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ABSTRACT. Cell proliferation is controlled by many complex regulatory networks. Our

purpose is to analyse, through mathematical modeling, the effects of growth factors on the

dynamics of the division cycle in cell populations.

Our work is based on an age-structured PDE model of the cell division cycle within a

population of cells in a common tissue. Cell proliferation is at its first stages exponential

and is thus characterised by its growth exponent, the first eigenvalue of the linear sys-

tem we consider here, a growth exponent that we will explicitly evaluate from biological

data. Moreover, this study relies on recent and innovative imaging data (fluorescence mi-

croscopy) that make us able to experimentally determine the parameters of the model and

to validate numerical results. This model has allowed us to study the degree of simultane-

ity of phase transitions within a proliferating cell population and to analyse the role of an

increased growth factor concentration in this process.

This study thus aims at helping biologists to elicit the impact of growth factor concen-

tration on cell cycle regulation, at making more precise the dynamics of key mechanisms

controlling the division cycle in proliferating cell populations, and eventually at establish-

ing theoretical bases for optimised combined anticancer treatments.

1. Introduction. The regulation of cell proliferation plays a crucial role in the develop-

ment of living organisms. To divide into two daughter cells, a cell has to undergo a se-

quence of molecular events, which is called the cell division cycle. The cell division cycle

(or briefly the cell cycle) is commonly composed of four phases: G1, S, G2 and M . G1

and G2 are gap phases in which the cell is respectively preparing DNA synthesis, S phase,

or mitosis, M phase. The progression of the cell in the division cycle is punctuated by

checkpoints, at which the cell checks whether all requirements to continue the division

process are met and whether there is no abnormality in its constituents, in particular in

Key words and phrases. Cell population dynamics, Proliferation, Cell division cycle, Growth factors, Adap-

tive dynamics.
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the DNA. For instance, in G1 the cell can check its environmental conditions and decide

whether to undergo division, quiescence or apoptosis. The time of this ‘decision’ is called

the restriction point [19, 36, 47]. This decision is irreversible: once the cell has passed the

restriction point, the transition from G1 to S normally occurs and the cell continues its pro-

gression in the cell cycle whatever the environmental conditions. Biological experiments

have shown that growth factors were generally responsible for the synthesis of cyclin D, a

protein whose binding to cyclin-dependent kinases (CDKs) 4 and 6 is known to regulate the

transition from G1 to S [38, 39]. Thus, by improving the cell environmental conditions, an

increase in the growth factor concentration is in most cases supposed to reduce the duration

of the G1 phase dynamics, i.e., to increase the probability that the transition from G1 to

S occurs. Although the progression of the cell in phases S, G2 and M is known to occur

whatever the growth factor concentration, it is not yet very clear whether this concentration

influences the dynamics of these phases or not. The dynamics of the cell cycle is certainly

affected by the level of growth factors in its environment, but much remains to be done to

precisely understand the mechanisms that underlie this dynamics.

Proliferation occurs in healthy and tumour tissue. However in cancer cells, various reg-

ulation mechanisms are inefficient, which results in uncontrolled tissue growth. In particu-

lar, checkpoints, that should induce cancer cell death, are no more efficient and let cancer

cells divide. The circadian clock, that exists and is physiologically active in all nucleated

cells, is also assumed to play a role on cell cycle regulation in a 24-hour periodic manner.

The molecular functioning of this clock is quite complex since more than 15 genes are

involved in positive and negative feedback loops. In humans, cell circadian clocks of the

whole body are synchronised by a central pacemaker located in the hypothalamus [27, 28].

Some biological and clinical experiments have shown that disrupted circadian clocks may

enhance tumour growth [15, 17, 18, 21]. Although it has clearly been observed that cir-

cadian rhythms play a role in cell cycle regulation, this role has still to be investigated to

understand their mechanisms of action, and how circadian control could be used to prevent

or treat cancer. In this way, several experiments led by one of us (C. Feillet) resulted in

amounts of available biological data related to the cell division cycle with and without cir-

cadian control.

In [8], some of us based a theoretical study on biological data to investigate, through

mathematical modelling, the population dynamics of healthy and cancer cells and set an

optimisation problem for cancer chronotherapeutics, solving it numerically. With the same

goal to base ourselves on biological data and eventually help improve cancer treatments, the

aim of the present study was, temporarily leaving aside the influence of circadian clocks, to

analyse the effects of growth factors on cell cycle regulation and thus on cell proliferation

by means of an age-structured mathematical model of cell population dynamics.

This paper is organised as follows. Section 2 presents the mathematical model we used

and the method we adopted to determine the model parameters. Numerical results are pre-

sented in Section 3. A conclusion, together with a discussion and consideration of future

works, constitutes Section 4.

2. Mathematical model.

2.1. Age-structured model for tissue proliferation and control. Physiologically struc-

tured cell population dynamics models have been extensively studied in the last 25 years,
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see e.g., [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 20, 23, 24, 26, 35, 40, 44, 46]. The availability of

amounts of biological data enables to build more relevant population models.

We consider here age-structured cell cycle models, age referring to age of cells in phases

of the cell cycle. The main interest of considering an age-structured model is in distinguish-

ing, in a representation of the cell division cycle, between physiological time (age, taking

into account by a structure variable relevant biological variability in a proliferating cell

population) and external time. Such models may be relevant in the perspective of control-

ling the cell cycle by drugs that act on it, as do most anticancer drugs, and in particular

cytotoxic drugs.

The cell division cycle being divided into I phases (classically I=4: G1, S, G2 and M ),

the evolution of the densities ni(t, x) of cells of age x at time t in phase i is well described

by the following McKendrick model [33]:
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vi(x) ni(t, x)
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+
(

di(t, x) + Ki→i+1(t, x)
)
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∫

ξ≥0

Ki−1→i(t, ξ) ni−1(t, ξ) dξ 2 ≤ i ≤ I ,

n1(t, x = 0) = 2

∫

ξ≥0

KI→1(t, ξ) nI(t, ξ) dξ .

(1)

The model for I phases was first introduced in [12]. The particular case I = 1 has

received attention from the authors [10, 11]. In each phase i of this model, the cells are

ageing with speed vi (transport term), they may die (with rate di) or proceed to next phase

(with rate Ki→i+1) in which they start with age 0.

Solutions to (1), if the coefficients are time-periodic, or stationary, satisfy ni(t, x) ∼
C0Ni(t, x)eλt, asymptotically in a L1 sense with respect to time [37], where Ni are defined

by (for T−periodic coefficients):
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∂t
Ni(t, x) +

∂

∂x

(

vi(x)Ni(t, x)
)

+
(

λ + di(t, x) + Ki→i+1(t, x)
)

Ni(t, x) = 0 ,

Ni+1(t, 0) =

∫ ∞

0

Ki→i+1(t, x)Ni(t, x)dx ,

N1(t, 0) = 2

∫ ∞

0

KI→1(t, x)NI(t, x)dx ,

Ni > 0, Ni(t + T, .) = Ni(t, .),
∑

i

∫ T

0

∫ ∞

0

Ni(t, x)dxdt = 1 .

(2)

The growth exponent λ, first eigenvalue of the system, thus governs the long-time be-

haviour of the population, since the Ni are bounded, according to the normalisation con-

dition of the last equation. The study of λ is therefore of crucial importance. More details

about the asymptotic behaviour of (1) can be found in [37].

In the sequel, we will focus on the case of stationary phase transition coefficients (Ki→i+1(t, x) =
Ki→i+1(x)), with no death rates (di(t, x) = 0) and constant velocities (vi(x) = vi).

As shown in [12], the first eigenvalue λ is then given as the only positive solution to

the following equation, which in population dynamics is referred to, in the 1-phase case
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(I = 1) with no death term, as Lotka’s (or Euler-Lotka) equation:

1

2
=

I
∏

i=1

∫ +∞

0

1

vi

Ki→i+1(x)e
−

∫

x

0

1
vi

Ki→i+1(ξ)dξ
e
− 1

vi
λx

dx (3)

In the stationary case with no death rate, integrating Equation (1) along its characteristics,

we can obtain the formula:

ni(t + x, vix) = ni(t, 0)e−
∫

x

0
Ki→i+1(viξ)dξ. (4)

This formula can be interpreted in the following form: the probability that a cell which

entered phase i at time t stays for at least a duration x in phase i is given by:

P (τi ≥ x) = e−
∫

x

0
Ki→i+1(viξ)dξ, (5)

where τi represents the time spent by the cell in the phase i.
This leads to the natural consideration of the time τi spent in phase i as a random variable

on [0, +∞[, with probability density function fi:

dPτi
(x) = fi(x)dx = Ki→i+1(vix)e−

∫

x

0
Ki→i+1(viξ)dξdx (6)

Notice that it is necessary for this interpretation to be coherent, and fi to be a probability

density function, to impose
∫ +∞

0
Ki→i+1(x)dx = +∞, which physiologically means that

all cells leave any phase in finite time, without any hypothetical maximum age in phase to

be introduced in the cell cycle model.

2.2. Identification of model parameters. In this section we present the method we used

to identify the model parameters from recent imaging data on individual cells that enabled

us to assess the variability of cell cycle phase durations in populations of cells.

2.2.1. FUCCI reporters to identify model parameters. From a biological point of view,

as said in Section 1, the cell cycle is classically considered as composed of four phases

named G1 (gap 1), S (DNA synthesis), G2 (gap 2) and M (mitosis). One challenge of our

modelling study was to determine the expression of the parameters Ki→i+1 mentioned in

the model equations (1) for each phase of the cell cycle (i = 1 . . . 4) (recalling that we

assumed di = 0 and vi constant for all i = 1 . . . 4). To get such an expression, we needed

to have access to the distribution of the duration of the phases of the cell cycle within a cell

population.

FUCCI is the acronym of fluorescent ubiquitination-based cell cycle indicator. This is

a recently developed technique that allows tracking progression within the cell cycle of

an individual cell with a high degree of contrast [41, 42]. The FUCCI method consists in

developing two fluorescent probes indicating whether a tracked cell is in the G1 phase or

in one of the phases S, G2 or M of the cell cycle. Sakaue-Sawano et al. [41, 42] fused

red- and green-emitting fluorescent proteins to proteins called Cdt1 and Geminin. Cdt1

and Geminin oscillate reciprocally: Cdt1 level is highest in the G1 phase and falls down

when the cell enters the S phase, whereas Geminin level is highest in the S, G2 and M
phases and falls when the cell enters the G1 phase. Let us mention that Cdt1 and Geminin

are degraded due to the process of ubiquitination, which is what is referred to (“U”) in the

name of the reporter method. Consequently, the nucleus of a FUCCI cell fluoresces in red

when this cell is in the G1 phase of the cell cycle, and in green when it is in phases S, G2

or M .
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This method allows to measure the time a tracked cell spends in the phase G1 and in the

combined phase S/G2/M of the cell cycle. Thus, by tracking each cell in a population,

we can get the distributions of the duration of these phases within the population, and so

we can deduce the probability density functions of the random variables representing the

duration of these phases (see below Section 2.2.3 for details).

2.2.2. Identification procedure. For the parameter identification procedure we used FUCCI

data transmitted to us within the C5Sys EU project by F. Delaunay’s team, Institute of Bi-

ology Valrose, CNRS UMR 7277, INSERM U1091, Université Nice-Sophia-Antipolis,

France. The cell lines were obtained by one of us (C. Feillet) by recloning cell cycle phase

and circadian clock (through Rev-Erb α) markers and generating a stable NIH 3T3 cell line

(mouse embryonic fibroblasts). To get fluorescences that were compatible with the one of

the circadian clock marker, that was a yellow-green fluorescence, red- and far-red- (instead

of red- and green-, cf Section 2.2.1) emitting fluorescent proteins (mKO2 and E2-Crimson)

were respectively fused to Cdt1 and Geminin. So the nucleus of each of our FUCCI cells

fluoresced in red when this cell was in the G1 phase of the cell cycle, and in far-red when

it was in phases S, G2 or M . In the sequel, for historical reasons and to avoid confusion

between red and far-red fluorescences, we will consider the initial color code according to

which the nucleus of a FUCCI cell fluoresces in red when this cell is in the G1 phase of the

cell cycle and in green when it is in phases S, G2 or M .

These NIH 3T3 cells were proliferating in a liquid medium (Dulbecco’s Modified Ea-

gle Medium, DMEM) with foetal bovine serum (FBS). FBS is known to contain several

growth factors such as cytokines and proteins. Two experiments were performed on non

confluent (i.e., proliferating) cells according to the concentration of FBS in the medium:

10% (usually considered as the “reference” concentration) and 15%. To avoid synchroni-

sation of cells due to changing culture medium, cells were kept proliferating three days in

the chosen medium before the measurements began. Thus, as measurements began, cells

were at different stages of the cell cycle.

To compare numerically equivalent populations of cells in the two qualitative groups,

10% and 15% FBS medium, and as cells had also a fluorescent marker for their circadian

clock (through the expression of the protein RevErb-α), we decided to keep only within the

(obviously more numerous) 15% FBS group only those cells that showed the most robust

circadian rhythms. This choice possibly enhanced the effect of FBS concentration increase,

not only on cell cycle phase duration times, but also on possible clock synchronising ef-

fects, which was the searched-for effect. In the present study, this is the only way we will

take care of the circadian clock data. A more detailed analysis will be provided in a forth-

coming study (cf Section 4).

The data processed in the identification procedure thus consisted of time series of in-

tensities recording the red and green fluorescences emitted by individual NIH 3T3 cells

proliferating within an in vitro homogeneous population, in a medium composed of a given

FBS concentration. Only cells that were alive during the whole measurement period were

tracked, so that our assumption of a zero death rate in the model is in accordance with

these experimental conditions. The intensities were recorded every fifteen minutes, over 63

hours. A graph representing such a time series is presented on Figure 1.

We considered only data with at least the duration of a complete cell cycle, and measured

the duration of the phases G1 and S/G2/M within this cell cycle. The end of a cell cycle

is characterised by the birth of two daughter cells that were also labelled and tracked.

Consequently we measured the cell cycle duration as the time between cell birth and the
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FIGURE 1. Example of a time series of the intensity of red (deep grey,

related to G1) and green (light grey, related to S/G2/M ) fluorescences

obtained by using the FUCCI method on a NIH 3T3 cell within a popu-

lation in liquid medium.

division of this cell into two daughter cells. This method is equivalent to the one used in [8]

since cell division is also characterised by a fast disappearance of the green fluorescence.

During the transition from G1 to S, red and green fluorescences overlap, so that it was

not trivial to determine the duration of phase G1. As in [8], we decided to define the end

of phase G1 as the time at which red fluorescence was maximum before decreasing. The

duration of phase S/G2/M was obtained by subtracting the duration of phase G1 from the

duration of the cell cycle. This method is summarised on Figure 2.

2.2.3. Expression of the transition rates. Using the identification method presented above

(Section 2.2.2), we identified 117 data for the duration of the phases G1 and S/G2/M on

individual cells cultured in a liquid medium containing 10% of foetal bovine serum (FBS),

and 150 such data on individual cells cultured in a liquid medium containing 15% of FBS.

The mean value of these durations and the corresponding standard deviation are given in

Table 1.

10% FBS 15% FBS

mean (h) sd (h) mean (h) sd (h)

G1 9.3 4.9 8.2 3.3

S/G2/M 12.1 2.5 10.4 2.1

cycle 21.4 5.5 18.6 4.1

TABLE 1. Mean and standard deviation (sd) (in hours) of the duration of

the phases G1 and S/G2/M and of the cell cycle for two experimental

conditions (culture medium composed of 10% of FBS or of 15% of FBS).

As expected, we could notice that the standard deviation of G1 was higher than the one

of S/G2/M , which reflects the known fact that the duration of G1 is more variable than

the one of S/G2/M in cell populations, a phenomenon that is common knowledge among

biologists. More surprisingly, we could notice that increasing the concentration of FBS

from 10% to 15% decreased not only the duration of G1 but also the one of S/G2/M ,



CELL POPULATION MODEL WITH GROWTH FACTORS 7

FIGURE 2. Graphic representation of the method used to determine the

duration of the cell cycle and the one of G1 phase. The duration of phase

S/G2/M was deduced by subtracting the duration of phase G1 from the

duration of the cell cycle.

leading to an overall higher growth rate of the population by a shortening of both phases.

We rounded each duration to the nearest hour. As in [8], the distributions of the durations

of G1 and of S/G2/M within the population were fitted to experimental data by using

Gamma laws.

For all x ≥ 0, we thus used the following probability density functions:

fi(x) =
1

Γ(αi)
(x − γi)

αi−1βαi

i e−βi(x−γi)1[γi;+∞[(x) i = 1, 2, (7)

where Γ is the Gamma function, 1[γi;+∞[ the indicator function of interval [γi; +∞[ and

where the parameters αi, βi and γi are given in Table 2. The corresponding curves are

presented on Figure 3.

10% FBS 15% FBS

G1 (i = 1) S/G2/M (i = 2) G1 (i = 1) S/G2/M (i = 2)

αi 1.80 16.96 5.68 2.71

βi 0.43h−1 2.22h−1 1.23h−1 1.01h−1

γi 4.83h 4.37h 3.13h 7.77h

TABLE 2. Parameters used to fit experimental data of the distribution of

the durations of phases G1 and S/G2/M in the population by Gamma

laws, for the two experimental FBS supplementation of the medium

(10% FBS and 15% FBS).
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FIGURE 3. Gamma laws (solid line) (multiplied by a coefficient equal

to the total number of data) that fit experimental data (bars) for the dis-

tribution of the duration of phases G1 (left) and S/G2/M (right), for the

two experimental conditions i.e., 10% FBS (top) and 15% FBS (bottom).

As in [8], we chose Gamma laws because they allowed a good (phenomenological) fit

to our experimental data while keeping a reasonable number of parameters to be estimated.

Moreover, there is a clear physiological basis to this choice: if the parameter α is an integer,

the Gamma distribution is the law often used to represent probabilities of waiting times of

the sum of α i.i.d. random variables representing waiting times, each one of them following

an exponential law with the same parameter β. In our context, within G1 or S/G2/M , these

waiting times could be times between triggerings of crucial switches in a cascade of protein

expressions leading to a phase transition, e.g., G1/S. Such an explanation, or parts of it,

has been proposed, in the literature, in this context or others dealing with gene or protein

expression, for instance in [13, 32, 43].

The mean, m, and the standard deviation, sd, of a random variable that follows a shifted

Gamma law with parameters α, β,γ are given by the following formulas:

m =
α

β
+ γ sd =

√
α

β
(8)

The parameters we found for Gamma distributions led to a mean duration and a standard

deviation on R+ respectively of 9.0h and 3.1h for the G1 phase and of 12.0h and 1.9h for

the S/G2/M phase in the case of 10% of FBS, and of 7.7h and 1.9h for the G1 phase

and of 10.5h and 1.6h for the S/G2/M phase in the case of 15% of FBS. These figures,

summarised in Table 3, are very close to the ones mentioned in Table 1 relative to the raw

experimental data.
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10% FBS 15% FBS

m (h) sd (h) m (h) sd (h)

G1 9.0 3.1 7.7 1.9

S/G2/M 12.0 1.9 10.5 1.6

TABLE 3. Mean (m) and standard deviation (sd) (in hours) of the

Gamma distributed duration of the phases G1 and S/G2/M for two ex-

perimental conditions (culture medium composed of 10% of FBS or of

15% of FBS), according to the parameters mentioned in Table 2.

As the experimental data were performed in vitro in a liquid medium, and as cells were

kept in the medium three days before the recordings in order not to be synchronised by a

“serum shock” (meaning a steep increase in growth factors contained in FBS induced by

sudden serum adjunction) from the beginning of recordings, we could consider that there

was no synchronisation between cells, hence no time dependency of the control of the

growth process at the cell population level. These facts were consistent with our assumption

of stationary transition coefficients, i.e., the assumption under which transition rates from

G1 to S/G2/M (K1→2) and from S/G2/M to G1 (K2→1) did not depend on time, but

only on the age of cells in the two phases. From Equation (6), we deduced the expression

of the cumulative distribution function [8]:
∫ x

0

fi(ξ)dξ = 1 − e−
∫

x

0
Ki→i+1(viξ)dξ i = 1, 2 (9)

and thus we obtained:

Ki→i+1(x) =
fi(

x
vi

)

1 −
∫

x

vi

0 fi(ξ)dξ
i = 1, 2 (10)

where fi represents the experimentally determined probability density function of the ran-

dom variable representing the duration the cell spent in phase i. One may note here that the

right hand side is usually known among probabilistic scientists as the hazard rate.

3. Numerical results.

3.1. Discretisation scheme. We discretized our equations by means of finite differences

as we did in [8]. As we introduced in the present paper a velocity vi in the model that is

not necessarily equal to 1, we had to choose time and age steps, respectively denoted by

∆t and ∆x, so as to satisfy the CFL condition. Thus we assumed:

∆x = max{vi, i = 1, 2}∆t (11)

3.2. Internal validation. To make sure that our numerical results were in agreement with

the biological data that we used to build our model (“internal validation”), we performed

simulations in the case of no time control, that is, Ki→i+1(x, t) = Ki→i+1(x) (i = 1, 2),

where the Ki→i+1(x) were given by the expression (10). As we only wanted, in this inter-

nal validation stage, to compare with biological data numerical results that were performed

on the basis of modelling assumptions that corresponded to the two experimental condi-

tions (10% and 15% of FBS), without assessing velocities, we assumed here that velocities

v1 and v2 were constant, both equal to 1.

The graphs of the transition rates we obtained from formula (10) and experimental data

are presented on Figure 4.



10FRÉDÉRIQUE BILLY, JEAN CLAIRAMBAULT, FRANCK DELAUNAY, CÉLINE FEILLET AND NATALIA ROBERT
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FIGURE 4. Transition rates from G1 to S/G2/M (left) and from

S/G2/M to G1 (right) for the two experimental conditions, i.e. 10%
FBS (top) and 15% FBS (bottom). These rates are functions of age of

cells in the phases only.

Figure 5 presents the time evolution of the percentage of cells in phases G1 and S/G2/M
over the duration of one cell cycle resulting from numerical and biological experiments

(biological data were preliminarily synchronised “by hand”, i.e., by deciding that all cells

were at age nought in phase G1 at the beginning of simulations). We notice that modelled

numerical data are very close to the raw biological data in the two experimental condi-

tions. Therefore, we can conclude that the model and the method used to represent the

proliferation phenomenon and fit our experimental data may have led us close to biological

likelihood.

As mentioned in Section 2.1, the growth exponent λ, first eigenvalue of System (2), can

be computed from Lotka’s equation (cf Equation (3) and [12] for details). In the particular

case of our experimentally based study described above, we had:

(

1 +
λ

β1

)α1
(

1 +
λ

β2

)α2

eλ(γ1+γ2) = 2 (12)

With the coefficients of the two Gamma distributions identified from FUCCI data (see Ta-

ble 2) where v1 = v2 = 1, this yielded λ ≈ 0.033h−1 for the experiment with a medium

composed of 10% of FBS and λ ≈ 0.038h−1 for the experiment with a medium composed

of 15% of FBS, which corresponds to doubling times (Td = ln(2)/λ) respectively equal to
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FIGURE 5. Time evolution of the percentages of cells in G1 (red or deep

grey) and S/G2/M (green or light grey) phases from biological data

(dashed line) and from numerical simulations (solid line), in the case of

10% FBS (top) and 15% FBS (bottom). Our model results in a good

approximation of the biological data.

Td = 20.8h and Td = 18.1h. These figures are summarised in Table 4.

10% FBS 15% FBS

λ 0.033h−1 0.038h−1

Td 20.8h 18.1h

TABLE 4. Computed growth exponent (λ) and corresponding doubling

time (Td) of the cell population for two experimental conditions (culture

medium composed of 10% of FBS or of 15% of FBS).

3.3. Simulations. We performed model simulations by means of the parameters identified

in Section 2.2.3. For the two experimental conditions (10% of FBS and 15% of FBS) the
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time evolution of the percentages of cells in G1 and in S/G2/M and of the total population

are presented on Figure 6.

As expected, the oscillations of the percentages of cells in G1 and in S/G2/M were

damped. These percentages rapidly reached a steady state. This phenomenon reflects the

progressive desynchronisation of cells in the population (asynchronous cell growth [1, 2,

3]). We could notice that, even if the cell population submitted to 15% of FBS grew faster

than the one submitted to 10% of FBS, desynchronisation occurred more rapidly in the case

of 10% of FBS than in the case of 15% of FBS, i.e., it took longer for cells to desynchronise

in the culture medium composed of 15% of FBS than in the medium composed of 10% of

FBS. This corresponds to a lower phase duration variability in the case of 15% of FBS

than in the case of 10% of FBS, lower variability in phase duration meaning sharper phase

transition (cf. Section 2.2.3).

As remarked in Section 2.2.3 and in Table 4, an increased concentration in FBS (hence

in growth factors) in the medium resulted in shorter durations of phases G1 and S/G2/M
and thus in faster cell proliferation.
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FIGURE 6. Time evolution of the percentages of cells in G1 (left, red

or deep grey) and S/G2/M (left, green or light grey) phases and of the

total population (right), in the case of 10% of FBS (top) and 15% of FBS

(bottom). Cell desynchronisation occurs less rapidly and the population

grows faster (λ ≈ 0.038h−1 vs. λ ≈ 0.033h−1) in the case of 15% of

FBS than in the case of 10% of FBS.

To model the effects of higher growth factor concentration in the medium on cell pop-

ulation dynamics, we considered the experimental data for a concentration of 10% of FBS

in the medium as reference data. Our aim was to recover the population dynamics for a

concentration of 15% of FBS in the medium using this reference population as a basis. We
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assumed that FBS influenced only cell ageing velocity and we wanted to check how this

assumption was consistent with our biological data.

We thus calculated the probability density function deduced from the distribution of the

durations of phases G1 and S/G2/M fitted in the population of cells proliferating in a

medium composed of 10% of FBS, using a shifted Gamma distribution model, whose pa-

rameters were found to be α1 = 1.80, β1 = 0.43h−1, γ1 = 4.83h, α2 = 16.96, β2 =
2.22h−1, γ2 = 4.37h. From these figures we deduced the transition rates Ki→i+1,10% un-

der the assumption v1 = v2 = 1 (cf Section 2.2.3) and subsequently used these parameters

of the age-structured model, except that v1 and v2 were no longer fixed, to identify these

velocities in the case of 15% of FBS in the medium.

For convenience in this preliminary study, we assumed that v1 = v2 = v, i.e., that

15% FBS cells were ageing with the same, constant, velocity in G1 and in S/G2/M .

This velocity v was then viewed as a parameter to fit the percentages of cells in G1 and

S/G2/M resulting from the biological experiment with a medium composed of 15% of

FBS (and synchronised “by hand” as in Section 3.2). Thus the model we used was:































∂

∂t
ni(t, x) + v

∂

∂x
ni(t, x) + Ki→i+1,10%(x) ni(t, x) = 0 i = 1, 2 ,

n2(t, x = 0) =

∫

ξ≥0

K1→2,10%(ξ) n1(t, ξ) dξ ,

n1(t, x = 0) = 2

∫

ξ≥0

K2→1,10%(ξ) n2(t, ξ) dξ ,

(13)

where Ki→i+1,10% corresponded to the transition rates determined in the case of 10% FBS

(cf Section 2.2.3).

Our aim was thus to minimise the mean squared error that quantified the discrepancy

between the percentages of cells in G1 and in S/G2/M computed by Equations (13) and

the experimental ones. We thus used the mean squared method by means of the fmincon

Matlab function with the velocity v as parameter (the constraint being the positivity of v).

This method led to a computed value of v equal to 1.095. The corresponding computed

and experimental percentages of cells in G1 and S/G2/M are presented on Figure 7. We

can notice that modelled numerical data were very close to raw biological data.

This value v = 1.095 led to an exponential growth exponent λ (computed by means of

Equation (3)) equal to 0.045h−1 and so to a doubling time Td equal to 15.4h. These fig-

ures tend to demonstrate that cells would proliferate approximately 10% faster in a medium

composed of 15% of FBS than in a medium composed of 10% of FBS.

4. Conclusion and discussion. Growth factors, such as those contained in foetal bovine

serum (FBS) are known to influence cell cycle dynamics. A lot of studies were and are still

performed by scientists aiming at fully understanding the underlying mechanisms, see for

instance [14, 16, 25, 29, 30, 31, 45]. We proposed an age-structured mathematical model

whose parameters were computed on the basis of biological data, and that enabled us to

analyse the cell synchronisation in the cell cycle according to the FBS concentration. This

model also enabled us to recover the effects of an increase in the FBS concentration in the

culture medium.

In our biological data, FBS decreased both the durations of G1 and S/G2/M . These

results are in agreement with the results presented in the literature, for instance in [16, 31].

In [16], the authors studied the effects of several concentrations of epidermal growth factor
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FIGURE 7. Time evolution of the percentages of cells in G1 (red or deep

grey) and S/G2/M (green or light grey) phases from biological data in

the case of 15% FBS (dashed line) and from numerical simulations (solid

line) resulting from Equations (13) for v = 1.095. Our model results in

a good approximation of the biological data.

(EGF) on the proliferation and cell cycle regulation of cultured human amnion epithelial

cells, using flow cytometry and gene expression measurements. They concluded that EGF

increase resulted in reduced expression of the cell cycle control genes, which explained the

increased concentration of cells in S and G2/M phases they observed when using EGF

supplementation.

The value of the predicted exponential growth exponent λ for the case of 15% FBS (λ =
0.045h−1) was higher than the one we computed on the basis of the raw experimental data

(λ = 0.038h−1). Nevertheless it seemed to us that the experimental data were “visually”

better fitted by the predictive model (Equations (13)) than by the experimentally-based

model (Equations (1)). This difference could be due to the fact that we directly fitted

results of the model (percentages of cell in G1 and S/G2/M ) instead of fitting it indirectly,

i.e., through the Gamma distributions. Another way to improve the predictive character of

our model would be to recur to another minimisation method (e.g., CMAES [22]).

Moreover, in this preliminary study, we assumed that FBS only impacted the cell ageing

velocities, in the same manner in the phase G1 as in the phase S/G2/M . In fact, the

mechanisms leading to changes in the cell cycle dynamics due to an increase (or decrease)

of the FBS concentration in the culture medium might be much more complex.

Indeed, one may naturally question the way in which we investigated the effect of an

increase in growth factors on the cell cycle model parameters: we focused on the velocity

parameters v1 and v2 with which phases G1 and S/G2/M are cruised by proliferating cell

populations in the division cycle, which implicitly assumes that protein synthesis mech-

anisms in phases G1 and G2, the major biological phenomena occurring in these phases,

are the main targets of growth factors, and this may be an oversimplified modelling as-

sumption. Indeed, as mentioned in the introduction, it is known that growth factors affect

in particular Cyclin D and its inhibitors at the restriction point of phase G1, which could

be differently represented in the model, namely by a direct action on phase transition rates

Ki→i+1. This has been done only graphically (Figure 4) in this paper, where the choice

made here was to focus on velocity parameters v1 and v2.
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We based our study on two FBS concentrations. Biological FUCCI data performed on

other cell types (healthy and/or cancer cells) with other varying FBS concentrations in the

culture medium would help us to further analyse the effects of FBS on the cell cycle dy-

namics and thus to improve the model predictability.

In a forthcoming work, we plan to introduce time control in the model presented in

this paper in order to analyse the effect of increasing the FBS concentration of the cul-

ture medium on cell circadian clocks. Such an analysis could help us to better understand

the role of the circadian clock in cell cycle regulation of healthy and cancer cells in the

presence of growth factor receptor (GFR) inhibitors. This should prove helpful to design

theoretically optimised cancer treatments, that combine cytotoxic drugs, that exert their

main action by arresting the cell cycle at phase transitions via DNA damage, ATM trigger-

ing and p53 control, and GFR blockers. Such therapeutic combinations, currently in use

in the clinic ([34], see also [9] and references therein), should indeed benefit from better

knowledge of interactions between growth factors and the cell cycle from a modelling point

of view.
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[30] J. Massagué, S. W. Blain, and R. S. Lo. TGFβ signaling in growth control, cancer, and heritable disorders.

Cell, 103(2):295–309, Oct 2000.

[31] A. L. Mazlyzam, B. S. Aminuddin, L. Saim, and B. H. I. Ruszymah. Human serum is an advantageous

supplement for human dermal fibroblast expansion: clinical implications for tissue engineering of skin. Arch

Med Res, 39(8):743–752, 2008.

[32] H. H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA,

31:814–819, 1997.

[33] A. McKendrick. Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc., 54:98–130,

1926.

[34] J. Mendelsohn and J. Baselga. Status of epidermal growth factor receptor antagonists in the biology and

treatment of cancer. J. Clin. Oncol., 14:2787–2799, 2003.

[35] J. Metz and O. Diekmann. The dynamics of physiologically structured populations, volume 68 of Lecture

notes in biomathematics. Springer, New York, 1986.

[36] A. B. Pardee. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A,

71(4):1286–1290, 1974.

[37] B. Perthame. Transport Equations in Biology. Frontiers in Mathematics series. Birkhäuser, Boston, 2007.
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