
HAL Id: hal-00732094
https://hal.inria.fr/hal-00732094

Submitted on 13 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling High-Level Application Development in
Internet of Things

Pankesh Patel

To cite this version:
Pankesh Patel. Enabling High-Level Application Development in Internet of Things. [Research Re-
port] 2012. �hal-00732094�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49865468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00732094
https://hal.archives-ouvertes.fr

Enabling High-Level Application Development in Internet of Things

Pankesh Patel

INRIA Paris-Rocquencourt, France

pankesh.patel@inria.fr

September 10, 2012

Abstract

The Internet of Things (IoT) combines Wireless Sensor and Actuation Networks (WSANs), Pervasive
computing, and the elements of the “traditional” Internet such as Web and database servers. This leads to
the dual challenges of scale and heterogeneity in these systems, which comprise a large number of devices of
different characteristics. In view of the above, developing IoT applications is challenging because it involves
dealing with a wide range of related issues, such as lack of separation of concerns, need for domain experts to
write low level code, and lack of specialized domain specific languages (DSLs). Existing software engineering
approaches only cover a limited subset of the above-mentioned challenges.

In this work, we propose an application development process for the IoT that aims to comprehensively
address the above challenges. We first present the semantic model of the IoT, based on which we identify
the roles of the various stakeholders in the development process, viz., domain expert, software designer,
application developer, device developer, and network manager, along with their skills and responsibilities.
To aid them in their tasks, we propose a model-driven development approach which uses customized lan-
guages for each stage of the development process: Srijan Vocabulary Language (SVL) for specifying the
domain vocabulary, Srijan Architecture Language (SAL) for specifying the architecture of the application,
and Srijan Network Language (SNL) for expressing the properties of the network on which the application
will execute; each customized to the skill level and area of expertise of the relevant stakeholder. For the
application developer specifying the internal details of each software component, we propose the use of a
customized generated framework using a language such as Java. Our DSL-based approach is supported by
code generation and task-mapping techniques in an application development tool developed by us. Our
initial evaluation based on two realistic scenarios shows that the use of our techniques/framework succeeds
in improving productivity while developing IoT applications.

1 Introduction

The IoT has been discussed in literature for some time now, albeit with several similar but non-identical
definitions. In this paper, we build upon the following definition, proposed by the CASAGRAS project [4] in
2009:

“A global network infrastructure, linking physical and virtual objects through the exploitation of
data capture and communication capabilities. This infrastructure includes existing and evolving
Internet and network developments. It will offer specific object-identification, sensor and connection
capability as the basis for the development of independent cooperative services and applications.
These will be characterized by a high degree of autonomous data capture, event transfer, network
connectivity and interoperability.”

The IoT has recently moved closer to being a reality, thanks to the increased abundance of smart phones,
WSANs [1], Web Services, and RFID technologies [33]. Several IoT applications have been reported in recent
research, and we expect to see increased adoption of IoT concepts in the fields of personal health, inventory
management, and domestic energy usage monitoring [2]. It is noteworthy that the systems in IoT include both
WSAN devices as well as smart appliances, in addition to the elements of the “traditional” Internet such as
Web and database servers; these can be employed to design complex applications, such as the one discussed
next.

1.1 Illustrative Application: Smart Office

We consider the following office environment management application to illustrate the characteristics of IoT
applications. An office might consist of several buildings, with each building in turn consisting of one or
more floors, each with several rooms, each instrumented with a large number of heterogeneous devices with

1

���
���

���
���

���

���

���

���

���

���

�������

���	A�B

���

���

���

���

���
������

������

������

���

���

CDADEA�BF

���
���

���
���

���

���

���

���

���

���

���������	A

���

���

���

���

���
������

������

������

���

���

���������BA

������	

C
D
E�F
E�
�

���

���

Figure 1: Multi-floored building with deployed devices ((1)-device with temperature sensor, (2)-Heater, (3)-
BadgeReader, (4)-Badge)

sensors, actuators, and storage (see Figure 1). The system aims to regulate appropriate temperature for worker
productivity and personal happiness, and also provides general information such as current temperature of the
building.

The temperature in each room of the building is regulated by a sense-compute-actuate executing among the
temperature sensors and heaters of the room, using the average temperature of room. Additionally, average
temperature values are computed at the per-floor and per-building levels to be displayed at monitors at the
building entrance and at the control station. When a user enters or leaves a room, a badge reader detects this
event, and queries a central employee database for the user’s preferences. Based on these, the threshold used
by the room’s devices is updated.

2

1.2 Challenges and Contributions

An important challenge to be addressed in the IoT is ease of application development. There is a growing
awareness about this problem in the research community, and an increasing number of approaches [6, 8, 19, 23,
25, 27] are being proposed in the closely related fields of WSANs and Pervasive computing (discussed in more
detail in the Section 5). While the main challenge in the former is the extremely large scale of the systems
(hundreds to thousands of largely similar nodes), the primary concern in the latter has been the heterogeneity
of devices. IoT applications such as the one discussed in the Section 1.1 raise the following challenges in the
application development process:

• No separation of concerns. IoT applications incorporate knowledge in a number of fields such as
the application domain, distributed systems, embedded system, networking, and operating systems. To
develop such applications, developers require multiple skills such as dealing with domain specific exper-
tise, low-level hardware knowledge, design of distributed code, lots of administrative code to interface
hardware and software components. Nearly all the application development approaches proposed for IoT
assume only one role – the programmer/developer – to be played by the individuals developing the ap-
plication. This hinders rapid application development, and is unsuited to developing sophisticated large
scale applications.

• “General-Purpose” DSLs. While there are some approaches based on metamodels/domain-specific
languages [8, 25, 27] for the IoT, domain specific development approaches stop short at providing a “one-
size fits all” meta-model or DSL for the entire IoT domain. We believe that it is too large a granularity,
and an ideal approach would provide Domain Specific Software Engineering (DSSE) [31] specific to the
application domain, e.g., HVAC, in order to maximize the ease of use and other benefits obtained from
abstractions.

• Heterogeneity of target devices. IoT systems are expected to be extremely heterogeneous - both in
terms of the capabilities of the devices involved, as well as in terms of the different implementations of the
sensors/actuators to be used (e.g., several vendors might sell temperature sensors, but with slightly dif-
ferent capabilities). Devices feature various interaction modes (e.g., command, request-response, publish-
subscribe). This heterogeneity spreads in the application code, cluttering it with low-level detail. It should
not be the developer’s responsibility to handle this heterogeneity, since ideally the same application should
execute on entirely different deployments (e.g. the same smart building application on different offices).

• Scale. Applications in the IoT may execute on systems consisting of thousands of devices. Requiring
the ability of reasoning at such levels of scale is impractical, even for computer science experts, let alone
domain experts. Consequently, there is the need for adequate abstractions to present the large scale in a
suitable manner to the stakeholders involved.

Based on above identified characteristics of IoT application, our research goal is:

“Enable high-level application development that allows stakeholders involved in the development of
IoT applications to easily specify applications, which involve a large number of heterogeneous de-
vices.”

Our work aims to address the above problems by making the following contributions1:

• Semantic Model for the Internet of Things. In order to achieve clarity on the task at hand while
developing IoT applications, we first clearly identify the concepts of IoT and relationships among them.
More details of our semantic model are in Section 2.

• Identification of Roles in the Development Process. Leveraging the semantic model above, we
identify the precise role of each stakeholders involved in the development of IoT applications. This
promotes separation of concerns and raises the level of knowledge that can be shared by other stakeholders.
This clear identification of the expectations and specialized skills of each type of stakeholder is an integral
part in our work on supporting each of them in playing their part effectively to smoothen the application
development process.

• A multi-stage approach for IoT application development. In order to support the different stages
(i.e. design, implementation, and deployment) of the IoT application development process resulting from

1This work does not claim to completely solve the IoT research challenges discussed above. Our main focus is to present a
subset of tasks involved in the IoT application development process, and the interrelationships among them. By clearly identifying
the tasks, we can help researchers in the community attack the particular subtasks involved in process.

3

the actions of each of the stakeholders, we propose a multi-stage model-based approach. For each type
of stakeholder, we provide a separate set of abstractions, customized not only for the IoT in general, but
also for the application domain itself (e.g., HVAC). This allows the stakeholder to specify their share at
the proper level of abstraction commiserate with the skills and the responsibilities of the role he is playing.
The details of the various stakeholder roles introduced above, as well as this process is discussed in more
detail in Section 3.

• A generative approach of application development. We build an application development tool,
combined with our language, provide support to various stakeholders to design and develop applications at
each stages of IoT application development. The current version of our tool includes two code generators.
First, an application code generator produces skeleton classes from high-level specification (expressed
using DSL at design stage). Second, a deployment code generator produces device-specific code to result
in a distributed software system collaboratively hosted by individual devices in the IoT. More details of
our tool are in Section 3.3; we further show by our experiments (discussed in Section 4) that using our
framework, the application development burden is significantly reduced.

In addition to the above, we present the related work in this area in Section 5. We summarize our contribution
so far in Section 6 and conclude with our plan for future work in Section 7.

2 Semantic Model for the Internet of Things

We have extracted the concepts and associations that we believe are suitable for representing applications in the
Internet of Things [22]. We present the semantic model derived from them in the section below. A graphical
representation of the same is in Figure 2, which follows the notation introduced in [17]. The figure contains the
concepts in the IoT domain, along with their relationships with each other, including the cardinality of such
relationships.

2.1 Concepts

The concepts in the Internet of Things can be divided broadly into two categories:

2.1.1 “Traditional” Internet concepts

These are concepts which developers of Internet applications are most familiar with, namely:

A software component (using the definition from [30]) is an architectural entity that (1) encapsulates a subset
of the system’s functionality and/or data, (2) restricts access to that subset via an explicitly defined interface,
and (3) has explicitly defined dependencies on its required execution context. We identify the following types
of software components:

• A computational service is a software component that takes one or more units of information as input
and produces an output. It is a representation of the processing taking place in the application.

• A storage service provides read and write access to persistent data. This data can be accessed by other
software entities by interacting with the storage service.

• An end-user application is a software component that is designed to help a user to perform tasks
by interacting with other software components. For instance, in the room temperature maintenance
application, a user can provide his temperature preferences to the IoT application using an app installed
on his smart phone.

Some concepts related to the ones above are that of a user, which is a human who performs singular or
multiple related specific tasks; a store, which is the entity that actually hosts the data (in the above example,
the various databases managed by the MySQL server are instances of store); and information, which is any
data that is meaningful by itself.

2.1.2 “Thing”-oriented concepts

In addition to the ones above, our semantic model also includes the following concepts, which are specifically
used to model the “things” in the IoT.

• An entity of interest (EoI) [11] is a real world object, including the attributes that describe it, and its
state that is relevant from a user or an application perspective. For instance, the EoI may be any real
world objects such as room, book, plant, etc.

4

Device

Entity of

Interest

Resource

Software

component

Runs-on

1

1..*

Sensor Actuator

E
x

te
n

d
s

Phenomenon

Observes

1 1..*

*

1..*

1

*

End User

Application

Extends

User

Raw

Data 11

In
te

ra
c

ts
-

w
it

h

E
x

te
n

d
s

Hosts
*

1..*

*

Action
1 1

Performs

Storage

Service

Extends

Consists-of

affects

Store

P
ro

v
id

e
s

a
c

c
e

s
s

to

1..*

Produces

communicates-with

A
c

c
e
s

s
e

d
-b

y

1

1
1

Computational

 Service

Sensor

Driver
Actuator

Driver

1

A
c

tu
a

te
d

-b
y

Driver

E
x

te
n

d
s

E
x

te
n

d
s

Command
Sensor

Measurement

C
o

n
s

u
m

e
s

G
e

n
e

ra
te

s

1

1
1

1

Information

E
x

te
n

d
s

E
xtends

11

1..*

1

Consumes

Generates

“Thing”-oriented concepts

E
xt

en
ds Extends

Figure 2: Semantic Model

• A phenomenon [11] a property of a physical entity that is observable. For instance, the temperature of
a room and ID of tag are the examples of the phenomenon.

• A resource [11] is a conceptual representation of a sensor or an actuator, where a sensor is a type of
resource that has the ability to detect changes in the environment. Thermometer, and tag readers are
examples of sensors. An actuator is a resource that has the ability to make changes in the environment
through an action. Heating or cooling elements, speakers, lights, etc. are examples of actuators.

• Raw data is a representation of a sensor observation. For instance, the raw data reading generated by
a temperature sensor can be the number 25, without any explicit meaning or units attached to it. Note
that this is different from information described above, which attaches additional data such as unit of
measurement (Celsius/Fahrenheit). Thus, “25◦ Celsius” is the information.

• An action represents the act of an entity in the environment. For instance, “switching the lights on”.

• A device [12] is an entity that provides sensor and actuator resources the ability to communicate with
other entities. Without a device, resources can not interact with other resources. Tag readers, mobile
phones, and personal computers (PC) are all example devices.

• A sensor driver accesses raw data and further describes it by attaching meta-data such as unit of
measurement, time of sensing, etc. with raw data. The result is called sensor measurement, which is
a type of information.

• A command is an instruction that describes a desired outcome. For instance, “switch the heater on”,
“turn on the light”. An actuator driver translates a command and triggers the actuator appropriately.

5

For instance, the heater driver translates a command (such as “switch the heater on”) and turns the
heater on as a result. Note that a both sensor and actuator drivers are types of driver, which in turn is
a type of software component.

2.2 Associations

The associations between the concepts in the Internet of Things are as follows:

• An EoI consists-of one or more phenomenon.

• A sensor observes a phenomenon and produces data about it.

• An actuator performs an action that affects a phenomenon.

• A device hosts zero or more resources. E.g., a smart phone might host resources such as an accelerometer
sensor, a light sensor, etc.

• A software entity runs-on a device. E.g., an instance of the Jetty tiny web server running on a home
desktop.

• Raw data is accessed by a sensor driver that generates a sensor measurement. E.g., in temperature
monitoring, the temperature raw data is accessed by the temperature sensor that generates the tempera-
ture measurement.

• An actuator is actuated by an actuator driver that consumes an actuation command.

• A user interacts-with an end-user application for various purposes such as setting the temperature
preference, hearing an alert message, etc.

• A storage service provides access to a store.

• Software components communicate-with each other to exchange data and control, in a manner similar
to that described under the functions of a software connector in [30], which might contain instances of
various interaction paradigms [10] such as message passing, publish-subscribe etc.

3 Multi-stage Model-driven Approach for IoT Application Devel-

opment

The application development process involves several stakeholders, each playing his specialized role. We believe
that there is a lack of software engineering techniques for IoT application that adequately empower each type
of stakeholder while requiring them to only specify those parts of the application that they are experts in.

Taking inspiration from 4+1 view model of software architecture [16] and tool-based methodology for per-
vasive computing [7], we propose to divide the responsibilities of the stakeholders in the IoT application devel-
opment process into five distinct roles, whose skills and responsibilities are stated in Table 1.

Based on the roles defined in Table 1, we propose the following multi-stage development process, detailed in
Figure 3, consisting of the following steps:

1. Domain Vocabulary Specification. We provide the domain expert with a vocabulary language (dis-
cussed in Section 3.1) to specify vocabulary of an application domain (e.g., HVAC)(step 1 in Figure 3).
The vocabulary includes the specification of entities (i.e, sensor, actuator, and storage service) that are
responsible for interacting with a phenomenon of an entity of interest; it also includes the definition of
partitions that the system is divided into.

2. Application Architecture Specification. Given the vocabulary, we provide the software designer with
an architecture language (discussed in Section 3.2) to specify an architecture of an application (step 2 in
Figure 3), specifying the details of the computational, controller, as well as how they communicate-with
other software components.

3. Implementing Application Logic. Our approach leverages both vocabulary and architecture specifica-
tion to provide support to application developer. To describe the internal logic of each software component,
application developer is provided a customized programming framework, pre-configured according to the
architecture of an application, an approach similar to the one discussed in [6] (step 3 in Figure 3). These
consist of abstract classes2 for each software component that hide low-level communication details, and
allow the developer to focus only on the code that will implement the logic of that software component
(step 4 in Figure 3).

2We assume that the developer uses an object-oriented language.

6

Role Skills Responsibilities
Domain Expert [32] Understands domain concepts, includ-

ing the data types produce by the sen-
sors and consumed by actuators, as well
as how the system is divided into par-
titions.

Specify the vocabulary for all applica-
tions to be used in the domain.

Software Designer
[32]

Software architecture concepts, includ-
ing the proper use of interaction pat-
tern such as publish-subscribe and
request-response for use in the domain.

Define the structure of the application
by specifying the software components
and their producer/consumer relation-
ships.

Application Devel-
oper [6]

Skilled in algorithm design and object-
oriented programming languages.

Develop the internal code for the com-
putational services, and controllers in
the application.

Device Developer Deep understanding of the inputs/out-
puts, and protocols of the individual
devices.

Write drivers for the sensors and actu-
ators used in the domain.

Network Manager Deep understanding of the specific tar-
get area where the application is to be
deployed.

Install the application on the system
at hand; this process may involve the
generation of binaries or bytecode, and
configuring middleware.

Table 1: Roles in the IoT Application Development Process

4. Target Network Specification. We provide a network manager with the network language (discussed
in Section 3.4) to specify target deployment scenario. For each target deployment scenario where the
application is to be deployed, the respective network manager specifies (step 5 in Figure 3) the details of
the devices in his system, using the concepts defined in the vocabulary.

5. Generating deployment code. To generate deployment code, this stage consists of two core sub-stages:
Mapper and System Linker.

• Mapper. The mapper outputs a mapping of set of instantiated software components to the set
of devices (step 6 in Figure 3). The mapper takes inputs as set of instantiation rules of software
components from architecture specification and set of devices from network description. The mapper
decides the specific device where each software components will be running 3.

• System Linker. This module combines the information generated by the various stages of the
compilation into the actual code to be deployed on the real devices (step 8 in Figure 3). It merges the
generated code, the imperative code provided by the application developer, the generated code from
mapper module, and device specific drivers provided by device developer The output of this module
is a deployment code, a set of Java packages for each device. These packages are not executable.
They still need to be compiled by device-level compiler designed for the target platform.

Based on our analysis of the roles played by the various stakeholders in the stages described above, we have
designed DSLs, each named after Srijan, the Sanskrit word for “creation”. We provide the details of above
mentioned stages with DSL, using the application introduced in Section 1.1 to show our approach can be used
by various stakeholders in the stages of the application development process.

For reader’s clarity, we illustrate a layered architecture of a Smart Office application in Figure 4 (similar to
one discussed in [6]). The bottom part of the figure shows BadgeReader to identify a Badge that is entering a
room, a ProfileDB to store the association between Badge and its temperature preference, temperature sensor
to sense temperature of room. A proximity service coordinates event from BadgeReader with the contents of
the ProfileDB. This information is passed to the RegulateTemp controller, which takes decision that are carried
out by invoking Heater actions (top of the Figure 4). Additionally, this application aims to display current
temperature of multi-floored building using screen placed at entrance of the building. The temperature data
is first routed to a local average temperature service (i.e. RoomAvgTemp), deployed in per room, then later
per floor (i.e., FloorAvgTemp), and then ultimately routed to building central average temperature service (i.e.,
BuildingAvgTemp). Finally, the calculated value is delivered to controller (i.e., ManageTemp), which triggers a
display action of Monitor (top of the Figure 4).

3Current version of mapper maps software component to device randomly.

7

Domain

Expert

Software

Designer

Application

Developer

Device

Developer

Architecture

specification

Framework

generator

Network

description

Vocabulary

specification

Network

Manager

Architecture

Framework

Device

drivers

Application

Logic

Mapper

Devices

System

linker

mapping

files

Specify

Input

Output

Reference

1 2

4

5

6

8

3

7

Legend

Figure 3: Development Cycle

3.1 Domain Vocabulary Specification

The Srijan Vocabulary Language (SVL) (for grammar, see Appendix A.1) is designed to enable the domain
expert to describe the vocabulary of the domain; namely the abilities each node might possess — types of
sensors, actuators, or storages they are connected to along with the input/output data types of each — and the
regions that the target deployment area can be divided into. The language offers following domain constructs
to interact with phenomenon of an EoI that maps into the concepts that are relavant to IoT :

• abilities: These define the properties that will be used to characterize individual devices. They include,
for sensors, the sensor measurements produced by them; for actuators, the command consumed by them;

8

Computational

Service

Request-Response

Interaction

Legend

BadgeReader

BadgeDetected

BadgeDisappeared

RoomAvgTemp

roomAvgTemp

FloorAvgTemp

floorAvgTemp

BuildingAvgTemp

buildingAvgTemp

ProfileDB

TempStruct

Proximity

Temperature Preference

RegulateTemp

Off/SetTemp

Temperature

Sensor

Temp

Measurement

Heater

 off()

setTemp()

ManageTemp

display

Monitor

display()

Storage

Service

Controller

Actuator
Publish-Subscribe

Interaction

Command

Interaction

Sensor

Figure 4: Layered architecture of the smart office application in Section 1.1

9

and for databases, the type of data that can be accessed.

• regions: These define the various region labels that can be used to define the (logical) locations of the
devices and scopes from which the software components will produce/consume data. e.g., HVAC applica-
tions reason in terms of room and floors, while smart city applications can be best expressed in terms of
city blocks.

We present the SVL by examing a code snippets of vocabulary specification of smart office application
(see Listing 1). Each sensor and its ability is declared using sensors and generate keyword respectively.
For example, BadgeReader defines its two sensor measurements badgeDetected, and badgeDisappeared (see
Listing 1, line 20-23). The sensor measurement of BadgeReader are defined using two structures (see Listing 1,
line 7-13): BadgeDetectedStruct, and BadgeDisappearedStruct.

Actuator and its actions are declared using actuators and action keywords respectively. Some action of
actuator takes one or more inputs, specified as parameters of an action. For example, Heater declaration defines
Off(), and SetTemp(setTemp:TempStruct) actions (see Listing 1, line 26-28).

Storage is declared using storages keyword (see Listing 1, line 31-32). Retrieval of data from storage
service requires a parameter. For example, profile data access of ProfileDB storage service maps a badgeID

to TempStruct; in this case, the data access need to be parametrized by a badge identifier. Such a parameter
is introduced by accessed-by keyword.

To enable the definition of system partition at logical level, we provide domain expert with Region construct
seen in programming languages for WSAN such as Regiment [21], Hood [34], TAG [18], and ATaG [23]. It is
declared using regions keyword. This construct divides the system into hierarchical regions (e.g., room, floor,
building) with its type (e.g., String, Integer)4, thus defining region as regionName:regionType (see Listing 1,
line 1-4).

1 regions:

2 Building : Integer;

3 Floor : Integer ;

4 Room : Integer;

5

6 structs :

7 BadgeDetectedStruct

8 badgeID : String;

9 timeStamp : long;

10

11 BadgeDisappearedStruct

12 badgeID : String;

13 timeStamp : long;

14

15 TempStruct

16 tempValue : double;

17 unitOfMeasurement: String;

18

19 abilities:

20 sensors:

21 BadgeReader

22 generate badgeDetected : BadgeDetectedStruct;

23 generate badgeDisappeared : BadgeDisappearedStruct;

24

25 actuators:

26 Heater

27 action Off();

28 action SetTemp(setTemp :TempStruct);

29

30 storages:

31 ProfileDB

32 generate profile : TempStruct accessed -by badgeID : String;

Listing 1: Code snippets of smart office application architecture. Keywords are printed in word.

4Current version of our work supports only Integer datatype.

10

We now present Srijan Architecture Language (SAL). Note that the region labels and data structures defined
using SVL in the vocabulary become keywords in the SAL customized for the domain. This can, in turn, be
exploited by tools to give code completion help to the software designer.

3.2 Application Architecture Specification

Given a vocabulary, SAL (for grammar, see Appendix A.2) is designed to enable the software designer to design
an application. It incorporates Sense-Compute-Control (SCC) [5], an architecture pattern commonly used in the
pervasive computing application. This architecture pattern consists of computational services fueled by sensors
and storage. It computes gathered data to make it complainant to the application needs. The controller takes
data from computational services as input and takes decision that are carried out by invoking the actuator.
Following this architecture pattern, SAL contains the constructs to specify the following types of data-flow
between each type of application-specific software component:

• For each controller, the data types it consumes and the actuator drivers to which it issues commands,
labeled with scopes from the region labels defined in the vocabulary.

• For each computational service, the data types it consumes and produces, labeled again with the scopes
from which they should be gathered, as well as data to be accessed from storage services.

We present the SAL by examining a code snippets of smart office application (see Listing 2). This code
snippets is devoted to Proximity component (see Listing 2, line 9-14), which coordinates events from the
BadgeReader with the content of ProfileDB storage service. To do so, Proximity processes three sources
of information: one for entering badge (i.e., badge detection), one for leaving badge (i.e., badge disappeared)
and one for requesting user’s temperature profile from ProfileDB that is expressed using request keyword
(see Listing 2, line 13). The former two source of information is declared using consume keyword that takes
source name and data interest of component from logical region (see Listing 2, line 11-12). The declaration of
hops:0:room indicates that the component is interested in consuming badge events of the current room. The
Proximity component is in charge of managing badge events of room. Therefore, we need Proximity service
to be partitioned per room using in-region:room (see Listing 2, line 14).

The output of the Proximity and RoomAvgTemp are consumed to the RegulateTemp component, declared
using the controller keyword (see Listing 2, line 21-27). This component is responsible for taking decisions
that are carried out by invoking command, declared using the command keyword (see Listing 2, line 25-26).

1 structs:

2 UserTempPrefStruct

3 tempValue : double;

4 unitOfMeasurement : String;

5 timeStamp : long;

6

7 softwarecomponents:

8 computationalService:

9 Proximity

10 generate tempPref : UserTempPrefStruct;

11 consume badgeDetected from hops : 0: Room;

12 consume badgeDisappeared from hops : 0 : Room;

13 request profile;

14 in -region: Room;

15

16 RoomAvgTemp

17 generate roomAvgTempMeasurement : TempStruct;

18 consume tempMeasurement from hops: 0 : Room ;

19 in -region : Room;

20

21 controller:

22 RegulateTemp

23 consume roomAvgTempMeasurement from hops : 0 : Room;

24 consume tempPref from hops : 0 : Room;

25 command Off() to hops : 0 : Room;

26 command SetTemp(setTemp) to hops : 0 : Room;

27 in -region : Room;

Listing 2: Code snippets of smart office application architecture. Keywords from vocabulary are printed in
word. Language keywords are printed in word .

11

3.3 Implementing Application Logic

This section presents an application development tool that leverages both vocabulary definition and achitec-
ture specification and generate Java programming framework, thus maximizing the productivity of applica-
tion developer and device developer. The current version of tool is composed of ANTLR5 based parser and
StringTemplate6 based code generator. We now present a generated programming framework of smart office
application.

3.3.1 Generated Programming Framework

A generated Java programming framework contains abstract classes corresponding to both vocabulary defini-
tion and architecture specification. The generated abstract classes also include abstract methods declarations
to allow the application developer to program the application logic. The application developer implements each
abstract method of generated abstract class in the subclass of abstract class. Moreover, the generated program-
ming framework includes concrete methods that allow application developer to interact (i.e., publish/subscribe,
request/response, command) with other components transparently, without dealing with the interaction details.
We now present the generated code of each part of declaration in vocabulary and architecture specification.

A sensor publishes sensor measurements for computational services. Support for this propagation is gen-
erated by our framework generator in form of concrete methods, allowing sensor to fuel the computational
services. For example, from the BadgeReader declaration in vocabulary specification (Listing 1, line 21-23), the
implementation of both setbadgeDisappeared() and setbadgeDetected() methods (Listing 3, line 12-19) are
generated in the abstract class (Listing 3, line 1-20). These methods are fueled by BadgeReader to propagate the
BadgeDetected and BadgeDisappeared event in implementation of abstract methods handlebadgeDisappeared()
and handlebadgeDetected() (Listing 3, line 8-10).

1 public abstract class BadgeReader {

2

3 private BadgeDisappearedStruct badgeDisappeared;

4

5 private BadgeDetectedStruct badgeDetected;

6

7 // This abstract methods are implemented by application developers to

propogate events.

8 public abstract void handlebadgeDisappeared ();

9

10 public abstract void handlebadgeDetected ();

11

12 protected void setbadgeDisappeared(BadgeDisappearedStruct newValue) {

13 // publish "badgeDisappeared" event.

14 PubSubMiddleware.publish("badgeDisappeared", newValue);

15 }

16 protected void setbadgeDetected(BadgeDetectedStruct newValue) {

17 // publish "badgeDetected" event.

18 PubSubMiddleware.publish("badgeDetected", newValue);

19 }

20 }

Listing 3: The Java abstract class BadgeReader generated by framework generator from the declaration of the
BadgeReader entity in vocabulary.

A computational service processes input data to produces refined data to its consumers. The input data is
either published by entities (i.e., sensors, computational service) or requested by the computational service. The
code for both interaction modes is produced by the framework generator. For example, from the Proximity dec-
laration in architecture specification (Listing 2, line 11-12), the implementation of notifyReceived() method
is generated to receive published events in the abstract class (Listing 4, line 2-9). Additionally, the framework
generator produces the implementation of getProfile() method to request data from ProfileDB component
(Listing 4, line 10-13). This method is called by the application developer in the subclass of Proximity to
implement the application logic.

1 public abstract class Proximity {

2 public void notifyReceived(String eventName , Object arg) {

5http://www.antlr.org/
6http://stringtemplate.org

12

3 if (eventName.equals("badgeDisappeared")) {

4 // Do something , when badge disappeares.

5 }

6 if (eventName.equals("badgeDetected")) {

7 // Do something , when badge detected.

8 }

9 }

10 protected UserProfile getProfile(String badgeID) {

11 // get user’s temperature preference by sending command;

12 return (UserProfile) PubSubMiddleware.sendCommand("getProfile", badgeID);

13 }

14 }

Listing 4: The Java abstract class Proximity generated by framework generator from the declaration of the
computational service Proximity in architecture.

A storage service provides read and write access of persistent data store. The framework generates concrete
methods for both reading and writing data in the storage. For example, from the ProfileDB declaration in
Vocabulary (Listing 1, line 31-32), setProfile() method is generated to write data in storage (Listing 5,
line 5-7). To read data, commandReceived() method (Listing 5, line 12-16) is generated from the ProfileDB

declaration in Vocabulary. The profile data access of ProfileDB maps badge identifier to a user’s temperature
preference ; in this case commandReceived() method is parametrized by the badge Identifier (Listing 5, line
9-11).

1 public abstract class ProfileDB {

2 // HashMap for storing the association of BadgeID and UserProfile

3 private HashMap <String , UserProfile > Profile = new HashMap <String ,

UserProfile >();

4 // This method is invoked by the application developer to store data in

HashMap

5 protected void setProfile(String newIndex , UserProfile newProfileValue) {

6 Profile.put(newIndex , newProfileValue);

7 }

8 // This method get data from HashMap

9 protected UserProfile getProfile(String index) {

10 return Profile.get(index);

11 }

12 public final Object commandReceived(String methodName , Object arg) {

13 if (methodName.equals("getProfile")) {

14 return getProfile ((String) arg);

15 }

16 }

17 }

Listing 5: The Java abstract class ProfileDB generated by framework generator from the declaration of the
storage service ProfileDB in Vocabulary.

A controller uses the information generated by computational service to take the decisions that are carried
out by triggering a command to actuator. To do so, concrete methods are generated to notify controller and
to trigger actions of actuators. This is illustrate by the RegulateTemp controller. This component receives
event notifications from other components using notifiyReceived() method (Listing 6, line 13-27). To trigger
commands, off() and setTemp() methods (Listing 6, line 3-10) are generated by framework generator from
the RegulateTemp declaration in architecture specification (Listing 2, line 25-26).

1 public abstract class RegulateTemp {

2

3 protected void SetTemp(SetTempStruct arg) {

4 // Trigger SetTemp comamnd with temperature Value

5 PubSubMiddleware.sendCommand("SetTemp", arg);

6 }

7 protected void Off() {

8 // Trigger Off Command.

9 PubSubMiddleware.sendCommand("Off", null);

10 }

13

11

12 // Received events from computational service.

13 public void notifyReceived(String eventName , Object arg ,

14 Device deviceInfo) {

15 try {

16 if (eventName.equals("tempPref")) {

17

18 onNewtempPref ((UserTempPrefStruct) arg);

19 }

20 if (eventName.equals("roomAvgTempMeasurement")) {

21

22 onNewroomAvgTempMeasurement ((TempStruct) arg);

23 }

24

25 } catch (Exception e) {

26 e.printStackTrace ();

27 }

28 }

29 }

Listing 6: The Java abstract class RegulateTemp generated by framework generator from the declaration of the
controller RegulateTemp in Architecture.

An actuator has a set of actions that are triggered by controller. To do so, support is generated to allow
actuator to receive commands from controller in form of concrete method. For example, from the Heater

declaration in vocabulary specification (Listing 1, line 26-28), Off(), and SetTemp() methods are generated
(Listing 7, line 3-5). Each method is then implemented in the subclass of Heater. To receive commands from
controller, commandReceived() method (Listing 7, line 9-19) is generated.

1 public abstract class Heater{

2 // These method is implemented by application developer.

3 protected abstract void Off();

4

5 // This method is implemented by application developer.

6 protected abstract void SetTemp(SetTempStruct arg);

7

8 //This methods receives command from controller

9 public final Object commandReceived(String methodName , Object arg ,

10 Device deviceInfo) {

11

12 if (methodName.equals("SetTemp") && arg instanceof TempStruct) {

13 SetTemp ((TempStruct) arg);

14

15 } else if (methodName.equals("Off")) {

16 Off();

17 }

18 return null;

19 }

20 }

Listing 7: The Java abstract class Heater generated by framework generator from the declaration of the Heater
entity in vocabulary.

Each entity is characterized by the type of information it generates and consumes. This information is
managed by structure. For example, from the struct declaration of BadgeDetectedStruct in Vocabulary
(Listing 2, line 7-9), variables, its constructor, and getter are generated (see Listing 8).

1 public class BadgeDetectedStruct {

2

3 // private variable of the structure

4 private String badgeID;

5

6 private String timeStamp;

7

14

8 // Getters of member variable

9 public String getbadgeID () {

10 return badgeID;

11 }

12

13 public String getTimeStamp () {

14 return badgeDetectedTimeStamp;

15 }

16

17 // This is constructor , which initialize BadgeDetected Struct

18 public BadgeDetectedStruct(String badgeID , String timeStamp) {

19 this.badgeID = badgeID;

20 this.timeStamp = timeStamp;

21 }

22 }

Listing 8: The Java abstract class BadgeDetectedStruct generated by framework generator from the
Declaration of the BadgeDetectedStruct entity in Vocabulary

3.4 Target Network Specification

Given a vocabulary, Srijan Network Language (SNL) (for grammar, see Appendix A.3) is designed to enable
the network manager to specify the details of each node in the system, including its placement (in terms of
values of the region labels defined in the vocabulary), and abilities (a subset of those defined in the vocabulary).
Much like SAL, the SNL for each application in a particular domain is customized using the vocabulary, and the
abilities and region labels function as keywords. SNL is dedicated to describe targeted list of devices with region,
and abilties. We present the SNL by examining network specification of smart office application (Listing 9, line
2-7). It specifies device with name DOne, its ability with TemperatureSensor and BadgeReader, and its region
building, floor, and room with values 15, 11, and 0 respectively.

1 devices:

2 DOne :

3 region :

4 Building : 15 ;

5 Floor : 11;

6 Room : 0;

7 abilities : TemperatureSensor , BadgeReader ;

Listing 9: Code snippets of smart office application network. Keywords from vocabulary are printed in word.
Language keywords are printed in word .

4 Evaluation

This section evaluates our approach and shows its ability to facilitate the development of the IoT applications.
The goal of the evaluation is to demonstrate the advantage of our approach over manual application development
approach. To achieve our objective, we explore development time aspects. We measure the quantity of the
generated code in two applications developed by us: smart office (see Section 1.1 for description), and fire
management application, which aims to detect fire in house and housing community (collection of houses).
Fire is detected by analyzing data from smoke and temperature sensors. When the fire occurs, the application
triggers sprinklers and alarms, and unlock doors to allows residents to evacuate the house and other residents
of housing communities are informed by switch on lights. Table 2 gives number of each type of declaration in
applications.

Application Sensing
Entity

Actuating
Entities

Computational
Service

Controller Storage
Service

Devices

Smart Office 12 6 13 6 2 8
Fire Management 8 8 4 3 0 8

Table 2: Number of declaration in our case study

Development time. It is defined as time required to develop an application. The more hand-written Lines
of Code (LoC) there is, the time required to developing application is longer [24]. Our approach aims to

15

reduce the hand-written code and thus to reduce the development time. Our measures (using the Metrics 1.3.67

Eclipse plug-in) reveals that more than 81% of developed applications code is generated (see the Table 3),
thus reducing the application development time. The measure of LoC is useful only if the generated code is
executed. Otherwise generated code is large without affecting the development time. We measure the coverage
of generated framework code (see the Table 4) during a number of executions of these applications, using the
EclEmma8 Eclipse plug-in. We studied that generated code and application code has high code-coverage. The
part of the code that is not executed that most of them is error handling code or features that is not used by
an application logic.

Handwritten - Lines of Code Generated - Lines of Code

Application
Name

Vocab
Spec.

Arch.
Spec.

Network
Spec.

App.
Logic

Partially
generated
App. Logic

Mapping
code

Generated
Frame-
work

Generated
Framework (in
percentage)

Smart
Office

30 36 49 169 139 470 638 81.45%

Fire Man-
agement

28 35 41 125 144 336 575 82.16%

Table 3: Lines of code in application development process

Code Coverage

Application Application Logic Generated Framework

Smart Office 95.8 % 90.7 %
Fire Management 95.4 % 93.3 %

Table 4: Code coverage of generated code

5 Related Work

In this section, we review existing approaches for the development of the Internet of Things applications. We
illustrate each existing approach with representative examples.

Middleware. This approach provides programming support for acquiring and processing information from
variety of sources. Numerous middleware have been proposed to support the implementation of applications [13,
15]. Olympus [25] is a programming framework on top of the Gaia middleware [26]. It allows developers to
specify Active Space (enriched with sensors, actuators, users) as virtual entities. Virtual entities are described
using high-level interface, allowing the developers to focus on the application logic. The framework takes care of
resolving virtual entities into actual physical entities based on constraints, available resource in current space,
and space-level policies (specified in high-level description). ContextToolkit [8] provides designers with the
abstractions (context widgets, interpreters, aggregators, and services) on top of the distributed infrastructure [9].

Middleware hides the complexity of acquiring and processing sensor information. However, it often con-
tains thousands of classes and its methods with many intricate dependencies that require significant technical
background and considerable efforts to tune it properly.

Model-Driven Development (MDD). In this approach, software is developed not by directly writing
code in the implementation languages, but it aims to specify the system using high-level abstract models
(mainly expressed in UML) that can be transformed into code by automated code generators. PervML [27]
allows developers to specify a pervasive systems at a high-level of abstraction by means of set of models (i.e.,
structural model, interaction model, functional model, services model, user model), which describes system
functionality. From these models, system Java code is generated by the code generators. By following PervML
approach, stakeholders get numerous benefits in application development such as rapid application development.
However, this approach demands in-depth expertise of UML and its generic tools.

Currently, MDD is used to specify WSN applications at different-level of abstractions with the aim of code
generation, energy consumption, and communication overhead. For example, in [20], the authors has presented
a framework based on the Simulink, Stateflow, and Embedded Coder. In which, an engineer can specify sensor
network components both at application-level and protocol-level. In [28, 29], the authors have presented MDD
process to enable a low-cost prototyping and optimization of WSN is provided. The main focus of this work

7http://metrics.sourceforge.net/
8http://www.eclemma.org/

16

is on specifying set of modeling languages and transformation rules that transforms the models described by
modeling languages to concrete one. The contribution of our approach is clear separation among vocabulary
specification, software architecture specification of application, and deployment topology specification. This
promotes separation of concerns among stakeholders, reuse of specification across projects and organizations.

Programming framework. This approach provides a language layer for describing the entities that are
relevant to the application area, thus raising the level of abstraction. It assigns roles to stakeholders, providing
separation of concerns. It includes compiler that take the design specifications written in their language as input
and generate programming framework that support subsequent development stages. To the best our knowledge,
there are very few programming frameworks have been proposed for IoT application development. ATaG and
DiaSuite are representative examples of it.

ATaG [23] is a programming framework realing on a shared data pool for local communication. It helps
developers to specify sense-and-react applications for WSAN. Abstract task, abstract data item, and abstract
channel are core of the ATaG programming model. The abstract task is a logical entity encapsulating the
processing of abstract data items, which represents the information. The flow of information among tasks is
specified with abstract channels connecting a data item to the tasks. However, this framework is limited to
WSAN applications where the device are often similar, thus heterogeneity remains unsolved.

DiaSpec [6] is a design language that allow developers to define a taxonomy dedicated to describing the
class of entities (sensor, actuator, and storage) that are relevant to the target application, abstracting over their
heterogeneity. This language also includes a layer to define the architecture of the application, following the
sense-compute-control architecture pattern. However, this framework does not cover the large scalability issue
of devices (i.e., multi-stage data processing, multiple-sub goals).

6 Discussion

Our work can be summarized with its key advantages as follows:

• Identification of Roles in the Development Process. We identify the precise role of each stakeholders
involved in the development of IoT applications. This promotes separation of concerns and raises the level
of knowledge that can be shared by other stakeholders. Thus, this clear identification of the expectations
and specialized skills of each type of stakeholder smooths the IoT application development process.

• A multi-stage model-based approach for IoT application development. In order to support the
different stages (i.e. design, implementation, and deployment) of the IoT application development process
resulting from the actions of each of the stakeholders, we propose a multi-stage model-based approach.
For each type of stakeholder, we provide a separate set of abstractions, customized not only for the IoT
in general, but also for the application domain itself (e.g., HVAC). This allows the stakeholder to specify
their share at the proper level of abstraction commiserate with the skills and the responsibilities of the
role he is playing.

• Domain Specific Languages for stakeholders. We note two key features of our languages. First, our
proposed language focus on one particular aspect of application development, which significantly reduces
the surface area that each roles need to learn. Second, it has very limited keywords to express specification
at different stage, which makes it harder to say wrong things and easier to see when developers make errors.

• A generative approach of application development. We build an application development tool,
combined with our language, provides support to various stakeholders to design and develop applications
at each stages of IoT application development. The current version of our tool includes two code generators.
First, an application code generator produces skeleton classes from high-level specification (expressed using
DSL at design stage). The generated code guides the development of application code and provides the
application developers with high-level operations for component interactions. Second, a deployment code
generator produces device-specific code to result in a distributed software system collaboratively hosted by
individual devices in the IoT. We further show by our experiments that both code generators considerably
reduces the development time.

7 Future Work

In our work so far, we have made initial progress towards providing support to all the stakeholders in the IoT
application development process, and have prepared a foundation for our future work, which will proceed in
two complementary directions, discussed below.

17

7.1 Supporting the Complete Set of IoT Application Characteristics

Our work so far, while extensive, does not fully cover all characteristics of IoT applications. Our immediate
future research will review all the stages of the application development process, providing support for the
following:

• End-user interactions. Modern smart phones are going to play a large part in the IoT, but they don’t
just contain sensors and actuators, but are also end-points of user interaction with the applications, which
leads to hitherto-unseen traits. We will provide better ways for the stakeholders to define these software
components at all stages of the application development process.

• Complete support for storage services. Our current work contains only a simplistic view of data
storage services, which is inadequate given the rich diversity of data sources available today on the internet
(e.g., RDBMs and noSQL databases, using content that is both user generated such as photos as well as
machine generated such as sensor data). Our work will provide abstractions to easily define the interfaces
and interaction modes with the rich variety of data sources present in the IoT.

• Novel mapping algorithms cognizant of heterogeneity. While the notion of region labels is able
to reasonably tackle the issue of scale at an abstraction level, the problem of heterogeneity among the
devices still remains. We will provide rich abstractions to express both the properties of the devices (e.g.,
processing and storage capacity, networks it is attached to, as well as monetary cost of hosting a software
component), as well as the requirements from the stakeholders regarding the preferred placement of the
software components of the applications. These will then be used to guide the design of algorithms for
efficient mapping (and possibly migration) of software components on devices.

7.2 Comprehensive Evaluation of our Approach

The evaluation presented in Section 4 is preliminary. We plan to conduct an empirical evaluation based on
a well-defined experimental methodology [14]. In particular, we explore two aspects: (1) Productivity, which
evaluates development effort for developing application; and (2) Evolution, which evaluates time to correct,
when there is a change in the user requirements. These are detailed below.

• Productivity In order to measure productivity, we plan to organize replicated-case study [3], which
consist of suitable IoT application and two different teams (each consists of mainly three PhD students of
our lab). These teams develop our application manually on top of the middle-ware layer and device-driver
layer first, then using our approach. From this experiment, we measure total time (sum of learning time,
development time, and deployment time) of each team in two approaches. The learning time reflects
user intuitiveness of semantic model adopted by the DSL. The development and deployment time mainly
propositional to lines of the written code.

• Evolution It is defined as time used to correct faults, when new entities are added, extended, or removed
at any time and users have changing needs. In order to measure evolution aspect of our approach, we
plan to select two different teams and a suitable case study with constant evolving requirements. The
both teams develop our case study manually first, then using our approach. From this experiments, we
measure time to correct of each team in two approaches.

8 Publications

1. P. Patel, A. Pathak, T. Teixeira, and V. Issarny. Towards application development for the internet of
things. In Proceedings of the 8th IEEE ACM Middleware Doctoral Symposium, page 5. ACM, 2011.

2. P. Patel, A.Pathak, D. Cassou, and V.Issarny. Enabling High-Level Application Development in Internet
of Things. (in preparation for submission to ICSE 2013).

References

[1] I. Akyildiz and I. Kasimoglu. Wireless sensor and actor networks: research challenges. Ad hoc networks,
2(4):351–367, 2004.

[2] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer Networks, 54(15):2787–
2805, 2010.

18

[3] V. Basili, R. Selby Jr, and D. Hutchens. Experimentation in software engineering. Technical report, DTIC
Document, 1985.

[4] CASAGRAS EU project final report. http://www.rfidglobal.eu/userfiles/documents/FinalReport.
pdf, 2009.

[5] D. Cassou, E. Balland, C. Consel, and J. Lawall. Leveraging software architectures to guide and ver-
ify the development of sense/compute/control applications. In Software Engineering (ICSE), 2011 33rd
International Conference on, pages 431–440. IEEE, 2011.

[6] D. Cassou, J. Bruneau, C. Consel, and E. Balland. Towards a tool-based development methodology for
pervasive computing applications. Software Engineering, IEEE Transactions on, (99):1–1, 2011.

[7] D. Cassou, J. Bruneau, J. Mercadal, Q. Enard, E. Balland, N. Loriant, and C. Consel. Towards a tool-based
development methodology for sense/compute/control applications. In Proceedings of the ACM international
conference companion on Object oriented programming systems languages and applications companion,
pages 247–248. ACM, 2010.

[8] A. Dey, G. Abowd, and D. Salber. A conceptual framework and a toolkit for supporting the rapid proto-
typing of context-aware applications. Human-Computer Interaction, 16(2-4):97–166, 2001.

[9] A. Dey, D. Salber, and G. Abowd. A context-based infrastructure for smart environments. 1999.

[10] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The many faces of publish/subscribe. ACM
Computing Surveys (CSUR), 35(2):114–131, 2003.

[11] A. Gluhak, M. Bauer, F. Montagut, V. Stirbu, M. Johansson, and M. Presser. Towards an architecture for
the real world internet. Towards the Future Internet, page 313, 2009.

[12] S. Haller. The things in the internet of things. Poster at the (IoT 2010). Tokyo, Japan, November, 2010.

[13] V. Issarny, N. Georgantas, S. Hachem, A. Zarras, P. Vassiliadis, M. Autili, M. A. Gerosa, and
A. Ben Hamida. Service-Oriented Middleware for the Future Internet: State of the Art and Research
Directions. Journal of Internet Services and Applications, 2(1):23–45, May 2011.

[14] B. Kitchenham, L. Pickard, and S. Pfleeger. Case studies for method and tool evaluation. Software, IEEE,
12(4):52–62, 1995.

[15] K. Kjær. A survey of context-aware middleware. In Proceedings of the 25th conference on IASTED
International Multi-Conference: Software Engineering, pages 148–155. ACTA Press, 2007.

[16] P. Kruchten. The 4+ 1 view model of architecture. Software, IEEE, 12(6):42–50, 1995.

[17] C. Larman. Applying UML and patterns: an introduction to object-oriented analysis and design and iterative
development. Prentice Hall PTR, 2004.

[18] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: A tiny aggregation service for ad-hoc sensor
networks. ACM SIGOPS Operating Systems Review, 36(SI):131–146, 2002.

[19] L. Mottola and G. Picco. Programming wireless sensor networks: Fundamental concepts and state of the
art. ACM Computing Surveys (CSUR), 43(3):19, 2011.

[20] M. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, and S. Olivieri. A framework for modeling, simu-
lation and automatic code generation of sensor network application. In Sensor, Mesh and Ad Hoc Com-
munications and Networks, 2008. SECON’08. 5th Annual IEEE Communications Society Conference on,
pages 515–522. Ieee, 2008.

[21] R. Newton, G. Morrisett, and M. Welsh. The regiment macroprogramming system. In Proceedings of the
6th international conference on Information processing in sensor networks, pages 489–498. ACM, 2007.

[22] P. Patel, A. Pathak, T. Teixeira, and V. Issarny. Towards application development for the internet of
things. In Proceedings of the 8th Middleware Doctoral Symposium, page 5. ACM, 2011.

[23] A. Pathak, L. Mottola, A. Bakshi, V. Prasanna, and G. Picco. A compilation framework for macropro-
gramming networked sensors. Distributed Computing in Sensor Systems, pages 189–204, 2007.

[24] R. Picek and V. Strahonja. Model driven development-future or failure of software development. In IIS,
volume 7, pages 407–413, 2007.

19

[25] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. Campbell, and M. Mickunas. Olympus: A high-level
programming model for pervasive computing environments. In Pervasive Computing and Communications,
2005. PerCom 2005. Third IEEE International Conference on, pages 7–16. IEEE, 2005.

[26] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, and K. Nahrstedt. A middleware
infrastructure for active spaces. Pervasive Computing, IEEE, 1(4):74–83, 2002.

[27] E. Serral, P. Valderas, and V. Pelechano. Towards the model driven development of context-aware pervasive
systems. Pervasive and Mobile Computing, 6(2):254–280, 2010.

[28] R. Shimizu, K. Tei, Y. Fukazawa, and S. Honiden. Case studies on the development of wireless sen-
sor network applications using multiple abstraction levels. In Software Engineering for Sensor Network
Applications (SESENA), 2012 Third International Workshop on, pages 22–28. IEEE, 2012.

[29] R. Shimizu, K. Tei, Y. Fukazawa, and S. Shinichi. Model driven development for rapid prototyping and
optimization of wireless sensor network applications. In Proceeding of the 2nd workshop on Software
engineering for sensor network applications, pages 31–36. ACM, 2011.

[30] R. Taylor, N. Medvidovic, and E. Dashofy. Software architecture: foundations, theory, and practice. Num-
ber 70. Wiley, 2009, Page -30.

[31] R. Taylor, N. Medvidovic, and E. Dashofy. Software architecture: foundations, theory, and practice. Num-
ber 70. Wiley, 2009, Page -565.

[32] R. Taylor, N. Medvidovic, and E. Dashofy. Software architecture: foundations, theory, and practice. Num-
ber 70. Wiley, 2009, Page -658.

[33] R. Want. An introduction to rfid technology. Pervasive Computing, IEEE, 5(1):25–33, 2006.

[34] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a neighborhood abstraction for sensor networks.
In Proceedings of the 2nd international conference on Mobile systems, applications, and services, pages 99–
110. ACM, 2004.

9 Appendices

A DSL Grammars

A.1 SVL Grammar

1 VocSpec:

2

3 /* Region Specification */

4 (’regions ’ ’:’ (regions += Region)+)+

5

6 /* Structure Specification */

7 (’structs ’ ’:’ (structs += Struct)*)*

8

9 ’abilities ’ ’:’

10 /* Sensor Specification */

11 (’sensors ’ ’:’ (sensors += Sensor)+)+

12

13 /* Actuator Specification */

14 (’actuators ’ ’:’ (actuators += Actuator)+)+

15

16 /* Storage Specification */

17 (’storages ’ ’:’ (storageService += StorageService)+)*

18 ;

19

20 /* Region Definition */

21 Region: regionLabel = RegionLabel ’:’ regionType = Type ’;’;

22 RegionLabel: name = ID ;

23

24 /* Structure Definition */

20

25 Struct: name = ID (fields += Field)+ ;

26 Field: name=ID ’:’ type += Type ’;’ ;

27

28 /* Sensor Definition */

29 Sensor: sensorName = EntityName ((sources += Sources))* ;

30 EntityName: name = ID ;

31 Sources: ’generate ’ sourceName = SourceName ’:’ type = Type ’;’;

32 SourceName: name = ID;

33

34 /* Actuator Definition */

35 Actuator: actuatorName = EntityName ((actions += Actions))* ;

36 Actions: ’action ’ actionName= ActionName ’(’ (parameters += Parameters)* ’)’

’;’ ;

37 ActionName: name = ID ;

38 Parameters: parameterName = ParameterName ’:’ type = Type ;

39 ParameterName: name = ID ;

40

41

42

43 /* Storage Definition */

44

45 StorageService:

46 storageServiceName = EntityName

47 ((dataAccesses += DataAccess))*

48 ;

49

50 DataAccess:

51 ’generate ’ sourceName = SourceName ’:’ dataAccessType = Type

52 ’accessed -by’ dataItem = ID ’:’ type = Type ’;’

53 ;

54

55 /* Type Definition */

56

57 Type :

58 (primitiveDataType = PrimitiveDataType | structDef = [Struct])

59 ;

60

61 PrimitiveDataType:

62 INTEGER = ’Integer ’ | BOOLEAN = ’boolean ’ | STRING = ’String ’ | LONG = ’

long’ | DOUBLE = ’double ’

63 ;

A.2 SAL Grammar

1 ArchSpec:

2

3 /* Structure Specification */

4 (’structs ’ ’:’ (structs += Struct)+) *

5

6 ’softwarecomponents ’ ’:’

7

8 /* Computational Service Specification */

9 (’computationalService ’ ’:’ (computationalService += ComputationalService

)+) *

10

11 /* Controller Specification */

12 (’controller ’ ’:’ (controller += Controller)+)+

13 ;

14

15 /* Computational Service Definition */

16 ComputationalService:

21

17 computationalServiceName = ID

18 ((sources += Sources) | // generate

19 (inputs += Inputs) | // Consume

20 (requests += Requests) | // request to database service

21 (deploymentAttribute += DeploymentAttribute))*

22 ;

23

24 Requests:

25 ’request ’ requestname = [SourceName] ’;’

26 ;

27

28 DeploymentAttribute:

29 ’in -region ’ ’:’ name=[RegionLabel] ’;’

30 ;

31

32 Inputs:

33 ’consume ’ name= [SourceName] (’from’ ’hops’ ’:’ regionID = INT ’:’

regionLabel = [RegionLabel])? ’;’

34 ;

35

36 /* Controller Service Definition */

37

38 Controller:

39 controllerName = ID

40 ((inputs += Inputs) | // Consume

41 (commands += Command)|

42 (deploymentAttribute += DeploymentAttribute)

43)*

44 ;

45

46 Command:

47 ’command ’ commandName = [ActionName] ’(’ (commandparameter =

CommandParameter)?’)’

48 ’to’ ’hops’ ’:’ regionID = INT ’:’ regionLabel = [RegionLabel] ’;’

49 ;

50

51 CommandParameter:

52 name = [ParameterName] (’,’ parameter = CommandParameter) ?

53 ;

A.3 SNL Grammar

1 NetworkSpec:

2 (’devices ’ ’:’ (devices += Device)+) +

3 ;

4

5 Device:

6 deviceName = ID ’:’

7

8 /* Device ’s region Specification */

9 (’region ’ ’:’ (deviceRegions += DeviceRegions)+)*

10

11 /* Device ’s Abilities (i.e., Sensor , Actuator , Storage) */

12 (’abilities ’ ’:’ (deviceAbilities += DeviceAbilities)+)* ’;’

13 ;

14

15 DeviceRegions:

16 regionLabel = [RegionLabel] ’:’ regionValue = INT ’;’

17 ;

18

19 DeviceAbilities :

22

20 deviceEntityName = [EntityName] (’,’ name = DeviceAbilities) ?

21 ;

B Smart Office Application

B.1 Srijan Vocabulary Specification

1 regions:

2 Building : Integer;

3 Floor : Integer ;

4 Room : Integer;

5

6 structs :

7 BadgeDetectedStruct

8 badgeID : String;

9 timStamp : long;

10

11 BadgeDisappearedStruct

12 badgeID : String;

13 timeStamp : long;

14

15 TempStruct

16 tempValue : double;

17 unitOfMeasurement: String;

18

19 abilities:

20 sensors:

21 BadgeReader

22 generate badgeDetected : BadgeDetectedStruct;

23 generate badgeDisappeared : BadgeDisappearedStruct;

24

25 TemperatureSensor

26 generate tempMeasurement : TempStruct;

27

28 actuators:

29 Heater

30 action Off();

31 action SetTemp(setTemp :TempStruct);

32

33 Monitor

34 action Display(displayTemp : TempStruct);

35

36 storages:

37 ProfileDB

38 generate profile : TempStruct accessed -by badgeID : String;

B.2 Srijan Architecture Specification

1 structs:

2 UserTempPrefStruct

3 tempValue : double;

4 unitOfMeasurement : String;

5 timeStamp : long;

6

7 softwarecomponents:

8 computationalService:

9 RoomAvgTemp

10 generate roomAvgTempMeasurement : TempStruct;

11 consume tempMeasurement from hops: 0 : Room ;

12 in -region : Room;

13

23

14 FloorAvgTemp

15 generate floorAvgTempMeasurement : TempStruct;

16 consume roomAvgTempMeasurement from hops :0 : Floor;

17 in -region : Floor;

18

19 BuildingAvgTemp

20 generate BuildingAvgTempMesurement : TempStruct;

21 consume floorAvgTempMeasurement from hops : 0 : Building;

22 in -region : Building;

23

24 Proximity

25 generate tempPref : UserTempPrefStruct;

26 consume badgeDetected from hops : 0: Room;

27 consume badgeDisappeared from hops : 0 : Room;

28 request profile;

29 in -region: Room;

30

31 controller:

32 RegulateTemp

33 consume roomAvgTempMeasurement from hops : 0 : Room;

34 consume tempPref from hops : 0 : Room;

35 command Off() to hops : 0 : Room;

36 command SetTemp(setTemp) to hops : 0 : Room;

37 in -region : Room;

38

39 ManageTemp

40 consume BuildingAvgTempMesurement from hops :0: Building;

41 command Display(displayTemp) to hops : 0: Building;

42 in -region : Building;

B.3 Srijan Network Specification

1 devices:

2 DOne :

3 region :

4 Building : 15 ;

5 Floor : 11;

6 Room : 0;

7 abilities : TemperatureSensor , BadgeReader ;

8

9 DTwo :

10 region :

11 Building : 15 ;

12 Floor : 11 ;

13 Room : 0 ;

14 abilities : TemperatureSensor , Heater;

15

16 DThree :

17 region :

18 Building : 15 ;

19 Floor : 11 ;

20 Room : 1 ;

21 abilities : TemperatureSensor , Heater , ProfileDB , BadgeReader ;

22

23 DFour :

24 region :

25 Building : 15;

26 Floor : 11;

27 Room : 1;

28 abilities : TemperatureSensor ;

29

24

30 DFive :

31 region :

32 Building : 15;

33 Floor : 21 ;

34 Room : 2;

35 abilities : TemperatureSensor , BadgeReader;

36

37 DSix :

38 region :

39 Building : 15;

40 Floor : 21;

41 Room : 2;

42 abilities : TemperatureSensor , Monitor , Heater;

43

44 DSeven :

45 region :

46 Building : 16;

47 Floor : 14 ;

48 Room : 3;

49 abilities : TemperatureSensor , Monitor , BadgeReader;

50

51 DEight :

52 region:

53 Building : 16;

54 Floor : 14;

55 Room : 3;

56 abilities : ProfileDB , TemperatureSensor , Heater;

C Fire Management Application

C.1 Srijan Vocabulary Specification

1 regions :

2 House : Integer;

3 HousingCommunity : Integer;

4

5 structs :

6 TempStruct

7 tempValue : double;

8 unitOfMeasurement : String;

9

10 SmokePresenceStruct

11 smokePresence : boolean;

12 timStamp : long;

13

14 abilities:

15 sensors:

16 TemperatureSensor

17 generate tempMeasurement : TempStruct;

18

19 SmokeDetector

20 generate smokPresence : SmokePresenceStruct;

21

22 actuators:

23 Door

24 action Unlock ();

25 Alarm

26 action Activate ();

27 action DeActivate ();

28

29 SprinklerSystem

25

30 action Start ();

31 action Stop();

32

33 Light

34 action SwitchOn ();

35 action SwitchOff ();

C.2 Srijan Architecture Specification

1 structs:

2 HouseFireStruct

3 smokePresence : boolean;

4 timeStamp : long;

5 tempValue : double;

6 unitOfMeasurement : String;

7

8 softwarecomponents:

9 computationalService:

10 HouseAvgTempComputation

11 generate houseAvgTemp : TempStruct;

12 consume tempMeasurement from hops : 0: House;

13 in -region : House;

14

15 HouseFireComputation

16 generate houseFireState : HouseFireStruct;

17 consume houseAvgTemp from hops : 0 : House;

18 consume smokPresence from hops : 0 : House;

19 in -region : House;

20

21 HcFireComputation

22 generate hcFireState : HouseFireStruct;

23 consume houseFireState from hops : 0 : HousingCommunity;

24 in -region : HousingCommunity;

25

26 controller:

27 HouseFireController

28 consume houseFireState from hops : 0 : House;

29 command Activate () to hops : 0 : House;

30 command DeActivate () to hops : 0 : House;

31 command Start() to hops : 0: House;

32 command Stop() to hops : 0 : House;

33 command Unlock () to hops : 0 : House;

34 in -region : House;

35

36 HcFireController

37 consume hcFireState from hops :0: HousingCommunity;

38 command SwitchOn () to hops :0: HousingCommunity;

39 command SwitchOff () to hops :0: HousingCommunity;

40 in -region : HousingCommunity;

C.3 Srijan Network Specification

1 devices :

2 DOne:

3 region :

4 HousingCommunity : 15;

5 House : 101 ;

6 abilities : TemperatureSensor , Door , Alarm;

7

8 DTwo:

9 region :

10 HousingCommunity : 15;

26

11 House : 101;

12 abilities: TemperatureSensor , SmokeDetector ;

13

14 DThree :

15 region:

16 HousingCommunity : 15 ;

17 House : 101 ;

18 abilities : TemperatureSensor , SprinklerSystem;

19

20 DFour :

21 region :

22 HousingCommunity : 15 ;

23 House : 101;

24 abilities : Light;

25

26 DFive:

27 region :

28 HousingCommunity : 15 ;

29 House : 102;

30 abilities : TemperatureSensor , SmokeDetector , Alarm;

31

32 DSix :

33 region :

34 HousingCommunity : 15 ;

35 House : 102;

36 abilities : TemperatureSensor , SprinklerSystem;

37

38 DSeven :

39 region :

40 HousingCommunity : 15;

41 House : 102;

42 abilities : TemperatureSensor , Door ;

43

44 DEight :

45 region :

46 HousingCommunity : 15;

47 House : 102 ;

48 abilities : Light;

27

