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State-Dependent Sampling for Linear Time Invariant Systems:

A Discrete Time Analysis

Sonia MAALEJ, Christophe FITER, Laurentiu HETEL, Jean-Pierre RICHARD

Abstract— This work concerns the adaptation of
sampling times for Linear Time Invariant (LTI) sys-
tems controlled by state feedback. Complementary
to various works that guarantee stabilization inde-
pendently of changes in the sampling rate, here we
provide conditions to design stabilizing sequences of
sampling instants. In order to reduce the number of
these sampling instants, a dynamic scheduling algo-
rithm optimizes, over a given sampling horizon, a sam-
pling sequence depending on the system state value.
Our proofs are inspired by switched system techniques
combining Lyapunov functions and LMI optimization.
To show the applicability of the technique, the theo-
retical study is illustrated by an implementation in
Matlab/TRUE TIME.

Index Terms— Embedded Systems, Switching Sys-
tems, Sampling-Data Systems, Real-Time Control,
Scheduling, Stability, Hybrid Dynamic Systems, Lin-
ear Matrix Inequalities (LMI).

I. Introduction

Real-time control concerns both automation and
information sciences. It implies the interaction of the
control task with the real-time scheduling for sampling.
Generally, the scheduling mechanism manages the
execution of a tasks set and the resources linked to
a computer system (CPU, communication network,
router, ...). These resources are often limited and their
availability is variable, which may lead to performance
degradation or loss of stability [1], [2]. As a result,
much attention has been directed to embedded and/or
networked-control systems [3] [4].

Several studies have addressed issues related to delays
(due to communication or to the resources access)
and to the sampling effect which is not necessarily
periodic. The problem of robustness regarding variable

sampling [5], [6], [7], [8], variable delay [9], [10], [11],
or the combination of the two problems [12], [13], [14],
attracted a considerable interest. All these works present
robust stability conditions provided that the sampling
step or the delay remains below some upper bounds.
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The proofs are based on Lyapunov functions leading
to Linear Matrix Inequalities (LMI). The provided
upper-bounds are not depending on the state value.
In [2], it is considered a periodic sequence of sampling
times, corresponding to an offline static scheduling and,
again, the sampling rate is defined independently of the
position in the state space.

In parallel to the robustness issue, recent works also
consider the resource issue, linked to the reduction
of the sampling instants. Two main approaches are
distinguished: event-triggered sampling [15], [16], [17],
[18], [19], and self-triggered sampling [20], [21], [22],
[23]. In the first case, information is sent to the
controller when special events happen (for example,
crossing a border in the state space). This requires a
dedicated control hardware. In the second approach,
the self-triggered controller emulates the event-triggered

controller, but without using dedicated hardware. This
means that at each sampling instant, one calculates
the lower bound approximation of the next admissible
sampling interval.
More recently, [24] proposed to compute offline a
mapping of a sampling function of the state space:
each region of the state partition is associated to an
acceptable maximum sampling step. This technique is
based on a dynamic hybrid model. Once again, this
study involves Lyapunov functions that ensure the
continuous-time system stability under sampling with
variable steps. The offline computation constitutes a
main advantage.

This work follows [24] and proposes a different state-
dependent sampling approach. The novelty compared to
[24] is to consider the optimization over a discrete set of
sequences corresponding to a finite sampling horizon. It
leads to an implicit mapping of the state space based on
Lyapunov functions.
This paper is organized as follows. Section 2 presents
the problem and proposes a switching system model
over a given sampling horizon. Then Section 3 devel-
ops the dynamic scheduling algorithm for determining
future sampling steps. Finally, the theoretical study is
illustrated in Section 4 and Section 5 gives concluding
remarks.



II. Problem formulation

A. Ideal model of a continuous process controlled by state

feedback

We address LTI systems such as:

ẋ(t) = Acx(t) +Bcu(t) , t > 0 ; x(0) ∈ R
n, (1)

with Ac ∈ R
n×n the state matrix, Bc ∈ R

n×r the input
matrix, x (t) ∈ R

n the state of the continuous system,
and u(t) ∈ R

r the system control.
Hypothesis 1: The system (1) is supposed to be

controllable. Thus, there exists a state feedback gain
K ∈ R

r×n:

u(t) = Kx(t) (2)

such that the system:

ẋ(t) = (Ac +BcK)x(t) (3)

is asymptotically stable, i.e. the matrix (Ac + BcK) is
Hurwitz.

B. Model of a process with a digital controller

The sampling control loop is described in Fig. 1.

Fig. 1. Digital control diagram

We suppose that the state x(t) of the system (3) is
sampled at instants th with h ∈ N, such as th+1 > th,

t0 = 0 and th
h→∞
−→ ∞. The sampling intervals are

denoted Th = th+1−th, h ∈ N. The sampled system state
x(th) leads to the control u(t) = Kx(th), ∀ t ∈ [th,th+1).
Thus, the discretized model of the system at instants th
is:

x(th+1) = eAcThx(th) +

∫ Th

0

eAcsdsBcu(th), h ∈ N. (4)

Defining Ad(T
h

)
= eAcTh and Bd(T

h
)

=
∫ Th

0
eAcsdsBc,

leads to the discrete-time form:

x(th+1) = (Ad(T
h

)
+Bd(T

h
)
K)x(th) = Ã(Th)x(th), (5)

where h ∈ N and Ã(Th) = Ad(T
h

)
+Bd(T

h
)
K.

C. Motivation

This work aims at characterizing sampling sequences
Th that stabilize the system. When the sampling interval
is constant, Th = T , the system is stable if Ã(T ) is a Schur
matrix.

Definition 1: If the matrix Ã(T ) is a Schur matrix, we
call T a stabilizing sampling step. Otherwise, it is called
a non stabilizing sampling step.

Definition 2: A periodic sampling sequence of length
l is a sequence {Th}h∈N such that Th+l = Th, ∀h ∈ N.

Based on [2], note that the sampled system may be
asymptotic stable with a combination of stabilizing and
non stabilizing sampling steps. For example, consider:

Ac =

(
1 3
2 1

)
, Bc =

(
1

0.6

)
and K =

(
−1 − 6

)
. (6)

Fig. 2 shows that the asymptotic stability interval of the
system discretized with a constant sampling interval is:
T ∈ [Tmin, Tmax] = [0, 0.59].
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Fig. 2. Evolution of the modulus of the maximum eigenvalue Ã(T )
in terms of T

Consider a periodic sampling sequence of length-two,
{Th}h∈N, with elements Ta and Tb. The stability do-
main for a periodic sampling sequence of the type:
(Ta, Tb, Ta, Tb, . . .) is calculated by analyzing the tran-
sition matrix Ã(Ta)Ã(Tb) over a period. If the product
matrix Ã(Ta)Ã(Tb) is a Schur matrix, then the system is
asymptotically stable. We present in Fig. 3 the stability
domain for system (3) with parameters given by (6).
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Fig. 3. Stability domain for a periodic sampling sequence:
(Ta, Tb, Ta, Tb, . . .)

From this figure, we can see that there are sampling
sequences (Ta, Tb, Ta, Tb, . . .) such as Ta = 0.8081 and
Tb = 0.4848, which are stabilizing the system despite the



fact that the sampling time Ta > Tmax (a simulation
with this sampling sequence is presented in Fig. 4).
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Fig. 4. Variation of the system state (5) discretized by the periodic
sequence (0.8081, 0.4848, 0.8081, 0.4848, . . .)

Motivated by this observation, this article aims to
characterize other sampling sequences that stabilize the
system (5) by using sampling intervals higher than Tmax.
Here, we shall not limit the study to periodic sampling
case since the sampling sequences will depend on the
system state. For this reason, we try to characterize the
evolution of sampling sequences over a finite horizon
(which will be denoted σ). The sampling horizon is
formed by several sampling steps and it evolves according
to the system’s state.

D. Mathematical formulation

For l ∈ N
∗, σ = {T j}lj=1 refers to a sampling horizon

of length l, where j represents the position of a sampling
inside the horizon. Consider Γ a subset of R

+.
We define Slmaxlmin

(Γ) the set of all horizons σ = {T j}lj=1

of length l ∈ [lmin, lmax], T
j ∈ Γ where lmin and

lmax represent respectively the minimum and maximum
lengths of horizons σ ∈ Slmaxlmin

(Γ).

By extension, we note Slmaxlmin
the set of all sampling

horizons with values in R
+ and length within the interval

[lmin, lmax].
We denote σk = (T 1

k , T
2
k , . . . , T

lk
k ) ∈ Slmaxlmin

with k ∈ N,
a sampling horizon sequence. T ik with k ∈ N and i ∈
{1,. . . ,lk}, define sampling steps where k indicates the
index of the horizon and i the position of this sampling
step in the considered horizon σk.
We consider then Θ = {Th}h∈N a sampling se-
quence characterized by the concatenation of horizons
{σk}k∈N ∈ S

lmax
lmin

. Hence:

Θ =
(T 1

0 ,T
2
0 ,. . . ,T

l0
0︸ ︷︷ ︸

σ0

, T 1
1 ,T

2
1 ,. . . ,T

l1
1︸ ︷︷ ︸

σ1

,. . . ,T 1
k ,T

2
k ,. . . ,T

lk
k︸ ︷︷ ︸

σk

,. . .).

Finally, we note τk|k∈N the starting time of an horizon
σk such as τk+1 = τk +

∑lk
i=1 T

i
k and τ0 = t0 = 0 (see

Fig. 5).
The representation of system (5) over a sampling

horizon for a sequence σk is given as follows:

xk+1 = Φσkxk, k ∈ N, (7)

where xk = x(τk) the system state at the start-
ing time τk of the horizon σk (see Fig. 6), and
Φσk = Ã

(T
l
k

k
)
Ã

(T
l
k
−1

k
)
. . . Ã(T 1

k
) the transition matrix

corresponding to the sequence of the sampling horizon
σk, from the instant τk to the instant τk+1.

Fig. 5. System state discretization using variable sequences

Our aim is to calculate, at instant τk the next sampling
horizon σk which will be applied to the sampling mecan-
ism so to ensure stability. From equation (7), we remark
that this objective amounts to a problem of controlling
a linear switching system [25], [26]. In fact, switched
systems constitute a class of hybrid systems for which
a discrete-event law shows an active subsystem from a
family of continuous dynamic subsystems [27], [28].

Our mathematical problem can be exposed as follows:
Problem : For sampling steps Th ∈ Γ, determine the

sampling horizon evolution according to the system state
(7) at instant τk of the horizon start, i.e. define σk as a
function f(x(τk)) (such that σk = f(x(τk))) in order to
guarantee the asymptotic stability.

III. Results

This section presents the main theorem which allows
us to provide sampling functions that guarantee the
stability of the system (1) with a sampled control u(t) =
Kx(th). Next, we describe an algorithm generating the
corresponding sampling law.

A. Stability Theorem

To ensure the asymptotic stability of the discretized
system (7), we control the switching law σk defining the
sampling step sequences using Theorem 1. A diagram is
shown in Fig. 6.

Fig. 6. Block diagram of the state-dependent sampled control



Theorem 1:

Consider system (7) and let:

S̄lmaxlmin
= {σ ∈ Slmaxlmin

, ∃Pσ = PTσ > 0; ΦTσPσΦσ−Pσ < 0}

be the subset of stable periodic sequences in the set
Slmaxlmin

, such that, for each σ ∈ S̄lmaxlmin
, Pσ = PTσ > 0

satisfies the following LMI:

ΦTσPσΦσ − Pσ < 0. (8)

Consider the function f : R
n −→ S̄lmaxlmin

defined by:

f(x) = argmin
i∈S̄

lmax

lmin

(xTΦTi PiΦix) ; x ∈ R
n. (9)

Then the system (7) with σk = f(xk), i.e:

xk+1 = Φσkxk, (10)

is asymptotically stable.

Proof 1: By applying Lemma 2 from [26] to system
(10), a sufficient condition for the system stability is
ensured by the existence of a matrix series P̃k ∈ R

n×n

and scalars α, β, γ > 0 such that ∀k ≥ 0:

αI ≤ P̃k ≤ βI and ΦTσk P̃k+1Φσk − P̃k ≤ −αI.

This implies that there exists a strictly decreasing func-
tion V (xk, k) = xTk P̃kxk. Note that this function depends
both on the state xk and on the time tk.
In this paper, we consider particularly the poly-quadratic
Lyapunov function V : R

n × N −→ R
+ defined by:

V (xk, k) =

{
xT0 Pσ0x0 k = 0
xTk Pσk−1

xk k > 0
(11)

with Pσ = PTσ ≻ 0 as σ ∈ S̄lmaxlmin
.

The Lyapunov increment is:

∆Vk = V (xk+1, k + 1)− V (xk, k). (12)

• For k = 0:

∆Vk|k=0 = xT1 Pσ0x1 − x
T
0 Pσ0x0. (13)

From the equation (7) we have:

∆Vk|k=0 = xT0 (ΦTσ0
Pσ0 Φσ0 − Pσ0 )x0. (14)

Thus, applying the inequality (8), we have, ∀ x0 6= 0,
∆Vk|k=0 < 0.

• For k > 0:
The Lyapunov increment is:

∆Vk = xTk+1Pσkxk+1 − x
T
k Pσk−1

xk. (15)

Thus, from (7):

∆Vk = xTk (ΦTσkPσkΦσk − Pσk−1
)xk. (16)

Moreover, the equation (9) implies that ∀k ∈ N:

xTkΦTσkPσkΦσkxk ≤ x
T
kΦTσk−1

Pσk−1
Φσk−1

xk. (17)

Therefore, using equations (16) and (17), we con-
clude that ∀xk 6= 0:

∆Vk ≤ x
T
k

(
ΦTσk−1

Pσk−1
Φσk−1

− Pσk−1

)
xk. (18)

Thus, from (8), ∆Vk ≺ 0, ∀xk 6= 0.

Therefore, the system (10) is asymptotically stable.

Remark 1: One of the advantages of the discrete
time approach is the fact that it determines implicitly a
mapping of the state space based on Lyapunov functions.

Remark 2: Given the fact that (1) is an LTI system
and that Γ is a bounded subset, x(t) can be written as:

x(t) = Λ(t− τk)xk, ∀t ∈ [τk, τk+1) (19)

where Λ is a linear bounded operator representing the
system transition matrix from the instant τk to the
instant t.
In this case, using similar arguments as in Proposition

2 from [29], the convergence (to zero) of the sequences
||x(τk)||k→∞ implies the convergence (to zero) of ||x(t)||
for t→∞.

B. Determination of sampling law

The following algorithm provides a switching function
as in Theorem 1 which will be used as a sampling law
for the sampled date system (5):

Algorithm 1:

OFFLINE

1) Define a finite set Γ = {Γ1, Γ2, . . . , Γm} of allowed
sampling steps Γi ∈ R

+, ∀i ∈ {1,. . . ,m};
2) For given lengths lmin and lmax defined by the user,

search S̄lmaxlmin
(Γ) ⊂ S̄lmaxlmin

, the subsets of stable sampling

horizons Slmaxlmin
;

3) Compute, for each horizon σ ∈ S̄lmaxlmin
(Γ), a Lya-

punov matrix Pσ using the LMI (8);
ONLINE

4) Compute the switching law (9) in Theorem 1.

Remark 3: The cost introduced by the calculation of
the switching law (9) (Step 4 of Algorithm 1) is given by:

n(n+ 1)|S̄lmaxlmin
|

︸ ︷︷ ︸
multiplications number

+ (n− 1)(n+ 1)|S̄lmaxlmin
|

︸ ︷︷ ︸
additions number

. (20)

Thus, the complexity of the online algorithm is:
O(n2|S̄lmaxlmin

|) such that |S̄lmaxlmin
| denotes the cardinal of

the set S̄lmaxlmin
.

IV. Example

To better understand the application of the Algorithm

1, we consider the system (10) described by the
matrices (6) and the set of sampling step values
Γ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Despite the
fact that the range of stability is [Tmin, Tmax] = [0, 0.59],
note that we choose here the set Γ which admits
sampling steps larger than Tmax.

Fig. 7 presents the sampling sequence Θ formed by the
sampling horizons σk with length lk ∈ {lmin, . . . , lmax}
with lmin = 1, lmax = 3 and k ∈ N.



5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X: 1
Y: 0.59

 

 

T
l k k

k
σ

1 σ
2

σ
4

σ
3

σ
k

Fig. 7. Variation of sampling steps T i
k
|i∈{1, ..., lk}

We observe that the sampling sequence is variable
and that the sampling horizons have different lengths
lk ∈ {lmin, . . . , lmax}. Moreover, we can see that non
stabilizing sampling steps, i.e. higher than Tmax, are used
to ensure the asymptotic stability of the system (see the
convergence on Fig. 8).
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Fig. 8. Evolution of the system state using variable sampling steps
and horizons σk from Fig. 7

The stability of this system can be checked by using
Theorem 1. Fig. 9 shows the evolution of the Lyapunov
function V (xk, k) = xTk Pσk−1

xk which is positive and
decreasing over the time.
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Fig. 9. Variation of the Lyapunov function

To facilitates the co-simulation of controller task ex-
ecution in real-time kernels, network transmissions and
continuous plant dynamics, we implement, a real time
simulator, the control module Matlab/TRUETIME [30].

The implementation in this environment consists in two
phases. First of all, we perform the first three steps of
Algorithm 1 offline. The last phase of this algorithm,
which is the computation of the switching law, is made
online: the determination of the sampling horizon is made
progressively depending on the state.

Fig. 10 presents the triggers of the TRUETIME Send

and TRUETIME Receive blocs interconnected by the
TRUETIME Network. This figure shows the variation of
sampling while the asymptotic convergence of the system
state is illustrated in Fig. 11.
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Fig. 11. Variation of the system state controlled in real time in
the TRUETIME environment

Remark 4: We remark from Fig. 8 and Fig. 11 that,
for the same initial conditions, the system state does
not have the same behaviour. This can be explained
by the occurrence of additional perturbations in the
real-time system (process delay, actuation in real-time,
...) introduced by the TRUETIME module for providing
a more accurate simulation.

V. Conclusion

This paper has presented a technique for adapting the
sampling law with regard to the present state value.

First, a cartography of the state space is defined
on the basis of Lyapunov functions. Next, a dynamic
scheduling algorithm is presented. This algorithm takes
into account the position of the state in this cartography
and achieves an online optimization of the sampling
sequence over a finite horizon. A switched system model
is being used. The overall stability study is proven by



means of poly-quadratic Lyapunov functions fitted for
switched discrete-time system in association with LMI
techniques.

As a result, our strategy allows for reducing the
number of sampling instants. For instance, the stability
limit for the period in the classical, constant sampling
rate-case, can be overpassed, as illustrated in the final
example. A Matlab/TRUETIME implementation shows
that the results can be applied in concrete situations of
real-time control.

For the future research, we envisage to quantify the
performance of the system in the continuous time to
guarantee a continuously decreasing quadratic Lyapunov
function.
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