1−m

(1− qm) log(1− qm)
,

(17)
for all n0 ≥ 2

qm−1(1−qm) .

The proof is given in C. This proposition will be generalized thereafter to the
expected value of the tumor lifespan (see Section 4.3).

Remark 4.2 1) Note that q 7→ 1
− log(1−q) and q 7→ 1

− log(1−qm) are increasing.
Therefore (17) intuitively implies that E(Ln0

) is also decreasing, which is a
reasonable result since the trend of the tumor lifespan is to decrease when the
treatment becomes more efficient.
2) The terms −1

log(1−q) and −1
log(1−qm) which appear in (17) are probably not op-

timal.

4.2 Proliferation and tumor growth modeling
According to the cell division rules introduced in Section 2.3, after the applica-
tion of the first dose fraction on the n0 initial cells, a number S1 of new cells in
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state 0 is produced and S1 ∼ B(n0, µ(1− q)m). Our assumption of this branch-
ing process consists of replacing the random number S1 by the integer part n1

of its mean,
n1 = bE(S1)c = bn0µ(1− q)mc. (18)

Thus, we consider that the treatment effects, repair mechanisms and cell prolif-
eration in the initial n0 cells are equivalent to the treatment and repair effects
on the n0 "mother" cells and addition of n1 new cells in state 0.

Next, we consider cell division associated with the second dose fraction. Ob-
viously, duplication concerns the n1 new cells and the X1 cells that stay in
state 0, among the n0 initial ones, after the first dose fraction. It is clear that
X1 ∼ B

(
n0,Π(0, 0)

)
. Reasoning as above, S2 new cells appear, and condition-

ally on X1 = x1, S2 ∼ B
(
x1 + n1, µ(1− q)m

)
. Consequently

E(S2) = µ(1− q)m
(
n1 + E(X1)

)
= µ(1− q)m

(
n1 + n0Π(0, 0)

)
. (19)

Then we replace random new cells S2 by n2 = bE(S2)c.
This analysis can be repeated at each dose fraction j adding a number nj of
new cells in state 0 resulting from cell reproduction. The sequence nj is then
given recursively by

nj =

⌊
µ(1− q)m

j−1∑
l=0

Πj−1−l(0, 0)nl

⌋
j ≥ 1. (20)

4.3 Lifespan of the whole tumor
We define the lifespan L of the whole tumor as

L = max{Ln0
, 1 + Ln1

, 2 + Ln2
, . . .}, (21)

where Lnj
j ≥ 1 is the lifespan of the nj additional cells resulting from cell

division at time j,
P (Lnj ≤ k) =

(
Πk(0,m)

)nj
. (22)

Proposition 4.3 The cumulative distribution function G of L is given by

G(k) = P (L ≤ k) =

k−1∏
j=0

(
Πk−j(0,m)

)nj
k ≥ 1. (23)

Therefore, the expected value is

E(L) =
∑
k≥1

k
(
G(k)−G(k − 1)

)
. (24)

Proof 4.1 Since all additional cell groups are independent and L is given by
(21), then according to (15) we obtain

P (L ≤ k) =

k−1∏
j=0

P (Lnj ≤ k − j) =

k−1∏
j=0

(
Πk−j(0,m)

)nj
k ≥ 1.
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Let us observe that (23) allows numerical determination of G(k) for any
given value of k. However, (24) needs the knowledge of a large number of G(k).
In particular, this implies to control the behavior of the sequence (nj)j≥1. Note
that (nj) cannot stop and the lifespan L defined by (21) would be infinite. For
this reason, it is important to determine conditions under which nj = 0, for
large j.

Proposition 4.4 In the case

µ(1− q)m
∑
k≥0

Πk(0, 0) < 1, (25)

there exists j0 ∈ N∗ such as

nj = 0 ∀ j > j0. (26)

Moreover, if there exists λ0 > 1 such as

λ0µ(1− q)m
∑
k≥0

λk0Πk(0, 0) < 1, (27)

then (26) holds with j0 =
⌊

log(n0)
log(λ0) + C

⌋
, where C is a constant.

The proof is given in D.
Note that (25) holds either if µ is small or if q is close to 1. The first

condition means that the proliferation level is low while the second one reveals
the treatment efficiency. It is intuitively clear that one of the two conditions
contributes to stopping new offsprings of cancer cells. Proposition 4.4 shows
that the expected number j0 of dose fractions that stops the birth of additional
cells is at most a logarithmic function of n0. This crucial result allows us to
generalize Proposition 4.1 as follows.

Proposition 4.5 Suppose that (27) holds. Then, for fixed parameters m, q and
r, there exists a > 0, b ∈ R such as for large n0

log(n0)

− log(1− q)
+

3qm−1 − q1−m

−4 log(1− q)
≤ E(L) ≤ a log(n0) + b. (28)

The proof is given in E.
We deduce from Proposition 4.5 that the expected lifespan of the whole tumor
is bound lower and upper by two logaritmic functions of the initial cancer cell
number n0.

4.4 Numerical analysis
Numerical miscalculations occur during Matlab computations when n0 is very
large. This numerical problem currently limits the application of our model to
in vitro culture and in vivo applications in which the region of interest can be
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decomposed into sub-volumes, e.g. voxels, whose size is compatible with the
computation limits of the proposed model.

Let J the confidence interval of L of the type J =]κ1, κ2] such as

κ1 = max{k;G(k) ≤ 0.025} and κ2 = min{k; 1−G(k) ≤ 0.025}. (29)

We have implemented the cumulative distribution function G and the expecta-
tion E(L) (cf (23) and (24)) in Matlab and fixed the parameters m = 3, q = 0.5,
r = 0.1. Figures 5-(a) and (b) show the mean E(L) and the confidence interval
J as functions of the initial cancer cell number n0 and the cell division proba-
bility µ respectively. Dotted lines correspond to the 95% confidence interval J
and solid lines represent E(L). We observe that E(L) increases with n0 while
the width of the confidence interval remains almost constant. Moreover, E(L)
increases with the proliferation rate of cells.

Proposition 4.4 shows that the expected number j0 of dose fractions that stops
the birth of additional cells is at most a logarithmic function of n0. For this, we
have implemented the sequence (nj) of additional cells

(
cf (20)

)
and we retrieve

j0 when it exists, i.e. in the extinction case corresponding to (25). Figures 6-(a)
and (b) show an example for the variation of j0 in terms of log(n0) (n0 ≤ 105)
and the deactivation parameter q respectively, with m = 3, r = 0.5 and µ = 1.
We observe in Figure 6-(a) that j0 is close to being an increasing linear func-
tion of log(n0). As expected, Figure 6-(b) shows that j0 decreases when the
treatment becomes more efficient.

Case of large n0

For in vivo studies with a very large number n0, we deduce from (28) that the
expected value E(L) is bound by a logarithmic function of n0. This property
of Proposition 4.5 is also satisfied when n0 ≤ 105, as corroborated by numerical
results presented in Figure 7. We observe that, for m = 3, q = 0.6, µ = 1 and
r = 0.4, E(L) is approximately a linear function of log(n0).

5 Optimization of treatment schedule
The main task in radiotherapy is to choose the treatment schedule able to
eliminate the tumor without causing significant damage on the adjacent normal
tissue. The proposed protocol is split up into three steps:

1. firstly, provided that relevant clinical data are available, the model param-
eters are estimated for each patient and each tumor type;

2. secondly, Tumor Control and Normal Tissue Complication Probabilities
(TCP & NTCP) are computed from the model parameter estimates and
for a daily fractionated radiation schedule (see Section 5.1 below);
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3. thirdly, an Efficiency-Complication Trade-off diagram proposes to the clin-
ician three possible protocols: (1) minimizing complications with an ac-
ceptable level of therapeutic efficiency, (2) privileging efficiency vs com-
plication or (3) an optimal compromise (see Section 5.2 below).

The ECT diagram (Efficiency Complication Trade-off) is inspired from the
ROC (Receiver Operating Characteristic) / DET (Detection Error Trade-off)
curves used in biometrics and is derived from the computation of TCP & NTCP
values.

5.1 Tumor Control and Normal Tissue Complication Prob-
abilities

The Tumor Control Probability (TCP) at time k is the probability to destroy
the tumor at this time i.e. the lifespan of the whole tumor is lower than k,

TCPk = P (L ≤ k) =

k−1∏
j=0

(
Πk−j(0,m)

)nj
k ≥ 1. (30)

Normal Tissue Complication Probability, noted NTCP, is defined as the prob-
ability that a complication appears in the adjacent normal tissue. We consider
a normal tissue initially containing n̄0 cells and a complication occurs when
the number of damaged normal cells is larger than a given threshold number
n̄. We assume that normal cells behave similarly to cancer cells, the difference
comes from the different values of the model parameters m̄, q̄ and r̄ (cf Table 1).

We define Ln̄,n̄0
as the lifespan of the entire normal tissue. Note that, nor-

mal cells divide in an ordely way and only when it is needed. For this, we do
not consider normal cell proliferation which is replaced by the (n̄ − 1) reserve
capacity in the normal tissue.

Proposition 5.1 The NTCP at time k is given by

NTCPk = P (Ln̄,n̄0
≤ k) =

n̄0∑
i=n̄

(n̄0

i

)(
F̄ (k)

)i(
1− F̄ (k)

)n̄0−i
, (31)

where F̄ is the cumulative distribution function of the lifespan of a normal cell
similar to F

(
cf (7)

)
. We deduce the expected value,

E(Ln̄,n̄0
) =

∑
k≥1

(
P (Ln̄,n̄0

≤ k)− P (Ln̄,n̄0
≤ k − 1)

)
. (32)

This expression of NTCPk was given in [12]. Numerical analysis for TCPk and
NTCPk are presented in the next section, and a diagram that summarizes the
possible choices of the appropriate treatment schedule is also proposed.
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5.2 Determination of a suited number of dose fractions
The ECT diagram allows us to compute both NCTP (x-axis) and the treatment
non-efficiency probability (1-TCP) (y-axis) for different values of k (number of
treatment days). In this diagram, the ideal therapeutic goal is the origin point
O(0, 0) since it corresponds to a 100% efficient treatment and a null risk of
complication. Note that k → TCPk and k → NTCPk are increasing as they
are the cumulative distribution functions of L and Ln̄,n̄0

respectively (cf (23)
and (31)).

Figure 8 shows the ECT curve for m = m̄ = 3, q = 0.7, q̄ = 0.6, r = 0.3,
r̄ = 0.5, n0 = 10000, and n̄ = n̄0 = 1000 (n̄ and n̄0 are taken relatively small to
avoid numerical complication). For simplicity, we do not consider cell prolifer-
ation (µ = 0) since we get the same analysis.

We propose three strategies to select a suitable treatment duration:

• a first choice consists in limiting the probability of complication on normal
tissues with a threshold fixed in this example at 0.05 (dotted vertical line).
Beyond this level, the risk of complication is not acceptable. Subsequently,
the most appropriate number of dose fractions to be applied is given by
k = 13 dose fractions with a treatment non-efficiency probability estimated
at 1− TCP ≈ 0.3.

• A second choice is to give priority to the therapeutic efficiency by using
a non-efficiency threshold fixed in this example to 0.05 (dotted horizontal
line). This choice leads to choose at least k = 16 dose fractions with a risk
of complication estimated at NTCP ≈ 0.3.

• A third possibility is a trade-off choice which consists of selecting the
"nearest" point of the curve to the ideal point O(0, 0). In this case, the
choice leads to select k = 14 dose fractions with a non-efficiency probability
lower than 0.2 and a complication probability NTCP ≈ 0.05.

6 Conclusion
We have proposed an original approach that expresses the probability distri-
bution of the cancer and normal cell lifespans with respect to the number of
dose fractions in radiotherapy. Conversely to previous models that examine
the number of surviving cells in the treated population at fixed time instants,
our modeling approach better reveals the dynamics of the tumor response. It
relies on a discrete-time Markov chain. This model accounts for (i) the het-
erogeneity of cell damage, (ii) the repair mechanisms that occur between dose
fractions and (iii) the mean cell proliferation. The main contribution is the
introduction of new response variables: the tumor and normal tissue lifespan.
We have shown that the average lifespan of a treated tumor may be approached
by a logarithmic function of the initial cancer cell number. Moreover, we have
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provided original formulations of the tumor control probability and normal tis-
sue complication probability, and we have proposed a new curve called ECT
(Efficiency-Complication Trade-off), which allows us to control the benefit-risk
ratio of the treatment. This synthetic representation summarizes both efficiency
and complication of the treatment and point out several possibilities of choice
for the radiotherapist : treatment efficiency, priority to safety of normal tissue,
or a trade-off between them. The current challenge is to assess the relevance
of the proposed model in preclinical studies focused on brain tumors. Ongoing
works is aimed at testing the ability of the model to predict in vitro responses
based on U87 cells.
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A Algorithmic expression of Zk
The following recursive scheme, taking into account first the treatment effect
and second the repair mechanisms, gives a realization of (Zk):

Z0 = i0
Zk+ 1

2
= Zk +

∑m−Zk

j=1 ξk+ 1
2 ,j

Zk+1 =

{ ∑Z
k+1

2
j=1 ξk+1,j if Zk+ 1

2
< m

m if Zk+ 1
2

= m,

(33)

where (ξk+ 1
2 ,j

) and (ξk+1,j) are independent and Bernouilli distributed, P (ξk+ 1
2 ,j

=

1) = q and P (ξk+1,j = 1) = 1− r. Note that Zk+ 1
2
is the state of the cell after
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application of the (k + 1)-th dose and just before the repair phase.

Moreover, we give an equivalent expression:

Z0 = i0
Zk+ 1

2
= Zk +

∑m−Zk

j=1 1{U
k+1

2
,j
≤q}

Zk+1 =

{ ∑Z
k+1

2
j=1 1{Uk+1,j≤1−r} if Zk+ 1

2
< m

m if Zk+ 1
2

= m,

(34)

where (Uk+ 1
2 ,j

) and (Uk+1,j) are independent and uniformly distributed over [0, 1].

B Proof of Proposition 3.1
1. Using the definition of T (cf (6)) and the crucial fact that m is an absorbant
state we have

P (T ≤ k) = P (Zk = m) ∀ k ∈ N∗. (35)

According to (4) and the assumption that the cell is initially in state i0 < m,
we obtain

F (k) = P (T ≤ k) = Πk(i0,m).

2. Let us introduce

λ1 = max
i≤m−1

{
∑

j≤m−1

Π(i, j)} = max
i≤m−1

{1−Π(i,m)} (36)

λ2 = 1− max
i≤m−1

{Π(i,m)}. (37)

Consequently,
λ1 = 1− min

i≤m−1
{Π(i,m)} (38)

and for all i ≤ m− 1 we have

1− λ1 ≤ Π(i,m) ≤ 1− λ2. (39)

Note that λ1 < 1 and λ2 < 1. Firstly, we prove that

P (T = k) ≤ (1− λ2)λk−1
1 ∀ k ≤ 1, (40)
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only when k = 3 (the proof for any k ∈ N∗ is analogue):

P (T = 3) = P (Z1 6= m,Z2 6= m,Z3 = m)

=
∑

i1,i2≤m−1

P (Z1 = i1 | Z0 = i0)P (Z2 = i2 | Z1 = i1)P (Z3 = m | Z2 = i2)

=
∑

i1,i2≤m−1

Π(i0, i1)Π(i1, i2)Π(i2,m)

≤ (1− λ2)

 ∑
i1≤m−1

 ∑
i2≤m−1

Π(i1, i2)

Π(i0, i1)


≤ (1− λ2)λ1

 ∑
i1≤m−1

Π(i0, i1)

 ≤ (1− λ2)λ2
1.

Similarly, using (39) and∑
j≤m−1

Π(i0, j) = 1−Π(i0,m) ≥ λ2, (41)

we deduce
(1− λ1)(λ2)k−1 ≤ P (T = k). (42)

Note that, λ1 and λ2 are related to the parameters m and q. According to (2),
(3) and (1) we have

Π(i,m) =

m∑
j=0

P(i, j)R(j,m) = P(i,m) = qm−i (i < m).

Thus, we obtain
λ1 = 1− qm and λ2 = 1− q. (43)

3. According to (8) we deduce that the mean value E(Tn) is finite for any n ≥ 1:

E(Tn) =
∑
k≥1

knP (T = k) ≤ q
∑
k≥1

kn(1− qm)k−1 <∞.

Now, we express E(T ) in terms of the cumulative distribution function F . Thus,

E(T ) =
∑
k≥1

k
(
P (T < k + 1)− P (T < k)

)
=
∑
k≥1

k
(
F (k)− F (k − 1)

)
.

=
∑
k≥1

k
(
Πk(i0,m)−Πk−1(i0,m)

)
.
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4. Recall that E(T 2) <∞, then the variance of T is finite and

V (T ) = E(T 2)−
(
E(T )

)2
=
∑
k≥1

k2
(
P (T < k + 1)− P (T < k)

)
−
(
E(T )

)2
=
∑
k≥1

k2
(
Πk(i0,m)−Πk−1(i0,m)

)
−
(
E(T )

)2
.

C Proof of Proposition 4.1
1) First, we show that

− log(n0)

log(1− q)
+

3qm−1 − q1−m

−4 log(1− q)
≤ E(Ln0

). (44)

As we have 1− F (k) =
∑
i≥k+1 P (T = i), then (8) implies

qm
∑
i≥k+1

(1− q)i−1 ≤ 1− F (k) ≤ q
∑
i≥k+1

(1− qm)i−1.

This leads to
qm−1(1− q)k ≤ 1− F (k) ≤ 1

qm−1
(1− qm)k

and
1− 1

qm−1
(1− qm)k ≤ F (k) ≤ 1− qm−1(1− q)k. (45)

On the other hand, set Un0
as

Un0
:= Ln0

+
log(n0)

log(1− q)
. (46)

From (15) we get

P (Un0 ≤ x) = P

(
Ln0 ≤ x−

log(n0)

log(1− q)

)
= P

(
Ln0 ≤

⌊
x− log(n0)

log(1− q)

⌋)
(47)

=

(
F

(⌊
x− log(n0)

log(1− q)

⌋))n0

for any x ≥ log(n0)
log(1−q) , and bac denotes the integer part of a. Using (45) we obtain

F

(⌊
x− log(n0)

log(1− q)

⌋)
≤ 1− qm−1(1− q)

⌊
x− log(n0)

log(1−q)

⌋
.
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Since we have⌊
x− log(n0)

log(1− q)

⌋
≤ x− log(n0)

log(1− q)
and 1− q < 1,

then

1− qm−1(1− q)
⌊
x− log(n0)

log(1−q)

⌋
≤ 1− qm−1(1− q)x−

log(n0)

log(1−q) = 1− qm−1(1− q)x

n0
.

Combining previous inequalities, we deduce :

P (Un0 ≤ x) ≤
(

1− qm−1(1− q)x

n0

)n0

= e
n0 log

(
1− qm−1(1−q)x

n0

)
, x ≥ log(n0)

log(1− q)
.

Using Taylor’s formula, we get

−u− u2

2(1− u)2
≤ log(1− u) < −u 0 ≤ u < 1. (48)

Consequently,

P (Un0 ≤ x) ≤ e−qm−1(1−q)x , x ≥ log(n0)

log(1− q)
(49)

and
P (Un0

> x) ≥ 1− e−q
m−1(1−q)x .

Starting with

e−x ≤ 1− x+
x2

2
x ≥ 0,

we deduce that

P (Un0
> x) ≥ qm−1(1− q)x − 1

2
q2(m−1)(1− q)2x, x ≥ 0. (50)

If X is an integrable real random variable on R, it is easy to prove :

E(X) =

∫ ∞
0

P (X > y)dy −
∫ 0

−∞
P (X ≤ y)dy. (51)

In particular

E(X) ≤
∫ ∞

0

P (X > y)dy, (52)

and if X > −c where c > 0, then∫ 0

−∞
P (X ≤ y)dy =

∫ 0

−c
P (X ≤ y)dy. (53)

Applying (51) and (53) for X = Un0
and c = − log(n0)

log(1−q) , we get

E(Un0
) =

∫ ∞
0

P (Un0
> x)dx−

∫ 0

−c
P (Un0

≤ x)dx. (54)
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Then using (50) we obtain∫ ∞
0

P (Un0
> x)dx ≥ − qm−1

4 log(1− q)
(4−qm−1) ≥ −3qm−1

4 log(1− q)
, (qm−1 ≤ 1).

(55)
On the other hand, using (49) and the fact ex ≥ 1 + x, x ≥ 0, we obtain∫ 0

−c
P (Un0 ≤ x)dx ≤

∫ ∞
0

e−q
m−1(1−q)−x

dx ≤ −1

qm−1 log(1− q)
. (56)

Consequently, (54), (55) and (56) give

E(Un0
) ≥ 1

−4 log(1− q)
(3qm−1 − q1−m),

and finally

E(Ln0
) ≥ − log(n0)

log(1− q)
+

1

−4 log(1− q)
(3qm−1 − q1−m).

2) Similarly, to prove that E(Ln0
) is upper bound by a logarithmic function of

n0. In this case, we introduce

U ′n0
:= Ln0

+
log(n0)

log(1− qm)
. (57)

Let x ≥ 0. (45) and bac ≥ a− 1, imply

F

(⌊
x− log(n0)

log(1− qm)

⌋)
≥ 1− 1

qm−1
e

log(1−qm)
⌊
x− log(n0)

log(1−qm)

⌋
(58)

≥ 1− 1

qm−1
(1− qm)x−1 1

n0
.

Consequently,

P (U ′n0
≤ x) ≥ e

n0 log

(
1− (1−qm)x−1

n0qm−1

)
, (59)

and

P (U ′n0
> x) ≤ 1− e

n0 log

(
1− (1−qm)x−1

n0qm−1

)
≤ −n0 log

(
1− (1− qm)x−1

n0qm−1

)
, (60)

since 1− e−x ≤ x, ∀x ≥ 0.
We have the following inequalities

(1− qm)x−1

n0qm−1
≤ 1

n0qm−1(1− qm)
≤ 1

2
; n0 ≥

2

qm−1(1− qm)

u2

(1− u)2
≤ 2u, 0 < u <

1

2
.
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Thus using (48) and (60), we get

P (U ′n0
> x) ≤ 2(1− qm)x−1

qm−1
.

Using (52) with X = U ′n0
gives

E(U ′n0
) ≤ −2q1−m

(1− qm) log(1− qm)
,

and finally

E(Ln0
) ≤ log(n0)

− log(1− qm)
− 2q1−m

(1− qm) log(1− qm)
.

D Proof of Proposition 4.4
In order to study the sequence (nj) defined by (20), it is convenient to introduce
the sequence (ηj):

η0 := n0

ηj+1 := µ(1− q)m
∑j
l=0 Πj−l(0, 0)ηl, j ≥ 0.

(61)

a) The following proposition gives the sufficient conditions ensuring the conver-
gence of the sequence (ηj). We then deduce the convergence of the sequence
(nj) in step b).

Proposition D.1 If µ(1 − q)m
∑
k≥0 Πk(0, 0) < 1, then lim

j→+∞
ηj = 0. More-

over, if it exists λ0 > 1 such as

λ0µ(1− q)m
∑
k≥0

λk0Πk(0, 0) < 1, (62)

then
ηj < 1 ∀ j > j0, (63)

where j0 =
⌊

log(n0)
log(λ0) + C

⌋
and C is a constant depending only on µ, m, q, r and

λ0.

Proof D.1 Let
S(λ) :=

∑
k≥0

λkΠk(0, 0), λ > 0. (64)

Recall that the Markov chain (Zk) defined in Section 2 is transient. Since m is
an absorbent state, then S(1) <∞.
For λ > 0, we multiply ηj+1 by λj+1 in (61) and we sum over j ∈ {0, . . . , k},

k+1∑
j=1

λjηj = λµ(1− q)m
 k∑
j=0

j∑
l=0

λjΠj−l(0, 0)ηl

 . (65)

22



For fixed l, we set i = j − l and we obtain

k+1∑
j=1

λjηj = λµ(1− q)m
k∑
l=0

(
λlηl

k−l∑
i=0

λiΠi(0, 0)

)
. (66)

However,
k−l∑
i=0

λiΠi(0, 0) ≤
∑
i≥0

λiΠi(0, 0). (67)

Since λ, µ(1− q)m and ηl are positive, then

k+1∑
j=1

λjηj ≤ λµ(1− q)mS(λ)

k∑
l=0

λlηl ≤ λµ(1− q)mS(λ)

k+1∑
l=0

λlηl. (68)

Consequently, if S(λ) <∞, we get

(
1− λµ(1− q)mS(λ)

) k+1∑
j=1

λjηj ≤ λµ(1− q)mS(λ)n0. (69)

Assume that
λµ(1− q)mS(λ) < 1. (70)

Thus, taking k →∞ in (69) leads to

H(λ) :=
∑
j≥0

λjηj ≤
λµ(1− q)mS(λ)

1− λµ(1− q)mS(λ)
n0 <∞. (71)

If µ(1 − q)mS(1) < 1, then the condition (70) is verified for λ = 1. Therefore,
H(1) <∞, ∑

j≥0

ηj <∞.

This implies that lim
j→+∞

ηj = 0.

Let us consider the case λ0µ(1 − q)mS(λ0) < 1 where λ0 > 1. Since (70) is
verified with λ = λ0, then ∑

j≥0

λj0ηj ≤ C0 n0, (72)

where C0 is a constant depending only on µ, m, q, r and λ0. Therefore,

λj0ηj < C0n0, ∀ j ≥ 0. (73)

Consequently, (63) is verified with j0 =
⌊

log(n0)
log(λ0) + C

⌋
and C = log(C0)

log(λ0) . b) We
prove now the Proposition 4.4. Firstly, we prove by induction on j that

nj ≤ ηj ∀ j ≥ 0. (74)
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Indeed, if j = 0, η0 = n0 by definition. Suppose that

nk ≤ ηk ∀ k ≤ j.

Then

µ(1− q)m
j∑

k=0

Πj−k(0, 0)nk ≤ µ(1− q)m
j∑

k=0

Πj−k(0, 0)ηk.

Since bac ≤ a, according to (20) and (61) we deduce that

nj+1 =

⌊
µ(1− q)m

j∑
k=0

Πj−k(0, 0)nk

⌋
≤ µ(1− q)m

j∑
k=0

Πj−k(0, 0)nk

≤ µ(1− q)m
j∑

k=0

Πj−k(0, 0)ηk

≤ ηj+1.

Let us consider the case µ(1− q)m
∑
k≥0 Πk(0, 0) < 1. According to the Propo-

sition D.1, lim
j→+∞

ηj = 0. However, (nj) is a sequence of integer numbers, then

we deduce from (74) that there exists j0 such as nj = 0 ∀ j ≥ j0.

Moreover, if it exists λ0 > 1 such as (27) is verified, Proposition D.1 and (74)
imply (26) with j0 =

⌊
log(n0)
log(λ0) + C

⌋
, and C is a constant depending only on µ,

m, q, r and λ0.

Remark D.2 Note that, in the case where µ(1 − q)mS(1) > 1, we can prove
that (ηj) is not bound. Moreover, let γ be the unique real number in ]0, 1[ such
that γµ(1 − q)mS(γ) = 1. It can be proved that if n0 >

γ
1−γ then (nj) is not

bound.

E Proof of Proposition 4.5
According to Proposition 4.4 and under (27), nj = 0 for any j ≥ j0 where

j0 :=

⌊
log(n0)

log(λ0)
+ C

⌋
, C ∈ R.

Therefore, the lifespan of the whole tumor L reduces to

L = max{Ln0
, 1 + Ln1

, . . . , j0 + Lnj0
}. (75)

First, it is clear that Ln0
≤ L. Consequently, (17) implies

log(n0)

− log(1− q)
+

3qm−1 − q1−m

−4 log(1− q)
≤ E(L). (76)
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On the other hand, for any 0 ≤ j ≤ j0, we have

j + Lnj
≤ j0 + Lnj

.

Therefore,
L ≤ j0 + max{Ln0

, Ln1
, . . . , Lnj0

}. (77)

Since all cells are independent, then

max{Ln0
, Ln1

, . . . , Lnj0
} (d)

= LNj0
, (78)

where Nj0 = n0 + . . .+ nj0 . According to (73), (74) and λ0 > 1, we have

nj ≤ C0n0 ∀ j ∈ {0, . . . , j0}. (79)

Then,
Nj0 ≤ C0n0(j0 + 1). (80)

Thus, combining (77), (78), (80) and Proposition 4.1, we get

E(L) ≤ j0 + E(LNj0
) ≤ j0 +

log(Nj0)

− log(1− qm)
+ a1 (81)

≤ a log(n0) + b,

where a > 0 and b are two constants.
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Figure 1: Influence of the initial state value i0 on the cumulative distribu-
tion function F and on the confidence interval I of T . The cumulative dis-
tribution functions F for Z0 = 0 and Z0 = 2 are described in red and blue
lines respectively while dotted lines represent the bounds of I at the 5% level
(β1 = β2 = 0.025), with m = 3, q = 0.4 and r = 0.3.
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Figure 2: Influence of the deactivation parameter q on the cumulative distri-
bution function F and on the confidence interval I of T . The cumulative dis-
tribution functions F for q = 0.2 and q = 0.6 are described in red and blue
lines respectively while dotted lines represent the bounds of I at the 5% level
(β1 = β2 = 0.025), with m = 3, r = 0.3 and Z0 = 0.
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Figure 3: Influence of the repair parameter r on the cumulative distribution
function F and on the confidence interval I of T . The cumulative distri-
bution functions F for r = 0.2 and r = 0.6 are described in red and blue
lines respectively while dotted lines represent the bounds of I at the 5% level
(β1 = β2 = 0.025), with m = 3, q = 0.6 and Z0 = 0.
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(a) E(T ) and I as functions of q with r = 0.1.
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(b) E(T ) and I as functions of r with q = 0.6.

Figure 4: Variations of E(T ) and the confidence interval I in terms of q and
r, where m = 3 and Z0 = 0. Dotted lines correspond to the 95% confidence
interval and solid lines represent E(T ).
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(a) E(L) and J as functions of n0 with µ = 1.
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(b) E(L) and J as functions of µ with n0 = 1000.

Figure 5: Variations of E(L) and the confidence interval J in terms of n0 and
µ, where m = 3 and q = 0.5 and r = 0.1. Dotted lines correspond to the 95%
confidence interval and solid lines represent E(L).
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(a) j0 as function of log(n0), with q = 0.4.
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(b) j0 as function of q, with n0 = 104.

Figure 6: Variation of the expected number j0 that stops the birth of additional
cells, as function of log(n0) (semi-log plot) and the deactivation parameter q,
with m = 3, r = 0.5 and µ = 1.
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Figure 7: The expected value E(L) as function of log(n0) (semi-log plot), where
m = 3, q = 0.6, µ = 1 and r = 0.4.
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Figure 8: ECT diagram (Efficiency Complication Trade-off) for m = m̄ = 3,
q = 0.7, q̄ = 0.6, r = 0.3, r̄ = 0.5, n0 = 10000, and n̄ = n̄0 = 1000. At k = 13
(low risk of complication): TCP=0.68 and NTCP=0.011, at k = 14 (trade-
off choice): TCP=0.84 and NTCP=0.057 and for k = 16 (efficiency priority):
TCP=0.968 and NTCP=0.307.
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