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Abstract

This paper presents the formulation and implementation of an Error in Constitutive Equations
(ECE) method suitable for large-scale inverse identification of linear elastic material properties in
the context of steady-state elastodynamics. In ECE-based methods, the inverse problem is pos-
tulated as an optimization problem in which the cost functional measures the discrepancy in the
constitutive equations that connect kinematically admissible strains and dynamically admissible
stresses. Furthermore, in a more recent modality of this methodology introduced by Feissel and
Allix (2007), referred to as the Modified ECE (MECE), the measured data is incorporated into
the formulation as a quadratic penalty term. We show that a simple and efficient continuation
scheme for the penalty term, suggested by the theory of quadratic penalty methods, can signif-
icantly accelerate the convergence of the MECE algorithm. Furthermore, a (block) successive
over-relaxation (SOR) technique is introduced, enabling the use of existing parallel finite element
codes with minimal modification to solve the coupled system of equations that arises from the
optimality conditions in MECE methods. Our numerical results demonstrate that the proposed
methodology can successfully reconstruct the spatial distribution of elastic material parameters
from partial and noisy measurements in as few as ten iterations in a 2D example and fifty in a
3D example. We show (through numerical experiments) that the proposed continuation scheme
can improve the rate of convergence of MECE methods by at least an order of magnitude versus
the alternative of using a fixed penalty parameter. Furthermore, the proposed block SOR strategy
coupled with existing parallel solvers produces a computationally efficient MECE method that
can be used for large scale materials identification problems, as demonstrated on a 3D example
involving about 400,000 unknown moduli. Finally, our numerical results suggest that the proposed
MECE approach can be significantly faster than the conventional approach of L2 minimization
using quasi-Newton methods.
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1. Introduction

The identification of material parameters (e.g. elastic moduli) are of paramount importance
in science and engineering. For instance, this type of inverse problem arises in connection with
applications such as damage detection and structural health monitoring, seismic exploration, and
biomechanical imaging, among other applications. Models of complex engineering structures often
feature local or heterogeneous parameters that are unknown and, therefore, need to be identified
by exploiting experimental information on the mechanical response of the structure. Considerable
research effort has been dedicated to develop algorithms for material identification. A review
on these methods in the context of elasticity can be found in [1]. Despite current advances,
current numerical algorithms are still often challenged by the inherent ill-posedness of inverse
problems, especially when, as in this article, the identification of heterogeneous material properties
is considered.

Parameter identification problems are often solved using nonlinear optimization schemes. The
most common form of such approaches involves minimizing the L2-norm of the error between
computed and measured responses (e.g. displacement, strains) [2, 3, 4, 5, 6, 7]. Quasi-Newton
methods, which require only the computation of the gradient of the objective function using adjoint
methods, are often preferred due to their ease of implementation [3, 8]. Full-Newton methods
have also been successfully used for large-scale identification problems [9]. The latter methods
converge significantly faster than quasi-Newton methods [8], but are more difficult to implement.
In general, gradient-based nonlinear optimization methods have the advantage of allowing the
handling of a large number of unknowns and noisy data (using regularization techniques). The main
disadvantages of these approaches, when a L2-norm misfit functional is used, is their sensitivity
to the initial guess due to the non-convexity of the functional and the large number of iterations
required to get an acceptable solution when quasi-Newton methods are used.

In recent years, a new paradigm for inverse material identification has emerged which uses
the concept of error in constitutive equations (ECE) for defining cost functionals whose physi-
cal meaning is stronger than that of usual L2 functionals and directly related to the material
identification problems at hand. The basic premise in the ECE approach is that, given an over-
determined set of boundary or internal data (e.g. displacements and tractions), a cost functional
is defined based on the least residual (measured in terms of an energy norm) in the constitutive
equations that connect stresses and strains that are constrained to be dynamically and kinemat-
ically admissible, respectively, with respect to the available experimental data. This type of cost
functional has the important property of being zero for the exact constitutive equations and strictly
positive otherwise. ECE functionals have been initially introduced for error estimation in FEM
computations [10] before being also applied to various material parameter identification problems
under linear static [11], nonlinear quasistatic [12], time-harmonic [13, 14, 15] or, more recently,
transient [16, 17, 18] conditions. ECE functionals were also found to be useful for solving data
completion (Cauchy) problems [19]. Similar energy-error functionals have been introduced for the
identification of scalar spatially-varying conductivity coefficients in e.g. [20, 21], with mathematical
and numerical issues also discussed in [22, 23].

In particular, a new ECE-based method, named Modified Error in Constitutive Equations
(MECE) approach, was recently proposed for time-domain dynamics problems by [17, 18]. In
MECE, fields and equations are separated into reliable and unreliable sets. The reliable set typically
includes the equilibrium equations, initial conditions and known boundary conditions, while the
unreliable set includes measured data, constitutive properties, and (when applicable) imperfectly
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known boundary conditions. The identification problem is then posed as the minimization of a
MECE functional, with reliable equations enforced strictly (e.g. as constraints, using Lagrange
multipliers) and unreliable equations treated through an ECE-type functional and penalty terms.
Allix and Feissel [17] showed that MECE is very robust and can produce reliable identification
results in problems with high levels of data noise.

To our best knowledge, MECE-based functionals have not yet been applied to large-scale dy-
namical identification problems involving unknown heterogeneous material parameters despite their
clear potential advantages for this type of problem. With respect to such large-scale applications,
the main drawbacks of existing MECE-based identification formulations are twofold. First, they
involve a coupled system of partial differential equations (PDEs) that needs to be solved for each
iteration. Second, a penalty parameter, which plays a very important role in accuracy of the inverse
problem solution, must be provided a priori.

This paper is devoted to the formulation, implementation and validation of the MECE for large-
scale heterogeneous material parameter identification problems in the context of frequency domain
elastodynamics. Our main contributions in this work are threefold. First, we provide a simple
continuation approach for evolving the penalty parameter that appears in MECE, eliminating
the need to estimate this parameter a priori; second, we show a Successive OverRelaxation (SOR)
scheme that can be suitable for solving large scale problems with MECE; and third, we demonstrate
the feasibility of using the MECE method in two-dimensional and three-dimensional time-harmonic
elasticity imaging problems with numerical experiments involving up to 400,000 unknown material
parameters.

The article is organized as follows. The inverse problem and the MECE-based identification ap-
proach are introduced in Section 2. Proposed refinements of the MECE approach are presented in
Sections 3 and 4, leading to the algorithm of Section 5. Section 6 is devoted to 2D numerical exam-
ples designed to assess the performance of the main ingredients of the proposed MECE algorithm
(evolutive penalty parameter, block-SOR technique for solving the MECE optimality equations),
and to compare them against a L2-BFGS minimization approach. Finally, results on a large-scale
3D identification problem are shown in Section 7, before closing the paper with concluding remarks.

2. Background

2.1. Forward problem

In this section, we briefly describe the strong and weak forms of the forward steady-state
elastodynamics problem. Let Ω̄ = Ω ∪ ∂Ω ⊂ R

d (1 ≤ d ≤ 3) denote a bounded and connected
body. The governing equations for a linear elastic body undergoing time-harmonic motion can be
written as

∇·σ + b = −ρω2
u in Ω (1a)

u = u0 on Γu (1b)

σ ·ns = t on Γt (1c)

σ = C :ǫ (1d)

ǫ[u] =
1

2
(∇u+∇u

T ) (1e)

where u is the displacement field, ω is the angular frequency, ρ is the mass density, b is the body
force density, ǫ denotes the linearized strain tensor, σ denotes the stress tensor, t is the applied
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traction, u0 is the essential boundary condition, and ns is the outward unit normal. Γt and Γu,
respectively, denote the traction (natural) and displacement (essential) parts of the boundary. Also,
Γt ∪ Γu = ∂Ω, Γt ∩ Γu = ∅, and C is the fourth-order linear constitutive tensor.

Let a and b be second-order tensor fields. In the sequel, we will use the following notation for
their inner product.

(a, b) :=

∫

Ω
a : b dΩ =

∫

Ω
aijbijdΩ (2)

where indicial notation (with implicit summation over repeated indices) is used and the overbar
denotes complex conjugation. The inner product of vector or scalar fields follow the same notation.
When the inner product is defined over a boundary we will use the notation

(a, b)Γ :=

∫

Γ
a : b dΓ (3)

The weak formulation of (1a) consists in finding u ∈ U such that

A(u,w) = F(w) ∀w ∈ W (4)

where

A(u,w) := (C :ǫ[u], ǫ[w])− ρω2(u,w) (5)

F(w) := (b,w) + (t,w)Γt
(6)

and the function spaces U and W are defined as

U = {u| u ∈ H1(Ω), u = u0 on Γu} (7a)

W = {w| w ∈ H1(Ω), w = 0 on Γu} (7b)

In addition, let the space S of dynamically admissible stresses be defined as

S := {σ| σ ∈ Hdiv(Ω), ∇·σ + b = −ρω2
u in Ω, σ ·ns = t on Γt} (8)

2.2. Inverse problem and L2 minimization

The inverse problem associated with the steady-state elastodynamics shown above consists in
estimating the spatial distribution of the constitutive tensor C ∈ C for given measured displace-
ments um(x̂), x̂ ∈ Ωm ⊆ Ω̄ obtained at one or more frequencies, where C is the space of fourth-order
tensor fields that are positive definite, symmetric and bounded.

A common approach for reconstructing material parameters is to solve either a constrained or
an unconstrained optimization problem by minimizing the mean squared error between the mea-
sured and computed responses [3, 9]. We will refer to this method from here on as L2 minimization.
This standard procedure is now briefly described for later reference (Sec. 6.4). Without loss of gen-
erality, we consider the case where measurements are obtained for a single frequency and isotropic
constitutive models are as given in Eq. (29).

The error functional in L2 minimization is given as

J(u,C) =
1

2
‖u− u

m‖2L2(Ωm) +R(C) (9)
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where

‖u− u
m‖2L2(Ωm) =

∫

Ωm

|u− u
m|2dΩm (10)

and R is a non-negative regularization functional. An approximate solution to the inverse problem
is then obtained through the following PDE-constrained nonlinear optimization problem

{u∗,C∗} = arg min
u,C

J(u,C) subject to Eqs. (1a-e), (11)

which is typically solved using Newton or quasi-Newton methods.

2.3. Error in constitutive equation approach

ECE approaches are based on cost functionals that measure, in terms of an energy norm, the
constitutive equation residual between a given displacement field and a given stress field. For
linearly elastic materials, the ECE cost functional is defined as

U(u,σ;C) :=
1

2

∫

Ω
(σ − C :ǫ[u]) :C−1 : (σ − C :ǫ[u]) dΩ (12)

It is straightforward to see that U(u,σ;C) has the important property of being zero for the exact
constitutive equation and strictly positive otherwise (i.e. U ≥ 0 ∀ C ∈ C, U = 0 ⇐⇒ σ = C :ǫ).

The error in constitutive equation E(C) for the given set of measured displacements is then
defined through the partial minimization of U(u,σ;C) with the material properties C kept fixed
while u and σ fulfill all admissibility and experimental constraints, i.e.

E(C) := min
(u,σ)∈U×S

U(u,σ;C) subject to u = u
m(x̂), x̂ ∈ Ωm ⊆ Ω̄ (13)

In particular, E(C) = 0 in the absence of any measurements (the above minimization problem
being then equivalent to the well-posed forward problem (1a-e)), and also for measurements that
are consistent with the assumed material property C. Conversely, if the assumed value of C is
inconsistent with the measurements, E(C) > 0 and the correct material properties will be found
by minimizing E(C). This is the essence of the ECE approach to the inverse problem at hand.

2.4. Modified error in constitutive equation approach

In practice, however, measurement noise is to be expected, in which case the exact verification
of experimental values as enforced in (13) is often not desirable. To address this concern, a modified
error in constitutive equation (MECE) functional [17, 16] is defined by treating the discrepancy
between measured and computed displacements as a penalty term, and is accordingly given by

Λ(u,σ;C) = U(u,σ;C) +
κ

2
‖u− u

m‖2L2(Ωm) (14)

where κ is a penalization parameter. Then, the inverse problem in the scope of MECE is cast as
the optimization problem

(u⋆,σ⋆,C⋆) = arg min
(u,σ,C)∈U×S×C

Λ(u,σ;C), (15)

whose solution (u⋆,σ⋆,C⋆) achieves a compromise between (a) satisfying the basic (i.e. equilib-
rium, compatibility and constitutive) mechanical equations and (b) matching the measured dis-
placements. Indeed, the limiting values of the solution (u⋆,σ⋆,C⋆) of (15) as κ → 0 and κ → ∞
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are, respectively, the solutions to the L2 minimization (11) and the “pure ECE” minimization (13).
This balance was for example shown to be one of the strongest points of the (transient, spatially
1D) MECE method of Feissel and Allix [17], while a “dual” interpretation of MECE as a penalty
approach for the L2 minimization was proposed in [22]. Furthermore, while our approach is based
on the minimization problem in (15), involving a single MECE functional Λ, the MECE method
of [17] combines the minimization of (a time-domain version of) Λ with respect to (u,σ) and that
of U with respect to C.

2.4.1. Alternating directions

It is important to highlight that in the optimization problem (14) we are searching simulta-
neously for both the mechanical fields, σ and u, and the elastic parameters in C. A natural
approach for solving problem (14), followed in this work, consists in an alternating directions
strategy whereby the transition from a current iterate (u,σ,C)n to the next iterate (u,σ,C)n+1 is
based on two successive and complementary partial minimizations of Λ(u,σ;C). The first partial
minimization consists in updating the mechanical fields given the material parameters:

(un+1,σn+1) := arg min
(u,σ)∈U×S

Λ(u,σ;Cn) (16)

Then, the second partial minimization consists in finding updated material parameters given the
mechanical fields obtained from (16):

C
n+1 := arg min

C∈C

Λ(un+1,σn+1;C) (17)

This alternating direction strategy serves two purposes: (i) it greatly simplifies the actual imple-
mentation of the method as it is straightforward to minimize the MECE functional with respect to
the material parameters for fixed mechanical fields, and vice-versa, (ii) it provides greater insight
into the MECE approach. It is worth mentioning that the alternating directions approach has
been successfully used in other inverse problems to take advantage of the structure of functionals
similar to (14), for instance in the work of Wang et al. [24] on image reconstruction.

We now proceed to describe the solution strategy for subproblems (16) and (17), which exploits
the optimality conditions for each subproblem using a Lagrange multiplier approach. Accordingly,
define a Lagrangian functional L : U ×W × S × C → R by

L(u,w,σ;C) = Λ(u,σ;C)− Re (B(σ,w)−F(w)) (18)

where
B(σ,w) := (σ, ǫ[w])− ρω2(u,w) (19)

Notice that the test function w ∈ W plays the role of a Lagrange multiplier in Eq. (18). The
first-order optimality conditions for subproblem (16) are obtained by taking partial derivatives of
(18) with respect to u, σ and w (treating them as independent variables in the derivation), and
setting these to zero. First, the partial derivative L′

σ
of L with respect to the stress field can be

defined in terms of a linear functional δσ 7→ 〈L′
σ
, δσ〉 yielding the variation δL induced by any

given stress variation δσ ∈ Hdiv(Ω) through

〈L′
σ
, δσ〉 = Re

(

(δσ,C−1 :σ)− (δσ, ǫ[u])− (δσ, ǫ[w])
)

= Re
(

(δσ,C−1 :σ − ǫ[u]− ǫ[w])
)

∀δσ ∈ Hdiv(Ω) (20)

6



Setting 〈L′
σ
, δσ〉 to zero, we get

σ = C :ǫ[u+w] (21)

Proceeding along similar lines, the partial derivative L′
u
of L with respect to the displacement field

is defined through

〈L′
u
, δu〉 = Re

(

(C :ǫ[u]− σ, ǫ[δu]) + κ(u− u
m, δu)Ωm

+ ω2(ρδu,w)
)

∀δu ∈ W (22)

Substituting Eq. (21) into Eq. (22), setting the result to zero, and simplifying, we get

(C :ǫ[w], ǫ[δu])− ω2(ρδu,w) = κ(u− u
m, δu)Ωm

∀δu ∈ W (23)

We next take the partial derivative L′
w

of L with respect to the Lagrange multiplier w to obtain

〈L′
w
, δw〉 = Re

(

(σ, ǫ[δw])− ω2(ρu, δw)− (b, δw)− (t, δw)Γt

)

(24)

Substituting Eq.(21) into Eq. (24), setting the result to zero, and simplifying, we get

(C :ǫ[u+w], ǫ[δw])− ω2(ρu, δw) = (b, δw) + (t, δw)Γt
∀δw ∈ W (25)

Equations (23) and (25) constitute a pair of coupled variational problems. Together with (21),
they constitute the first-order optimality conditions for subproblem (16). In practice, the admissible
mechanical fields that are consistent with the current estimate C of the material parameters, i.e.
that solve (16), are thus obtained by solving for (u,w) ∈ U×W in the coupled variational equations

A(u, δw) + (C : ǫ[w], ǫ[δw]) = F(δw) ∀δw ∈ W

−κ(u, δu)Ωm
+A(w, δu) = −κ(um, δu)Ωm

∀δu ∈ W,
(26)

and then obtain the stress σ from (21).
It is important to highlight that for given elastic properties C, the coupled system (26) has

the following properties: (i) the displacement field u approximates the measurement field u
m in

a least squares sense; (ii) the Lagrange multiplier w and the displacement field u map to a stress
field that satisfies (weakly) the conservation of linear momentum equation and natural boundary
conditions; (iii) if u → u

m on Ωm, then w → 0 and (26) reduces to the forward problem (4); (iv)
the formulation includes the case of overdetermined boundary conditions where Ωm ∩ Γt 6= ∅. Of
course, the latter would not be allowed in a classical variational formulation as it would lead to an
ill-posed forward problem.

2.4.2. Material update

The still-unexploited first-order optimality equation L′
C
= 0 yields the optimality condition for

subproblem (17). Since (14) and (18) imply that the explicit dependence of L on C occurs only
through Λ(u,σ;C), and hence through U(u,σ;C), one obtains

〈U ′
C, δC〉 = 0 ∀δC ∈ C, (27)

i.e.
(

δC , ǫ[u]⊗ ǫ[ū]− (C−1 :σ)⊗ (C−1 : σ̄)
)

= 0 ∀δC ∈ C (28)
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(with (·, ·) denoting the inner product of type (2) for fourth-order tensor fields). On using the
solution u,σ of subproblem (16), the above equation leads to a pointwise updating rule for C. The
latter is now shown to become completely explicit for the case of isotropic linear elastic materials,
for which C can be represented as

C =

(

B −
2

3
G

)

(I ⊗ I) + 2GI (29)

In the above equation, B and G represent spatially dependent bulk and shear moduli, respectively.
I and I represent the second and fourth order identity tensor, respectively. Considering perturba-
tions of C of the form (29) with B,G replaced with δB, δG, the optimality condition (28) reduces
to

(ǫd, 2δGǫd) + (eu, δBeu)−

(

σd,
δG

2G2
σd

)

−

(

p,
δB

B2
p

)

= 0 ∀δB, δG ∈ L∞(Ω) (30)

where ǫd and σd represent the deviatoric strain and stress, eu is the volumetric strain and p = 1
3σii

is the pressure. Eq. (30) leads to the explicit pointwise updating formulae

B∗ =
(p, p)1/2

(eu, eu)1/2
= B

(eu + ew, eu + ew)
1/2

(eu, eu)1/2
, (31a)

G∗ =
(σd,σd)

1/2

2(ǫd[u], ǫd[u])1/2
= G

(ǫd[u+w], ǫd[u+w])1/2

(ǫd[u], ǫd[u])1/2
, (31b)

where all occurrences of (·, ·) denote pointwise inner products (i.e. the implicit integration over
a domain is dropped). It is important to bear in mind that σ depends on both the displacement
field u and the Lagrange multiplier field w (see (21)), while the volumetric and deviatoric strains
are function of u only.

Constitutive updating formulae (31) may alternatively be understood as yielding averaged
updates over some region D ⊆ Ω, e.g. over (patches of) elements, with inner products (·, ·) now
carrying an implicit integration over D. The latter results simply from using piecewise-constant
variations of the form δB = χ(D)δb (where χ(D) is the characteristic function of D and δb is a
scalar), and similarly for δG, in (30).

2.5. Discretization of the coupled problems

The coupled problem (26) is discretized in this work using the finite element method. Using
standard Voigt notation, the displacement fields and test functions are expressed as

u
h = [N ] {u} , δuh = [N ] {δu} , ǫ[uh] = [B] {u} ,

w
h = [N ] {w} , δwh = [N ] {δw} , ǫ[wh] = [B] {w} ,

where [N ] and [B] represents matrices of finite element shape function and their derivatives with
respect to physical spatial coordinates, respectively. Substituting the above approximations into
Eq. (26), the discrete coupled system of equations is obtained as

[

[K]− ω2 [M ] [K]
−κ [D] [K]− ω2 [M ]

]{

{u}
{w}

}

=

{

{P}
−κ{R}

}

(32)
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The matrices in the above block system of equations are defined as

[K] =
∑

elements

∫

Ωe

[B]T [C] [B] dΩ (33a)

[M ] =
∑

elements

∫

Ωe

ρ [N ]T [N ] dΩ (33b)

[D] =
∑

elements

∫

Ωe
m

[N ]T [N ] dΩm (33c)

{P} =
∑

elements

∫

Γe

t

[N ]T t dΓ +
∑

elements

∫

Ωe

[N ]T b dΩ (33d)

{R} =
∑

elements

∫

Ωe

[N ]T u
mdΩ (33e)

where [C] denotes the constitutive matrix. In equations (33)a-e, the data is assumed to consist of a
continuous field measured over Ωm. For data collected sparsely in space, measurement locations can
be made to coincide with finite element nodes. In that case, introducing a diagonal Boolean matrix
[Q] with entries being non-zero only for the global degrees of freedoms (dofs) where measurements
were taken, [D] is then replaced by [Q] in (32) while {R} becomes a sparse vector containing the
nodal measured displacements. Note that the matrix [D] (or [Q]) is nonnegative as it is associated
with the discretization of a least-squares misfit term. When Dirichlet boundary conditions are
involved in problem (26) (i.e. if Γu 6= ∅), the lines and columns corresponding to prescribed DOFs
are removed from system (32), and any nonzero prescribed displacement values appear through
equivalent nodal forces in the right-hand side of (32). System (32) is uniquely solvable except in
very specific situations, as stated next.

Proposition 1. System (32) admits a unique solution ({u}, {w}) whenever the intersection of the
kernels of matrices [K]− ω2 [M ] and [D] is reduced to the null vector.

If ω is not an eigenfrequency (i.e. a generalized eigenvalue of [K] − ω2 [M ]), then the kernel of
[K]−ω2 [M ] is trivial and Proposition 1 implies unique solvability of (32). If ω is an eigenfrequency,
Proposition 1 still implies unique solvability of (32) provided any nonzero {v} verifying

(

[K] −
ω2 [M ]

)

{v} = {0} is such that [D]{v} 6= {0} (i.e. the chosen measurement configuration is such
that any eigenmode is observable). The proof of Proposition 1 is given in the Appendix. This
proof in particular makes clear that unique solvability does not depend on whether the kinematic
constraints permit rigid-body motions (i.e. whether [K] is singular).

3. Normalization and a continuation scheme for the penalty term

In this section, we address a very important issue in the MECE approach: choosing or de-
termining the penalty coefficient κ that appears in the MECE functional (14). As shown in [17],
the penalty coefficient plays a fundamental role in the quality of the reconstruction of material
parameters, especially in cases where high levels of noise are present in the data. Our goal is to
devise a simple strategy for estimating this coefficient adaptively. To this end, we first propose the
following form for the penalty coefficient.
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κ = α
Us(C0)

‖um‖2
L2(Ωm)

(34)

where Us(C0) is the strain energy in the system for the initial guess C0 of elastic moduli and
α ∈ R

+ is a non-dimensional penalty coefficient. The scaling (34) of κ yields consistent units for
the ECE and least-squares components of the MECE functional (14), with both terms having units
of energy.

We now derive a selection rule for the penalty parameter α. To this end, since the measured
displacements are enforced as a constraint using a quadratic penalty term in (15) (while the gov-
erning equations are enforced as constraints using Lagrange multipliers), we turn to the theory of
quadratic penalty problems [8]. For any increasing sequence of penalty parameters {αi ∈ R

+} with
αi → ∞ as i → ∞, it is shown (see e.g. Theorem 17.1 in [8]) that the corresponding sequence
of minimizers {σi,ui,Ci} for problem (15) converges to a minimizer of the original constrained
problem (13). A natural approach to the inverse problem at hand is thus to solve problem (15) with
an increasing sequence of penalty parameters {αi}, giving increasing weight to the measurement
constraint (which is satisfied exactly only in the limit αi → ∞). Wang et. al. [24] showed excellent
improvement in convergence speed by applying a monotonically increasing sequence of penalty pa-
rameters and an alternating directions minimization, as proposed herein, to image reconstruction
problems.

Inspired by the quadratic penalty framework and the results of [24], we thus propose the
following simple form for constructing a sequence of penalty parameters:

αi+1 = Min
(

10βαi, αmax

)

(35)

where β > 0 and αmax is a preselected positive number. We note that β = 0 reduces to the case
of a constant α. For the numerical examples studied in this work, the proposed sequence has been
found to significantly accelerate the convergence of the minimization (15).

There are several reasons that justify the choice of a progressively increasing penalty term in
MECE. First, for small values of α, it is easier (i.e. faster convergence) to find a corresponding
minimizer for the optimization problem in Eq. (15) than for large values of this coefficient. Second,
each minimizer {σ⋆

i ,u
⋆
i ,C

⋆
i } can be used as an improved initial guess to the optimization problem

corresponding to the next penalty parameter αi+1 in the sequence. In our proposed MECE ap-
proach, we execute just one iteration of the minimization scheme for each choice of α, which renders
an algorithm that is not more costly than one that uses a fixed value of α. The construction (35) of
the sequence αi is to a large extent arbitrary. More efficient forms to define the sequence may well
exist. For instance, by making αmax dependent on the data noise level using optimal regularization
arguments such as the Morozov principle or the L-curve. This important topic is left to future
investigation.

As opposed to what the quadratic penalty theory suggests, the penalty parameter sequence (35)
is prevented to reach arbitrarily large values. Indeed, since the data u

m is expected to be corrupted
by measurement noise, exact satisfaction of the measurement constraint is not desirable because of
the ill-posed nature of the inverse problem. Achieving a balance between minimizing the ECE and
the measurement misfit, implicitly defined by the choice of αmax, is a more sensible goal. Like in
regularization methods often used for inverse problems [25, 26], the value of αmax should depend
on the quality of the measurements (i.e. on the level of noise). Typically, αmax has to be selected
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such that
‖u− u

m‖L2(Ω) ≤ δ (36)

where δ is a number that reflects the quality of the data. We found in practice that a wide range
of values of αmax for different levels of noise produce good results. Further work is necessary to
identify the exact relationship between αmax and the level of noise in the data.

4. Successive over-relaxation (SOR) technique for the solution of the coupled problem

One of the main computational challenges that arises in the MECE method is obtaining a
solution for the coupled system (32). This can be achieved by either employing direct or iterative
solvers on the whole system or using a block strategy. Applying direct linear solvers to (32) for
large scale problems may be prohibitive. On the other hand, designing efficient and effective pre-
conditioners for the entire coupled system is not a trivial task if iterative solvers were to be used.
Hence, our goal is to devise an iterative solution strategy that exploits the block structure of the
system efficiently and takes advantage of existing massively parallel linear solvers. To this end, we
employ a simple successive over-relaxation (SOR) strategy at the block level.

Consider (32) as a block system. The i+ 1 iterate in the block SOR algorithm [27] is obtained
by solving

[

[K]− ω2[M ] 0
−ηκ[D] [K]− ω2[M ]

]{

{u}i+1

{w}i+1

}

=

[

η̂([K]− ω2[M ]) η[K]
0 η̂([K]− ω2[M ])

]{

{u}i

{w}i

}

+

{

η{P}
−ηκ{R}

}

(37)

where 0 < η < 2 and η̂ = 1− η. Defining

{û} = {u}i+1 − η̂{u}i, {ŵ} = {w}i+1 − η̂{w}i, (38)

substituting into Eq. (37), and rearranging, we obtain the one-way coupled systems of equations

([K]− ω2 [M ]){û} = η({P}+ [K] {w}i) (39a)

([K]− ω2 [M ]){ŵ} = ηκ([D]{u}i+1 − {R}) (39b)

At each SOR iteration, {û} is computed first from (39a), and then {u}i+1 is obtained using the
left equation in (38). Subsequently, {ŵ} is computed from (39b), and {w}i+1 is obtained using the
right equation in (38).

The system shown in (39) has significant computational advantages. First, equations (39) are
standard forced-vibration problems to which linear solvers available in FE codes can be applied
directly. Second, both equations in (39) have the same governing matrix, but different right hand
sides. This fact allows for very efficient implementation of the SOR iterations. We used the FETI-H
algorithm [28, 29] for solving the system (39). This method is based on a non-overlapping domain
decomposition, and uses special preconditioners based on plane waves to improve convergence.
FETI-H can be used very efficiently in problems with multiple right-hand sides and with a con-
stant system matrix (see for instance [30]) such as the ones studied herein. Note, however, that
equations (39) become singular at resonant frequencies even though the original system (32) is in
general still uniquely solvable in that case.
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5. MECE algorithm

In summary, each iteration in the MECE approach consists in solving the coupled system given
in Eq. (32) followed by updating the material parameters using the formulae given in Eq. (31).
These steps are executed until a maximum number of iterations is reached or a predefined error
tolerance is satisfied. The flow of an implementation of the MECE approach is as follows.

• Set initial values for shear and bulk moduli, fix lower and/or upper bounds and normalization
factors.

• Loop until a convergence criterion is met

1. Obtain a solution of the coupled problem using Eq. (32)

2. Compute stresses and strains

3. Update moduli using Eq. (31)

4. Update penalization parameter using Eq. (35)

6. 2D Numerical Examples and Results

This section presents a set of 2D numerical examples that were designed to study the perfor-
mance of the MECE approach described herein for reconstructing spatially varying bulk and shear
moduli in the presence of incomplete and noisy data. A 3D example using a massively parallel
iterative solver for (32) will then be presented in Sec. 7. The examples presented herein are mo-
tivated from inverse elasticity problems related to biomedical applications [4, 31, 32]. In these
problems, displacement (or velocity) data is usually available on the boundary and interior of the
body. However, the data may be missing in some directions, as in the case of ultrasound imaging
[4], or be fully multidirectional, as in the case of magnetic resonance imaging (MRI) [32].

6.1. Problem description

For the 2D numerical experiments, we considered a 10 cm × 10 cm square under plane strain
conditions and loaded with a uniform pressure at the top. The bottom of the square was free
in the X-direction as shown in Figure 1. The domain contained two stiff circular inclusions in a

Figure 1: Schematic of the 2D example problem
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Table 1: Target Material Properties for 2D Example

Material Properties Background Inclusion 1 Inclusion 2

Shear Modulus G (Pa) 1× 106 2× 106 4× 106

Bulk Modulus B (Pa) 2× 106 3× 106 5× 106

soft matrix (Figures 2a and 2b), whose elastic properties are given in Table 1. Given that the
coordinate origin was located at the bottom left corner of the domain, the center of the bottom
inclusion had coordinates (2.5 cm, 2.5 cm), while the center of the top inclusion had coordinates
(7.5 cm, 7.5 cm). The diameter of the inclusions was 2.5 cm. The mass density of the inclusions
and matrix was taken as 1000 kg/m3 and a single frequency of 50 Hz was used in all cases.

The known “experimental” data used in the numerical examples was generated artificially using
a structured finite element mesh consisting of 100 × 100 four-node element. The y-component of
the displacements at all nodes in the mesh was used as known information. The data was then
polluted by adding artificial Gaussian white noise. That is, for a degree of freedom i, the synthetic
measurement was obtained as

umi = urefi (1 + δri) (40)

where urefi is a noise-free displacement obtained using the true material properties, δ represents
the noise level (with δ = 0.01, 0.05 or 0.1 used in the examples to follow), and ri denotes a zero-
mean and unit-variance Gaussian random variable. The above-described synthetic data was finally
interpolated on a coarser, and uniform, 61 × 61 mesh of bilinear elements which was used for all
2D reconstructions.

In the examples shown in Secs. 6.2 and 6.3, the MECE algorithm was stopped when a maximum
number of iterations was reached or when the condition

‖u− u
m‖L2(Ωm)

‖um‖L2(Ωm)
≤ cδ (41)

was met. Without loss of generality, we used c = 1 in this work and the maximum number of
iterations allowed for the MECE algorithm was set to 1000.

The results of Secs. 6.2 and 6.3 were obtained using a direct solver for the coupled system (32),
while the SOR technique was used in Sec. 6.4. Furthermore, in Secs. 6.2 and 6.3, the parameters for
the penalty sequence (35) were chosen as α0 = 1, αmax = 109, and β = 0.25. From the numerical
examples studied in this work, we found that the algorithm was not sensitive to different choices
of these parameters. The 2D numerical examples used an initial guess of constant shear and bulk
moduli both with values of 1 MPa.

6.2. Reconstruction of shear and bulk moduli

We consider the spatial reconstruction of the true distributions of G and B defined by Figures
2a, 2b and Table 1. The reconstructed profiles obtained using MECE with the proposed iterative
penalization scheme are shown in Figures 2c and 2d for a noise level δ = 0.05 (for visualization
purposes, the nodal averages of G and B are plotted). The MECE algorithm was clearly able to
reconstruct the location of the inclusions as well as their sharp boundaries.
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Figure 2: 2D example: reconstructions with data noise level δ = 0.05. Units: Pa.

Figure 3 shows the spatial variation of the reconstructed shear and bulk moduli along the section
A−A′ indicated in Fig. 1, for different noise levels. These plots demonstrate that the MECE-based
algorithm was able to identify accurately the boundaries of the inclusions and correct magnitudes
of the moduli with, as expected, a degradation of accuracy as the level of noise increased. While
the sharp discontinuities are well captured in the reconstruction, it is important to notice that the
error in the reconstructed bulk modulus was consistently higher than that of the shear modulus.
The higher error in the bulk modulus may be due to the loading condition and the unidirectionality
of the measurements used in the simulated experiments. For instance, the fact that the synthetic
data is limited to the vertical component of the displacement field may reduce its sensitivity to
volume changes.

There are many applications (e.g. those involving near-incompressible materials) in which G is
the only material parameter to be identified. As the number of unknowns is reduced for the same
level of information, it is expected that the accuracy of the results would increase as compared
to the case where both B and G are treated as unknowns. The cross-sectional plot of Figure
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(a) shear modulus

(b) bulk modulus

Figure 3: 2D example: cross-sectional plot at different noise levels. Units: Pa.

Figure 4: 2D example: cross-sectional plot at different noise levels when only G is reconstructed.
Units: Pa.

4 corroborates this statement for the δ = 0 and δ = 0.01 noise levels. However, it can also be
observed that the increased accuracy from having fewer design variables does not hold for higher
levels of noise.

6.3. Convergence behavior with sequence of penalty coefficients

Now we compare the convergence behavior of the MECE algorithm when the proposed con-
tinuation scheme (35) was used versus using a constant penalty parameter. Figure 5 shows a plot
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Figure 5: 2D example: effect of the proposed continuation scheme versus a constant penalization
parameter on the convergence of the MECE algorithm (noise level δ = 0.05).

of the value of the cost function Λ(u,σ;C) defined by (14) and using κ = 1 versus number of
iterations. Notice that this choice of κ yields a cost function that represents an equally weighted
sum of the ECE and L2 errors. The plots shown in this figure correspond to different values of α
(held constant during the iterations) and α selected using the continuation scheme (35) for a noise
level δ = 0.05. For a constant α, the number of iterations required for reaching a certain level of
Λ(u,σ;C) is seen to decrease as the value of α increases. However, the quality of the reconstruc-
tion is poorer with higher values of α as can be observed in the cross-sectional plot of Figure 6,
showing that with higher values of constant α the reconstruction becomes highly oscillatory. This
behavior is due to the fact that when larger, constant penalty parameters are chosen, the noise in
the measurements is enforced with increased weight early in the minimization process.

It is interesting to observe that the reconstructed solutions for both the continuation scheme
and α = 1.0 are similar in accuracy and smoothness. However, the MECE algorithm displays a
significantly faster convergence when the continuation scheme is used. Notice that the number of
iterations required to reach the lowest value of the cost function is more than ten times higher for
α = 1.0 than that required by the continuation scheme. These results demonstrate the significant
computational advantage of using a continuation scheme with MECE. However, it is also important
to recognize that there may be constant values of α that produce rates of convergence comparable
to those displayed by the continuation scheme. However, finding such a constant α can be very
difficult in practice.

The sensitivity of the convergence rate of MECE to the choice of the exponent β in the penalty
sequence (35) has also been studied. Figure 7 shows plots of the value of the cost function Λ(u,σ;C)
versus number of iterations for five different values of β. For all nonzero values of β, the stopping cri-
terion was reached within 5-10 iterations. In contrast, when β = 0 (i.e. for α keeping the constant
value α = 1), the algorithm was unable to meet this criterion after 1000 iterations. Cross-sectional
plots of the corresponding reconstructed moduli (Figure 8) show that adequate reconstructions
were obtained for all choices of β. This numerical experiment highlights the robustness of the
proposed continuation scheme over a wide range of values β.
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(a) shear modulus

(b) bulk modulus

Figure 6: 2D example: cross-sectional plot corresponding to Figure 5. Units: Pa.

6.4. A comparison between the MECE method and an L2/L-BFGS minimization approach

In this section, we compare the performance of the proposed MECE scheme with that of a
standard L2 minimization approach that employs a quasi-Newton method (see Section 2.2). To this
end, we used a limited-memory (L-BFGS) algorithm for bound-constrained minimization [33]. The
domain used for this comparison had dimensions 1m×1m and was loaded with a uniform pressure
on the top surface and restrained in the vertical direction at the bottom surface. The top pressure
was taken as unity and the excitation frequency was 0.025 Hz. The domain contained a concentric
circular inclusion with a radius of 0.15m. The target material properties were Ematrix = 1 Pa,
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Figure 7: 2D example: effect of β for a noise level δ = 0.01. The case β = 0.0 represents the
constant penalty parameter case.

Figure 8: 2D example: cross-sectional plots corresponding to various choices of β. Units: Pa.

νmatrix = 0.25 for the matrix and Einc = 10 Pa, νinc = 0.25 for the inclusion, the corresponding
shear and bulk moduli thus being Gmatrix = 0.4 Pa, Ginc = 4 Pa and Bmatrix = 0.67 Pa, Binc =
6.7 Pa.

The given target moduli were used to generate the data used for the inversion. Displacements at
all nodes in the vertical and horizontal directions were taken as measured data. For this example,
the same mesh was used for generating the data and obtaining an inverse problem solution. This is
acceptable in this case as we are comparing the performance of the two algorithms under the same
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Figure 9: Comparison between MECE and L2/BFGS: relative errors eG, eB versus iterations

conditions. Furthermore, using the same mesh for the inversion and the data generation allows
for a straightforward computation of the reconstruction errors. The latter were computed for the
shear and bulk moduli, according to

eG :=

(

∑

e(G
h
e −Ge)

2

∑

eG
2
e

)1/2

, eB :=

(

∑

e(B
h
e −Be)

2

∑

eB
2
e

)1/2

(42)

where Ge and Be represent the values of the true shear and bulk moduli, respectively, at the
centroid of element e, while Gh

e and Bh
e represent the corresponding values obtained from the

inversion.
The parameters used for the MECE algorithm in this example were α0 = 0.1, β = 0.25, and

αmax = 5. The SOR algorithm was used in this example with η = 0.2, a maximum number of 5
SOR iterations per MECE iteration, and a SOR tolerance of 10−8. The initial guess was taken as
a uniform material distribution with E = 4 Pa and ν = 0.25 for both the MECE and L-BFGS
algorithms.

The relative errors eG and eB were computed at each iteration of the MECE and L-BFGS
algorithms and are shown in Figure 9 in logarithmic scale plots. The plots show that for a given
level of relative error in bulk or shear modulus, the number of iterations for MECE is at least
one order of magnitude smaller than the corresponding number for L-BFGS. Similar results that
reinforce the improved convergence rates of error in constitutive equation methods over quasi-
Newton methods with L2 minimization have also been reported for the reconstruction of viscoelastic
moduli in steady-state dynamics [34]. Figure 10 shows the distribution in shear modulus after 500
iterations of the L-BFGS algorithm and just 100 iterations of the MECE algorithm. This figure
shows significantly better accuracy of the reconstruction achieved with MECE than that obtained
with L2 minimization.
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L2  with L-BFGS: 500 

iterations 

MECE: 100 iterations 

Figure 10: Comparison between MECE and L2/BFGS: solutions. Units: Pa.

Some remarks are in order about the relative computational cost of an iteration of each al-
gorithm. Each MECE iteration requires solving a coupled block-system of equations (32) once,
while for L2 minimization each cost functional and gradient evaluation entails solving one forward
problem and one adjoint problem. We limit our discussion herein to the case where the block-SOR
algorithm is used for MECE. First, it is important to notice that in one iteration of MECE, the
left-hand side (i.e. system matrix) of (39) does not change during the inner SOR iterations. In
the case of L2-BFGS, the adjoint problem has the same system matrix as the last forward problem
solved. However, the line search component of the algorithm may require additional evaluations of
the forward problem. For the discussion presented herein, we will conservatively assume that an
iteration of the L2-BFGS algorithm entails solving just one forward and one adjoint problem with
the same system matrix.

The fact that the system matrix does not change, if conveniently exploited, makes the compu-
tational cost of one MECE iteration similar to that of one L2 evaluation. For instance, assuming
that a direct approach (e.g. Gauss elimination) is used to solve (39a,b), only one factorization at
the beginning of the SOR iterations is required, the rest of the computational cost being spent
in operations of lower computational complexity such as matrix-vector multiplications, or back
and forward substitutions. L2-BFGS also requires only one factorization per evaluation. For large
FE models, one MECE iteration and one L2-BFGS evaluation are thus expected to have similar
computational costs (with L2-BFGS evaluations needing less lower-complexity operations and thus
having a slight edge over MECE iterations) provided that only one factorization is done. Given the
vast difference in convergence rate between MECE and L-BFGS displayed in the previous plots,
the MECE algorithm is expected to be more computationally efficient than L2 minimization with
L-BFGS even if one evaluation of the latter algorithm is somewhat faster than one MECE iteration.

To our best knowledge, there has not been any rigorous mathematical analysis of the MECE
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approach presented herein that elucidates the properties of the method and explains the numerical
observations presented in this work. However, there has been work on similar methods that indicate
that ECE functionals are convex or have “improved” convexity over their L2 counterpart (see e.g.
Gockenbach and Khan [23], and Bonnet and Constantinescu [1]). During the course of this work,
the MECE method was found to be much less sensitive to initial guesses than the L2 minimization
approach; an observation in agreement with results reported by Gockenbach and Khan [23], Bonnet
and Constantinescu [1], and Aguilo [34].

7. 3D Example Using Parallel Algorithm

In this section, we consider a three-dimensional example in which the proposed SOR algorithm
and the FETI-H parallel linear solver are used to obtain solutions of the coupled block system (32)
at each MECE iteration. The domain of the problem consists of a stiff cylinder embedded in a soft
cubic matrix as shown in Figure 11. The “true” Young’s modulus and Poisson’s ratio of the matrix
were taken as Ematrix = 1 Pa and νmatrix = 0.3, respectively. The corresponding values for the
inclusion were Einc = 10 Pa and νinc = 0.3. The dimensions of the cube were (1 m× 1 m× 1 m),
while the cylinder, located at the center of the cube, had a diameter of 0.5 m and a length of
0.5 m. The lower face of the block (at y = −0.5 m) was restrained in the Y -direction and free in
the other two directions. The top face (y = 0.5) was given a pressure load of magnitude 1.0 Pa,
and the remaining four side faces were given pressure loads of 0.5 Pa. The pressure loads had
no difference in phase. This type of loading was used to excite both shear and bulk response.
Two different frequencies, 0.025Hz and 0.050Hz, were used to generate the data for the inversion.
These frequencies were selected to be below the first resonant frequency (0.11Hz) of the excited
structure in order to ensure the well-conditioning of the block system.

The measured data was interpolated onto a coarser mesh that had no representation of the
cylinder and contained about 200,000 linear tetrahedral elements. Furthermore, noise was added
to the interpolated data with δ = 0.01 (see Eq. (40)). For this example, it was assumed that the

Figure 11: Geometry of the three-dimensional model of a cylinder surrounded by an elastic
matrix.
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Figure 12: 3D example: clip plane contour plot of the bulk modulus (units: Pa)

three components of displacements were measured (available) at each node location of the coarse
mesh. Finally, the inverse problem was solved using this interpolated data and the coarse mesh.
The total number of design variables (i.e. unknown moduli) for this problem was around 400, 000.

At each MECE iteration, the proposed block-SOR algorithm was used to approximate the
solution of system (32) with FETI-H used as the linear solver for the systems (39a,b) at each
SOR iteration. The SOR coefficient η was set at 0.2 and the maximum number of SOR iterations
allowed in one MECE iteration was set at 7. In this example, the SOR tolerance was set to 10−8.
The continuation scheme parameters were taken as αmax = 1.0, α0 = 0.05, and β = 0.25. The
value of αmax for this example was selected from numerical experiments and was decided based on
the stability of the SOR algorithm.

We determined from numerical experiments that η = 0.2 produced adequate rates of conver-
gence for the SOR algorithm and selected αmax according to this value of η. We performed 50
MECE iterations and reached a value of Λ(u,σ;C) (with κ = 2) of the order of 10−4. This
example was carried out on a Linux workstation with 8 processors and 24 GB of RAM.

Figure 12 shows a clip plane view of the bulk modulus through the center of the domain. This
plot shows that the matrix and inclusion are clearly distinguished. Furthermore, it can be observed
that the reconstructed solution is close to the target distribution of the bulk modulus. The target
values for the matrix and the inclusion were Bmatrix = 0.83 Pa and Binc = 8.3 Pa, respectively.
Figure 13 shows a threshold plot of the bulk modulus throughout the entire volume, overlaid on
top of a perspective view of the original position of the cylinder as shown in Figure 11 to highlight
the accuracy of the reconstruction. Again, the stiff region is clearly illuminated and the values are
in the expected range. The spurious higher moduli seen at the top and sides of the cube (where
the loading is applied) are likely due to the insensitivity of the measured displacements to the bulk
modulus in these parts of the domain.

Figure 14 shows a clip plane view of the shear modulus through the center of the domain. As
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Figure 13: 3D example: threshold plot of the bulk modulus (units: Pa)

Figure 14: 3D example: clip plane contour plot of the shear modulus (units: Pa)

in the case of the bulk modulus, the matrix and inclusion are clearly distinguished in the plot and
the reconstructed solution is in an expected range. Recall that the target shear moduli for the
matrix and inclusion were given as Gmatrix = 0.38 Pa and Ginc = 3.8 Pa, respectively. Figure 15
shows a threshold plot of the shear modulus throughout the whole volume. In this case, there is
little aberration in the shear moduli near the surface where the loading is applied. The bounds
in the threshold plot in Figure 15 show that the shear modulus values obtained from the inverse
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Figure 15: 3D example: threshold plot of the shear modulus (units: Pa)

problem are indeed close to the expected values, both in the matrix and in the inclusion.
A few remarks are in order. First, the reconstructed moduli are overestimated in some areas

of the cylinder and underestimated in others. This trend in the results is expected and can be
attributed to the different sources of error in the simulated example (i.e. data, spatial approxima-
tion, optimization, etc). Second, the run time for this 3D example was just under six hours, which
is indeed a successful outcome given the size of the inverse problem. The performance of our im-
plementation of the parallel MECE algorithm can in fact be further improved as the blocks in the
coupled system were factorized in the FETI-H solver during each SOR iteration, rather than just
once at the beginning of the SOR iterations, during which the left hand side remains unchanged.
We are in the process of improving our implementation to this end. Finally, the algorithm was able
to identify a solution with only 50 MECE iterations and 7 SOR iterations per MECE iteration,
which are indeed low iteration counts given the large dimension of the parameter search space.

Finally, we would like to comment on the effect of frequency on the performance of the proposed
MECE algorithm. The coupled system of equations (32) is still in general solvable at resonant fre-
quencies (see Proposition 1). We investigated the performance of the algorithm when the excitation
frequency is close to a resonant frequency of the system. Adequate reconstructions were obtained in
2D using a direct solver (consistently with the established solvability of (32)), with results similar
to those shown for the example in Section 6.2. However, we did not perform such exploration with
the 3D version of the algorithm based on the iterative block solver, as the latter fails at resonant
frequencies (the diagonal blocks then being singular) and presumably requires preconditioning at
near-resonant frequencies. A more detailed numerical and analytical study of this issue will be
pursued in a future investigation.
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8. Concluding Remarks

We proposed a methodology based on the modified error in constitutive equations (MECE)
approach that is suitable for large scale inverse identification of elastic parameters in frequency-
domain dynamics. To this end, we proposed a continuation scheme for the penalty term that
appears in MECE. This continuation scheme leads to faster convergence and improved accuracy
in the reconstructed solution as compared to the case when a constant penalty coefficient is used.
Furthermore, we put forward a simple block-SOR algorithm that allows for a straight forward
implementation of MECE using existing massively parallel solvers. Our results demonstrate that
the MECE algorithm can produce moduli reconstructions in as few as 10 iterations in 2D problems
and as few as 50 iterations for the 3D examples explored in this paper. This is a significant
improvement over the convergence speed usually observed in conventional least squares methods
implemented using quasi-Newton schemes where hundreds or even thousands of iterations are
commonly needed to obtain adequate results. The latter was demonstrated through a numerical
example in the paper.
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Appendix A. Proof of Proposition 1

Let 0 ≤ ω1 ≤ . . . ≤ ωN denote the N eigenfrequencies (counting possible multiplicities), and set
[X] := [X1, . . . , XN ], where Xj is a [M ]-orthonormal eigenmode for ω = ωj . Set {u} = [X]{U} (i.e.
expanding {u} on the basis of eigenmodes) and likewise {w} = [X]{U}, in (32), and left-multiply
the resulting equations by {XT

j , X
T
j } for all j. The corresponding projected structural matrices

are such that

K̃ := [X]T[K][X] = Diag(ω2
j ), Z̃ := [X]T

(

[K]− ω2[M ]
)

[X] = Diag(ω2
j − ω2)

Moreover, letting r denote the multiplicity of the eigenvalue ω = 0 (i.e. the number 0 ≤ r ≤ 6 of
linearly independent rigid-body motions permitted by [K]), the generalized DOFs are partitioned
according to {U} = {U0 U1}, {W} = {W0 W1} (with U0,W0 ∈ R

r gathering the generalized DOFs
associated to rigid-body modes). By virtue of the [M ]-orthonormality of the Xj , the induced
partitioning on [K] and [M ] is such that K̃00 = [0] and K̃01 = M̃01 = [0]; moreover, both diagonal
matrices Z̃00 and K̃11 are invertible.

Upon performing all the above-described operations, the system (32) yields the following block-
partitioned governing matrix equation for the generalized DOFs:









Z̃00 0 0 0

0 Z̃11 0 K̃11

−κD̃00 −κD̃01 Z̃00 0

−κD̃10 −κD̃11 0 Z̃11























U0

U1

W0

W1















=















p̃0
p̃1

−κr̃0
−κr̃1















(A.1)
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where p̃ := [X]T{p}, r̃ := [X]T{r}, D̃ := [X]T[D][X], and D̃00, etc. result from DOF partitioning
of D̃. Using the known invertibility of Z̃00 and K̃11, the first three lines of (A.1) can be solved for
U0, W0, W1, yielding

U0 = Z̃−1
00 p̃0, W0 = κZ̃−1

00

(

D̃01U1 + D̃00Z̃
−1
00 p̃0 − r̃0

)

, W1 = K̃−1
11

(

p̃1 − Z̃11U1

)

Substituting the above results into the last equation of (A.1) thus yields the following matrix
equation for the remaining unknown U1:

RU1 = Z̃11K̃
−1
11 p̃1 − κ

(

D̃10Z̃
−1
00 p̃0 − r̃1

)

with R := κD̃11 + Z̃11K̃
−1
11 Z̃11 (A.2)

Since both κ[D] and [K] are real symmetric non-negative matrices, so is the resolvent matrix R.
Therefore, R is invertible if and only if it is positive definite, i.e. non-invertibility of R occurs only if
there exists a nonzero vector V such that V TRV = 0. Since κV T[D]V ≥ 0 and V TZ̃11K̃

−1
11 Z̃11V ≥ 0

for any V , R is singular only if κV T[D]V = 0 and V TZ̃11K̃
−1
11 Z̃11V = 0 simultaneously hold for

some nonzero V . That is, R is singular only if V belongs simultaneously to the kernels of [D] and
Z̃11 since K̃−1

11 is invertible. The kernel of Z̃11 is nontrivial if ω coincides with one of the nonzero
eigenvalues ωj . This kernel is then the corresponding modal subspace. Proposition 1 follows and
the proof is complete. The case where r = 0, i.e. [K] is invertible, is included as a special, simpler,
case where DOF partitioning is not necessary and the proof proceeds otherwise similarly.
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