
HAL Id: hal-00733338
https://hal.inria.fr/hal-00733338

Submitted on 14 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Role of Models@run.time in Supporting On-the-fly
Interoperability

Nelly Bencomo, Amel Bennaceur, Paul Grace, Gordon Blair, Valérie Issarny

To cite this version:
Nelly Bencomo, Amel Bennaceur, Paul Grace, Gordon Blair, Valérie Issarny. The Role of Mod-
els@run.time in Supporting On-the-fly Interoperability. Computing, Springer Verlag, 2012. �hal-
00733338�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49864365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00733338
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

The Role of Models@run.time in Supporting On-the-fly

Interoperability

N. Bencomo · A. Bennaceur ·

P. Grace · G. Blair · V. Issarny

Received: date / Accepted: date

Abstract Models at runtime can be defined as abstract representations of a
system, including its structure and behaviour, which exist in tandem with the
given system during the actual execution time of that system. Furthermore,
these models should be causally connected to the system being modelled, offer-
ing a reflective capability. Significant advances have been made in recent years
in applying this concept, most notably in adaptive systems. In this paper we
argue that a similar approach can also be used to support the dynamic gen-
eration of software artefacts at execution time. An important area where this
is relevant is the generation of software mediators to tackle the crucial prob-
lem of interoperability in distributed systems. We refer to this approach as
emergent middleware, representing a fundamentally new approach to resolv-
ing interoperability problems in the complex distributed systems of today. In
this context, the runtime models are used to capture meta-information about
the underlying networked systems that need to interoperate, including their
interfaces and additional knowledge about their associated behaviour. This is
supplemented by ontological information to enable semantic reasoning. This
paper focuses on this novel use of models at runtime, examining in detail the
nature of such runtime models coupled with consideration of the supportive
algorithms and tools that extract this knowledge and use it to synthesise the
appropriate emergent middleware.

Keywords runtime models, runtime interoperability, mediators, ontology

N. Becomo, A. Bennaceur and V. Issarny
Inria, Paris-Rocquencourt, France
E-mail: firstname.lastname@inria.fr

G. Blair and P. Grace
School of Computing and Communications, Lancaster University, UK
E-mail: {gracep,gordon}@comp.lancs.ac.uk

2 N. Bencomo et al.

1 Introduction

A model@run.time or runtime model can be defined as an abstract representa-
tion of a system, including its structure, behaviour and goals, which exists in
tandem with a given system during the actual execution time of that system.
Furthermore, this model should be causally connected to the system being
modelled, hence offering a reflective capability. Causal connectivity allows the
runtime model to provide up-to-date information about the system in order
to support analysis of the system before committing to changes, and therefore
avoiding potential inconsistencies in the runtime system. Significant advances
have been made in the use of runtime models [9,6,3]. Architectural-based run-
time models is a research topic that has generated most interest [44,43,19,53];
and mainly in the broader area of self-adaptation [43,40,25,41] where runtime
models have been used to support decision making.

Crucially, it is difficult to assess accurately the impact of the changes in the
environment and context before deployment and runtime due to incomplete
information. Runtime models support the handling of these dynamic and to
some extent unforeseen changes [52]. Importantly, runtime models can support
decision making and reasoning based on knowledge unforeseen prior to the time
of execution, but which emerges during execution.

Currently, there is pressure to move some activities from design-time to
deployment and runtime [5]. One of the goals is to be able to insert at runtime
new behaviour that was not necessarily foreseen during design time. One way
to do this is to be able to synthesise the software associated with the new
behaviour at runtime. As self-representations of the systems (as in the case
of traditional MDE [46]), runtime models can also be used as the basis for
software synthesis. However, little attention has been directed to techniques for
the synthesis or generation of software using runtime models during execution.
This is precisely the topic we aim to address in this paper. We argue that
runtime models can support the runtime synthesis of software that will be
part of the executing system and which was not necessarily conceived during
design time. As a way to depict our novel ideas we use the platform provided
by the CONNECT project1, which provides us with the necessary technology
to realize our vision.

In modern highly dynamic environments, networked systems appear and
disappear along with the services they offer. We term a networked system

as any system or composition of systems that expose their functionality as
networked addressable services implemented and accessible using a given pro-
tocol. However, where these systems meet spontaneously, interoperability is a
fundamental and challenging requirement. These systems may not know each
other, but they may still try to interact in order to meet certain goals [5].
Therefore, it may be the case that for some aspects of the system, a software
model needs to be conceived during runtime as it would be impossible to de-
sign it in advance. Inferring information to create runtime models [47] during

1 http://www.Connect-forever.eu

The Role of Models@run.time in Supporting On-the-fly Interoperability 3

execution using, for example, learning techniques [8,49] offers an interesting
approach to take.

In this paper, we focus on the novel use of runtime models to support
the dynamic synthesis of software. Specifically, our vision is explained using
examples to synthesise emergent middleware, i.e., the synthesis of mediators
that translate actions of one networked system to the actions of another net-
worked system developed with no prior knowledge of the former in order to
achieve interoperability. Using rich discovery and learning methods we are able
to capture and refine the required knowledge of the context and environment.
The knowledge is explicitly formulated and made available to computational
manipulation in the form of a runtime model. This runtime model is based on
labelled transition systems (LTSs) [32] which offer the behavioural semantics
needed to model the interaction protocols, and as an established solution are
supported by a number of available tools. Ontologies complement the LTSs
providing semantic reasoning about the mapping between protocols. From
these runtime models, mediators are synthesised.

In summary, the contribution of this paper is an approach to synthesize
software, in the form of mediators, from runtime models. Crucially, the run-
time models provide support to reason about interoperability issues that were
unknown before execution. The core piece of this novel approach is the deriva-
tion of completely new runtime models during execution to solve the on-the-
fly interoperability problem, i.e., creating a mediator from scratch. Notably,
the runtime models capture not just structure and functionality, but also be-
haviour which is refined with the support of machine learning techniques. We
also show how ontological information can support conceptual reasoning based
on models.

The paper is structured as follows. In section 2, we discuss in detail the
interoperability problem in complex distributed systems and the relevant role
of runtime models to tackle the problem. In section 3 we present how mod-
els at runtime are used to dynamically synthesise the emergent middleware
that ensure interoperation between heterogeneous networked systems. Rele-
vant results and achievements in the scope of the CONNECT project; are
also presented. In section 4 we discuss some related work. Finally, we draw
conclusions in section 5.

2 Emergent Middleware to Support On-the-fly Interoperability

Interoperability is defined as the capability of two or more networked systems
to exchange and understand one another’s data. Where systems are designed
and developed with knowledge of one another, or where systems have been
developed using a common standard, the interoperability problem is largely
solved. Indeed, interoperability is a primary goal of standard-based middleware
solutions (e.g. CORBA and Web Services middleware). However, the increas-
ing complexity of distributed systems introduces new problems, which existing
middleware-based interoperability approaches are not suited to address. In-

4 N. Bencomo et al.

deed, in environments where heterogeneity and highly dynamic behaviour are
typical, e.g., pervasive computing, mobile computing, and large scale systems
of systems, there are further challenges to achieving interoperability.

Heterogeneity can now be encountered in many forms. Middleware is often
applied to address differences in terms of computational devices, communi-
cation networks, and operating systems. However, the design decisions taken
for the development and deployment of each networked system may introduce
specific interoperability challenges that must then be addressed dynamically.
Firstly, using a particular middleware type means that interoperability is not
possible with networked systems implemented using a different middleware
due to the differences in the communication protocol of each (e.g. heteroge-
neous message packet formats and message sequences). Secondly, differences
in the design of the application interface will hinder interoperability, hence
even where a common middleware is chosen, interoperability cannot be guar-
anteed; differences in the syntax of interfaces, the types and data formats, the
semantic meaning of data schemas, and the invocation sequence required for
achieving application functionality are all potential interoperability challenges
that must be addressed dynamically.

Dynamic behaviour is characterised by networked systems that come and
go (often due to the increasing mobility of users); furthermore, the operat-
ing conditions in heterogeneous environments fluctuate, e.g., changing quality
of service levels in mobile networks. Interactions are also spontaneous, i.e.,
systems wanting to interoperate, search at runtime for systems that match
their requirements. Here, there can be no agreement of a common solution
or standard, and the differences in application behaviour and communication
protocols can only be detected and resolved at runtime.

Therefore, it is difficult to design a solution that takes into account the
many dimensions of heterogeneity, and this is further exacerbated by sponta-
neous interactions and so no prior decisions about interoperability solutions
can be assumed. Instead, a fundamental rethink is required into how interop-
erability can be resolved at runtime without relying on common standards or
design decisions. We argue that models@runtime have an important role to
play in such solutions as illustrated in this paper.

2.1 The GMES Example

To better illustrate the interoperability problem we highlight the challenges
through the use of an example from the area of the Global Monitoring for En-
vironment and Security (GMES2). GMES is the European Programme for the
establishment of a European capacity for Earth Observation. In particular,
the emergency management thematic highlights the need to support emer-
gency situations involving different European organisations. In emergency sit-
uations, the context is also necessarily highly dynamic and therefore provides

2 http://www.gmes.info/

The Role of Models@run.time in Supporting On-the-fly Interoperability 5

a strong example of the need for on-the-fly solutions to interoperability. The
target GMES system therefore inevitably involves highly heterogeneous net-
worked systems that interact in order to perform the different tasks necessary
for decision making. The tasks include, among others, collecting weather infor-
mation, capturing video, and getting positioning information of the different
devices.

We concentrate on the particular case of a networked system connecting
with another video capturing networked system. Various concrete systems are
able to capture video: fixed cameras, robots with video sensing capabilities
(UGV: Unmanned Ground Vehicle), or flying drones (UAV: Unmanned Aerial
Vehicle). In addition, the videos may be accessed from other heterogeneous
systems, including applications run on mobile handheld devices of the various
actors on site, and the ones executed by the Command and Control—C2—
centres (see Figure 1).

!UAV

UGV

!

Fixed cameras

Video Capture Provider Video Capture Client

Actors' handhelds

Command and Control

Center (C2)

Emergent

Middleware

Fig. 1 The GMES case study

Specifically, we focus on two networked systems C2 and UGV. The C2
system needs to gather information from different cameras in order to analyse
them and then makes decision about the appropriate emergency procedure to
take. C2 has been developed to interact with a fixed camera and retrieve the
videos for given periods of time; for this it uses the SOAP RPC protocol3. In
contrast, the UGV system captures video and displays it using HTTP Live
Streaming (HLS)4. It can also move according to some pre-defined patterns,
zoom, or get a URL where the video capture can be viewed. The GMES is a
substantial case study that we use in this paper to explore different aspects of
the interoperability challenges that now arise, and the role of runtime models
as the mean to tackle them.

3 http://www.w3.org/TR/soap/
4 http://tools.ietf.org/html/draft-pantos-http-live-streaming

6 N. Bencomo et al.

2.2 The Case for Emergent Middleware

We support the vision of emergent middleware [30,26] to achieve interoper-
ability. That is, where two networked systems are willing to interoperate and
are mutually compatible in terms of the required and provided functionality
then the middleware software to coordinate the exchange is synthesised (taking
into account the respective operating context and environmental conditions of
the two systems). Due to the highly heterogeneous and spontaneous nature of
potential interactions, the engineering of Emergent Middleware is significantly
different from traditional statically developed middleware products.

The approach to achieve such emergent software is based upon the following
key requirements:

– The creation and maintenance of runtime models of individual networked

systems (See Figure 2-¶). In order to reason about how to interoperate
with a given system we need to create a runtime model of its interface and
behaviour protocol. The behaviour of the system is modelled in terms of
the sequence of operations that are necessary to achieve a particular ser-
vice. Importantly, to underpin runtime solutions to interoperability these
models must capture meaning [10]; that is, given the two networked system
models it must be possible for an interoperability solution to understand
and reason where systems are semantically similar. For this purpose, we
use ontologies as a further extension to the model@runtime, i.e., the ele-
ments of the runtime model reference concepts defined in a domain-specific
ontology (See Ontologies in Figure 2).

– Monitoring and discovery of existing networked systems (See Figure 2-·).
In order to build a runtime model, the operation of the networked system
must be first discovered and then monitored. This requires the extraction
of information about the systems using traditional resource and service
discovery protocols, e.g., lookup facilities as provided by protocols such as
Service Location Protocol (SLP), or Web Services Service Discovery (WS-
Discovery), descriptions using languages such as Web Services Description
Language (WSDL), and approaches promoting the use of ontology-based
techniques to semantically match requests and advertisements [27,39].

– Learning of networked system behaviour (See Figure 2-¸). Using the initial
discovered information as a starting point, machine learning approaches are
required to learn how one must interoperate with a particular system in
order to achieve particular behaviour, i.e., this will inform how to model
exactly the behaviour of the networked system in terms of its middleware
and application protocols.

– Synthesis of interoperability software (See Figure 2-¹). We require syn-
thesis solutions that can use the runtime models of two systems to calcu-
late a mediator that will resolve the differences between the heterogeneous
protocol endpoints, and then generate the software that implements this
mediator on the fly in order for it to dynamically deployed between two
systems [29]. In this paper we focus on the case of mediation between a

The Role of Models@run.time in Supporting On-the-fly Interoperability 7

pair of networked systems as the case of multiple systems, under the same
assumptions, may be proved undecidable [21]. The synthesis is further sup-
ported by ontologies that formalise the domain knowledge [10].

Networked System

NS1
Networked System

NS2

Ontologies

On-the-fly Generation of Emergent Middleware

Behavioural

Mediation

Message
Parsers/

Composers

Message
Parsers/

Composers

Emergent Middleware

Creation and maintenance
of NS M@RT

1

Synthesis of Mediator M@RT4 Learning of NS behaviour3

Monitoring and discovery of NS2

Fig. 2 Supporting Emergent Middleware

3 Models@Runtime in Action: Sustaining the Dynamic Synthesis
of Emergent Middleware

Figure 3 outlines our overall approach for synthesising emergent middleware
between two networked systems NS1 and NS2 and that addresses the require-
ments described above. The key philosophy of this approach is to utilise run-
time models to both i) support the reasoning about what emergent middleware
should be created, and ii) support the creation of this software artefact itself.
Our approach is incremental as illustrated by the following steps seen in the
figure:

1. Discovery and Learning of knowledge to extract the behaviour of the net-
worked systems, see Figure 3-¶. The knowledge that has been discovered
and learned is made explicit and available for computational treatment in
the form of a runtime model.

2. Analysis of the runtime models and generation, in the appropriate cases,
of the necessary mediator model that specifies the necessary translation
and coordination that need to be performed in order to allows the two net-
worked systems to interoperate. We call this step synthesis of the mediator

model, see Figure 3-·.
3. Concretisation of the mediator model in an artefact (i.e., the Emergent

Middleware) that further deals with message-level interoperability, that is
deployment, see Figure 3-¸.

In the remaining of this section we explain the approach in more detail.

8 N. Bencomo et al.

NS1 NS2

Knowledge
extraction

Deployment

!

"
#

$

%

&

Mediator Model

% &

!

!

"
#

$
$

Synthesis of the Mediator Model

Dynamic Synthesis of

Emergent Middleware

Running-System
Level

Run-time Models
Level

Emergent

Middleware

2

3

1

NS2 ModelNS1Model

Fig. 3 Overview of the Approach

3.1 The Runtime Model Specifications

The runtime models are the central elements that allow us to reason about how
to make systems interoperable. These models need to specify adequate knowl-
edge about the networked systems from the application down to the network
layers, as well as the domain knowledge using ontologies. In our approach, two
distinct types of models are used to describe the different constituents of the
system: the networked system model and the mediator model. These models
are manipulated (constructed, transformed, refined) so as to manage the full
cycle of interoperability assurance.

The Networked System Model. It captures both the functional and behavioural
semantics of the networked system. The functional semantics describe the func-
tionality of the system (i.e., what the system does), its interface described in
terms of the actions it requires and/or provides, and the specific middleware
platform it is implemented upon. The behavioural semantics specify how the
actions of its interface are coordinated in order to achieve the system func-
tionality. For example, Figure 4 depicts the runtime models associated with
C2 and the UGV networked systems.

We rely on ontologies to describe the functional semantics of networked
systems. In particular, the functionality of the each NS refers to ontological
concepts. Furthermore, the actions of each NS interface are augmented with
ontological annotations. We distinguish between two types of actions: input
and output actions. An input action op(in):out requires an operation op for
which it produces some input data in and consumes the output data out. We
assume that op, in, and out belong to the same domain ontology. For example,

The Role of Models@run.time in Supporting On-the-fly Interoperability 9

the C2 interface includes the getMPEGVideo(Camera, Period):MPEGVideo ac-
tion that specifies that C2 provides the objects Camera and Period and expects
an MPEG video in return. An output action5 op(in): out provides an operation
op for which it uses the inputs in and produces the corresponding outputs out.
For example, the UGV interface includes the getVideoRTPAddress(Camera,

Period):VideoAddress action that expects the objects Camera and Period

and returns an address to a video.
In addition, the binding defines the specific middleware used by a net-

worked system to implement these actions. For example, C2 uses SOAP-RPC
as the underlying middleware.

authenticate(LoginInformation) : Session
getCamera(Session) : Camera
zoom(Camera, Ratio):
panAndTilt(Camera, Pan, Tilt):
getMPEGVideo(Camera, Period) : MPEGVideo

Binding: SOAP-RPC

<functionality name="C2Video" kind="required">
 <operation>VideoCapture<operation>
 <output>video</output>
</functionality>

authenticate getCamera
getMPEGVideo

zoom

panAndTilt

Interface

C2 Model

Behaviour

Functionality

 zoom(Ratio):
 move(MovementPattern):
 getVideoRTPAddress(Camera, Period) : VideoAddress

Binding: HTTP, HLS

<functionality name="UGVVideo" kind="provided">
 <operation>VideoCapture<operation>
 <output>VideoAdress</output>
</functionality>

getVideoRTPAddress

zoom
move

Interface

UGV Model

Behaviour

Functionality

Discovered

Learned

a

a

required action

provided action

Fig. 4 The models of individual networked systems

The behaviour of the networked system is specified using Labeled Tran-
sition Systems (LTS) [32]. LTSs proved to be effective for describing, under-
standing and reasoning about concurrent systems. An LTS is a directed graph
with labels on each edge describing the progress of the system behaviour when
the action, to which the label is attached, is performed. The actions of the
LTS are those specified in the interface of the networked system. For example,
in Figure 4, the C2 system first performs the authentication action, it selects
a camera, then it can zoom, send a pan/tilt command to the camera, or ask
for a video.

The Mediator Model. The mediator is the intermediary middleware entity that
stands between the two networked systems, translates their actions and coor-
dinate their behaviours in order to guarantee their successful interoperation.

5 Note the use of an overline as a convenient shorthand to denote output actions

10 N. Bencomo et al.

In other words, the mediator is capable of receiving, sending, delaying the de-
livery of data, as well as reasoning about their semantics in order to generate
equivalent data by transforming and composing the original ones. It cannot
create data by itself.

The resultant mediator between C2 and UGV is depicted in see Figure 5.
The mediator coordinates their respective actions in order to allow them to
interoperate.

C2 UGV Mediator

authenticate getCamera getMPEGVideo

zoom

move

zoom
getVideoRTPAddress

panAndTilt

Fig. 5 The models of the C2 → UGV mediator

3.2 Building Runtime Models

Here we describe how the runtime models, which were described above, are
created and completed at runtime. More specifically, we need first to deter-
mine the systems joining (or leaving) the runtime environment, this is the
role of discovery . In particular, we build on state-of-the-art interoperable dis-
covery methods [13,15,23] to cope with the heterogeneous discovery protocols
that exist. Specifically, a Discovery Enabler listens on various multicast ad-
dresses used by legacy discovery protocols (e.g., Service Location Protocol6,
WS-Discovery7, UPnP-SSDP8, and Jini9); it intercepts both the advertise-
ment messages and lookup request messages that are sent within the network
environment and processes them using appropriate plug-ins. However, legacy
discovery protocols provide only partial networked system models, which in
most of the cases consist in the syntactic interfaces. Consequently, we rely
on learning techniques to complete the model of the networked systems with
further information about functional and behavioural semantics.

Learning Networked System Models. We use learning techniques to infer the
functionality, the ontology-based annotations of the interface, and determine
the behaviour of a networked system given the discovered interface at runtime.

6 http://www.openslp.org/
7 http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.

1-spec-os.pdf
8 http://www.upnp.org/
9 http://www.jini.org/

The Role of Models@run.time in Supporting On-the-fly Interoperability 11

The functionality of a system is expressed as a semantic concept based on a
domain ontology and learned using support vector machines for text categori-
sation, that is a machine learning technique able to categorise interface based
on the terms used in their textual or XML description [7]. First, examples of
interfaces and the corresponding functionality are used to train the algorithm
in order to infer a categorisation function, that is a function that relates an
interface to a semantic concept from the domain ontology with a given accu-
racy. More specifically, the algorithm uses natural language text to infer the
likelihood between some words occurring in the interface specification and the
functionality of the system. Second, the interface is analysed in order to infer
the appropriate functionality. The accuracy of such inference depends on the
size of the examples used during the training phase [8].

As mentioned earlier, the behaviour of a system is represented as an LTS.
Within the Connect project, a dedicated learning technique based on the
L∗

M
algorithm [37] is used to construct the behavioural models of networked

systems. It enhances Angluin’s seminal L∗ algorithm [2] to deal with real-
istic systems in minimal time with various improvements such as abstrac-
tion/refinement or dealing with data values. It is based on an iterative process
by which a hypothesis behavioural model of the system is incrementally re-
fined by actively testing interaction with the corresponding system. Hence,
unlike passive learning algorithms [36,33] that only observe the interaction
traces, the L∗

M
chooses the sequences of actions to execute in order to learn

the behaviour in minimal time.

authenticate
getMPEGVideo

zoom

panAndTilt

authenticate

getCamera

getMPEGVideo
zoom

panAndTilt

C2
Networked System

authenticate

getCamera

zoom

getMPEGVideo

panAndTilt

Discovery
t0

Learning
t1

Learning
t2

authenticate getCamera
getMPEGVideo

zoom

panAndTilt

Learning
t3

getCamera

Fig. 6 Learning the behaviour of the C2 networked systems

12 N. Bencomo et al.

As an illustration, consider the example of the process of learning the
behavior of the system C2 shown in Figure 6. At time t0, the interface of
the C2 system is discovered. At time t1, the learning process initiates by
assuming one single state where all the actions can be performed. However,
when trying to interact with the system by performing for example a zoom and
then authenticate, an error (or exception) is raised. At time t2, the model
is updated so as to forbid this erroneous trace. Similarly, when authenticating
and then zooming, an error is obtained, therefore the learning updates the
models, which continues to be refined to obtain the model at time t3.

Synthesising the mediator model. Networked systems can successfully inter-
operate only if they are behaviourally compatible. Existing formal notions to
behavioural compatibility (e.g., bisimulation [38] or refinement [28]) assume
close-world settings, i.e., the use of the same set of actions to define the be-
haviour of the systems. What is needed is a notion of compatibility that further
takes into account the semantics of actions and relies on an intermediary sys-
tem, the mediator, to perform the necessary translation between semantically-
compatible actions. The main idea is that the mediator can safely compute
a translation if the data received from one NS are a subtype of the data ex-
pected by the other NS. For example, in the case of mapping one action to
another, this would be equivalent to Liskov substitution principle [35] with on-
tological subsumption instead of type subsumption. Note however that these
mappings may be ambiguous (or non-deterministic), that is, the same action
may correspond to different actions depending on the execution state.

The gist of the approach presented here, is to generate the mediator LTS
that coordinates these mappings and synchronise with both networked systems
to force them to progress synchronously. During the synthesis step, we explore
the various possible mappings in order to produce a correct mediator, i.e., a
mediator that guarantees that the parallel composition of the LTSs of the two
networked systems together with the LTS of the mediator always reaches a final
state, or determines that such mediator does not exist. We use model checking
to verify that a composition of mappings verifies this condition and is hence
a valid mediator. Model checking is an appealing technique to automatically
verify concurrent systems by exhaustively exploring the state space. While
the complete coverage of this state space may lead to state explosion, many
solutions have been proposed to alleviate this issue and lead to interesting
results when applied at runtime [14]. We refer the interested reader to [1] for
a detailed description of the synthesis approach.

3.3 Leveraging Runtime Models to Create the Emergent Middleware

In order to produce the emergent middleware, corresponding to a particular
mediator model, we need to leverage the runtime models as the only informa-
tion about the requirements of the mediator are obtained at runtime. Here, an

The Role of Models@run.time in Supporting On-the-fly Interoperability 13

emergent middleware is a software artefact that can be deployed in a commu-
nication network to bind two networked systems together and to make them
interoperate.

Mediator Model

LTS Interpreter

Message Composer

Interpreter

Network Engine

Emergent Middleware

Protocol Model 2

SOAP MDL

Protocol Model 1

HTTP MDL

Message Parser

Interpreter

causal connection

causal
connection

causal
connection

authenticate getCamera getMPEGVideo

zoom

move

zoom
getVideoRTPAddress

panAndTilt

1

2

3

Fig. 7 Runtime models building an emergent middleware

Interpretation is the foundation of emergent middleware. It means that a
middleware protocol-specific interpreter is used to execute the actions of the
LTS-based models. Starlink [11] is the protocol-specific interpreter used to
execute the actions of LTSs. As such, Starlink can be seen as an abstract ele-
ment until it has been specialised with runtime models to describe its required
behaviour. Specifically, Starlink uses an LTS interpreter (Figure 7-¶) to anal-
yse and manipulate the mediator LTS, which further examines each transition
action to extract the information required to generate a physical middleware-
specific message. The operation label, the input parameters, and the output

parameters form the content of this message. The interpreter then uses the
appropriate middleware binding to physically execute this action content. For
example, this could be an RPC invocation using the SOAP binding.

Importantly, the communication protocols themselves are also modelled;
their messages are described in a Message Description Language (MDL) such
that their packets can be dynamically composed and parsed based upon this
description. A model of each protocol is plugged into the message composer

and parser interpreters(Figure 7-·). Hence, when Starlink executes a tran-
sition of the mediator’s LTS it produces the correct concrete message. Note
that concrete messages are communicated via the network engine (Figure 7-
¸), which provides a simple subset of network transport primitive to physically
connect the two networked systems. Hence, the mediator model (as exemplified
in Figure 5) therefore, provides sufficient information to produce and execute
an emergent middleware. Considering for example the C2 system, which uses
SOAP, and the UGV system, which uses HTTP-based HLS. In order to per-
form the zoom operation (which is provided by both systems), the emergent
middleware receives the SOAP request sent by C2 and use it to create an

14 N. Bencomo et al.

HTTP request, which it sends to UGV. Once it receives the HTTP response
from UGV, it creates the corresponding SOAP response and forwards it to
C2.

The benefits of interpretation are that a causal connection is inherent in the
deployment. The runtime model informs the mediator behaviour, and hence
any changes made to the model on-the-fly are automatically and transparently
applied. This is similarly achieved at the middleware level; if the mediator
migrates to a different communication protocol, or the protocol itself changes
(e.g. a version change) then only the middleware model needs to be changed.

3.4 Models@run.time in Connect

In order to illustrate the feasibility of the ideas presented in this paper, we now
analyse its application in the broader context of the Connect architecture.
This explores the key ideas of: i) run-time representation of mediators, ii) how
runtime models are derived, and iii) how the concrete mediators are deployed.

The set of main tools developed and supported by Connect, and which
have been successfully leveraged for the use of runtime models are: the Con-

nect Discovery Enablers10 for discovery, LearnLib11 for learning, MICS (Me-
diator synthesis to Connect Systems)12 for synthesis, and Starlink13for de-
ployment.

Our ideas have been applied in different applications, the photosharing [29,
12], the travel agent[10], and the GMES examples. In the three applications the
heterogeneity of the interfaces and behaviour prevented interoperability even
when using current state-of-the-art middleware solutions. The GMES forms
the most complete of the three examples (Figure 8). Let us focus on the in-
teraction between the weather station and the C2 to illustrate the application
of our approach. These two networked systems exhibit different interfaces and
use heterogeneous middleware protocols to communicate. This example, al-
though trivial if there is a developer in the loop, is not trivial to automate and
has been successfully resolved using our approach based on models@runtime.

3.4.1 Weather Scenario

In the GMES example, two heterogeneous networked systems (C2 and the
weather station) encounter one another and interact. C2 is a client to the
weather station that provides temperature and humidity information. Specifi-
cally, we apply the tools of Connect to build a runtime model of a mediator
to generate a concrete mediator that resolves interoperability issues between
C2 and the weather station.

10 https://www-roc.inria.fr/arles/software/discovery
11 http://www.learnlib.de/
12 http://www-roc.inria.fr/arles/software/mics/
13 http://starlink.sourceforge.net

The Role of Models@run.time in Supporting On-the-fly Interoperability 15

!"#$%!"&'($#)%

*$'"+,$)%

-./%

01*%

!"#$%!"&'($#%23%

04*%56%278$#7%

9$7('$#%:(7;<=%

-<)";<="=&%:>)($8%

-<)";<="=&%:>)($8%

9$7('$#%

)$#?"+$%

-@AB:@A%
6-2%
:'7#$C%:D7+$%

2<,<#%2<C$%E%F"G$#$=(%-#<(<+<,%<#%7=C%

C7(7%H<#87(%

!"#"$%&

-./%

Fig. 8 The GMES scenario and its networked systems

In this section we document the outputs of the enablers to illustrate how
the Connect architecture coordinates to enable the interaction and coopera-
tion between the two systems. The discovery enabler first monitors the running
systems, and receives lookup requests that describe the C2’s requirements. It
also receives the notification messages from the weather station that adver-
tises the provided interface. The discovery enabler plug-ins transform these
messages and produce a WSDL description for both networked systems. A
partial view of these descriptions is given in Figures 9 and 10, which show the
abstract operations provided by the weather station as well as those required
by C2 respectively.

These operations are bound to concrete protocols: SOAP for C2 and
CORBA for the weather station. The interfaces also serve to highlight the
heterogeneity of the two interfaces; they offer/need the same functionality,
but do so with different operations. The next step is to learn the behaviours of
the two systems. The learning enabler receives the interface description from
the discovery enabler and then interacts with deployed instances to create the
behaviour models for each of them. The possible interactions in these systems
are produced as LTS models and illustrated in Figure 11.

Here the weather station receives GetTemperature and GetHumidity

CORBA requests and responds using CORBA reply messages, whereas C2
sends a GetWeather SOAP Request and expects a weatherInfo record con-

16 N. Bencomo et al.

<wsdl:operation name="logToStation"

sawsdl:modelReference="http://www.connect.com/ontology/media#Login">

<wsdl:output message="tns:logToStationResponse" name="loginResponse">

</wsdl:output>

<wsdl:input message="tns:login" name="login"></wsdl:input>

</wsdl:operation>

<wsdl:operation name="getWeatherInfo"

sawsdl:modelReference="http://www.connect.com/ontology/media#GetWeather">

<wsdl:output message="tns:getWeatherInfoResponse"></wsdl:output>

<wsdl:input message="tns:getWeatherInfoRequest"></wsdl:input>

</wsdl:operation>

<wsdl:operation name="quitStation"

sawsdl:modelReference="http://www.connect.com/ontology/media#Logout">

<wsdl:output message="tns:quitStationResponse"></wsdl:output>

<wsdl:input message="tns:quitStationRequest"></wsdl:input>

</wsdl:operation>

Fig. 9 Interface description fragment for the C2

<operation name="login"

sawsdl:modelReference="http://www.connect.com/ontology/media#Login">

<input message="tns:login"></input>

<output message="tns:loginResponse"></output>

<fault message="tns:Exception" name="Exception"></fault>

</operation>

<operation name="getTemperature"

sawsdl:modelReference="http://www.connect.com/ontology/media#GetTemperature">

<input message="tns:getTemperature"></input>

<output message="tns:getTemperatureResponse"></output>

<fault message="tns:Exception" name="Exception"></fault>

</operation>

<operation name="getHumidity"

sawsdl:modelReference="http://www.connect.com/ontology/media#GetHumidity">

<input message="tns:getHumidity"></input>

<output message="tns:getHumidityResponse"></output>

<fault message="tns:Exception" name="Exception"></fault>

</operation>

<operation name="logout"

sawsdl:modelReference="http://www.connect.com/ontology/media#Logout">

<input message="tns:logout"></input>

<output message="tns:logoutResponse"></output>

<fault message="tns:Exception" name="Exception"></fault>

</operation>

Fig. 10 Interface description fragment for the weather station

taining temperature and humidity to be returned. Connect then creates the
mediator that concretely co-ordinates the behaviours of the two systems and
translates the messages to address the differences between the SOAP and
CORBA communication protocols. To realise this mediator, the two LTS mod-
els (see Figure 11) are given to the synthesis enabler. The synthesis enabler
reasons about the semantics of actions of the two systems given a domain on-
tology that states the relations holding between various concepts, e.g., that the
weatherInfo encompasses humidity and temperature, to generate the appro-

The Role of Models@run.time in Supporting On-the-fly Interoperability 17

!"#$%&'())*"+,-./)0+%(1023.4"50%

60470(480+&4"50%23.*0(480+9%:"

!"#"/4&4"50%23

!"#$"#%&'()*+,-+.

<functionality name="C2Weather" kind="required">
 <operation>Weather<operation>
 <output> WeatherInformation</output>
</functionality>

Interface

C2 Model

(weather projection)

Behaviour

Functionality

.!"#$%&/)0+%(10-.'())*"+,23.4"50%

.604;/1$,$4<&4"50%23.8/1$,$4<

.604=01'0+(4/+0&4"50%23.401'0+(4/+0

.!"#"/4&4"50%23.(>5%"*?0,#10%4

!"#$"#%&'/00+

<functionality name="WeatherStation" kind="provided">
 <operation>Weather<operation>
 <output> WeatherInformation</output>
</functionality>

Interface

Weather station Model

Behaviour

Functionality

!"#$%

604=01'0+(4/+0

604;/1$,$4<

!"#"/4

!"#$%
60470(480+

!"#"/4

Fig. 11 Description of the weather NSs Models

priate interface mapping. In the example, there are two mappings getWeather
7→<getHumidity, getTemperature> and getWeather 7→<getTemperature,
getHumidity>. The synthesis creates the LTS associated with the mapping
and computes the parallel composition of the LTSs of the two networked sys-
tems. It checks that this composed LTS reaches its final state. The mappings
could be ranked so as to choose the best one if many are eligible. However,
in the current algorithm when many mappings are valid the selection is per-
formed randomly. It concludes that this LTS is then a valid mediator model
(see Figure 12) and ready to be deployed.

The mediator model has to be refined taking into account the specificities
of the interaction protocols and the data syntax so as to effectively achieve
interoperation of the two systems (see Figure 13). Here, the mediator model
of Figure 12 is transformed into an emergent middleware by passing it to the
binding procedure of the Starlink framework.

It can be seen that the produced emergent middleware depicted in Fig-
ure 13 contains the necessary information about the concrete middleware
protocols (e.g. a GIOP request message for the CORBA protocol). Besides
binding actions to the appropriate middleware, the translation among the in-
put/output data is refined so as to precisely define how the fields of each
message can be obtained by reusing the previously received data. This model
was deployed between the two systems using Starlink; when executed, inter-
operability between the two systems was achieved.

3.4.2 Final Reflections

The role of runtime models is fundamental to achieving the required spon-
taneous interoperability in the scenario described above. In the case of the
weather application, when the two systems are designed and developed inde-
pendently it is impossible for them to interoperate. This is because they differ

18 N. Bencomo et al.

C2 Weather Station Mediator

!"#$%&'('#)

*+,+%#

*+,'-

!"#."/#0"1

*+,+%#

*+,'-

!"#2"&3"1/#%1"4

Fig. 12 Model of the mediator between C2 and the weather station

in terms of their middleware protocols and API behaviours. By leveraging
runtime models in the scenario we have demonstrated that we can address
this important problem. The generation of runtime models using discovery
and learning provides the artefacts that underpin the runtime interoperability
solution previously not possible. We have shown in the example that exe-
cutable interoperability software can be synthesised and correctly deployed to
allow the two heterogeneous weather systems to interact successfully with one
another.

3.5 Research Challenges Ahead: Evolution of Runtime Models

We have studied the viability of the novel ideas to construct and use runtime
models. We have shown both, how to build runtime models (i.e. mediator mod-
els) during execution and based on discovery and learning techniques, and how
these runtime models can be used to dynamically synthesize and deploy soft-
ware (i.e. emerging middleware). However, many research challenges remain.
One specific challenge is that as new knowledge is being discovered or learned.
Indeed, statistical learning may admit a very high accuracy of categorization
but is unlikely to be perfect. Therefore, the system needs to evolve to reflect the
changes perceived in the operating environment. Under those circunstances,
the system should be monitored continuously to identify executions that do
not conform to the learned behaviour of networked system. This verification
should be carried out at runtime and the model of the mediator should be
updated in accordance to the changes in the networked system model. Due to
the inherent causal connection, the emergent middleware should be adapted
accordingly so as to reflect the changes to the mediator model. Furthermore,
ontologies may also evolve over time [42], although less frequently. In addition,
as ontologies keep emerging and getting standardised, a critical issue is then
matching ontologies. The logic grounding of ontologies enables a more accurate
matching of concepts compared to syntactic based techniques. Nevertheless,
this matching is given with a certain confidence that is never absolutely pre-
cise. Quantitative analysis and probabilistic model checking may reveal very
useful when quantifying expected behaviour or the confidence on the learned
concept and to adapt the overall system accordingly [14,24].

T
h
e
R
o
le

o
f
M
o
d
els@

ru
n
.tim

e
in

S
u
p
p
o
rtin

g
O
n
-th

e-fl
y
In
tero

p
era

b
ility

1
9

!"!"#$%&'()#$%&%'(#)∅#)*+,-%./01&20-(3

4"!"#$%&*+&,-#)$%&5-#)6'708-*20#)9*77.%81:#)∅3

4"!"#$%&*+&,-./$%&%'(#)(%,0-#)∅3

"%&0&12&%&'()#)$%&5-#)∅#)(%,0-3

!"3#4$%&*+&,-#)$%&5-#))69*77.%81#)'708-*20:#)∅3 4"3#4$%&,'56,&#)$%&5-#)∅#)(%,0-3

!"3#4$%&*+&,-#)$%&%'(#)(%,0-#)∅3

4"!"#$%&*+&,-./;0(<'2515(=#)(%,0-#)∅)3

B) Mediator (k-ColouredAutomata)

!"!"#$%&'()#);0(<'2515(=#)∅#)>'2515(=)3

!"3#4$%&*+&,-#);0(?0*(>08#)(%,0-#)∅)3

4"3#4$%&,'56,&#)$%&%'(#)∅#)∅3

$%&5-▷'708-*20)7/$%&5-▷ '708-*20)

$%&5-▷9*77.%81)7/$%&5-▷ 9*77.%81)
$%&5-)▷)(%,0-)@)$%&5-)▷)(%,0-)

.0*(>08A-B%)▷)>'2515(=)@);0(C02908*('80)▷ >'2515(=

.0*(>08A-B%)▷)(02908*('80)@);0(<'2515(=)▷(02908*('80

;0(<'2515(=)▷)(%,0-)@);0(?0*(>08)▷)(%,0-

4"3#4$%&,'56,&#);0(?0*(>08#)∅#).0*(>08A-B%)3

$%&%'()▷ (%,0-)7)$%&%'()▷ (%,0-

;0(C02908*('80)▷)(%,0-)@);0(?0*(>08)▷)(%,0-

4"!"#$%&*+&,-./;0(C02908*('80#)(%,0-#)∅)3
!"!"#$%&'()#);0(C02908*('80#)∅#)(02908*('80)3

;ADE)F5-15-&GDHE)F5-15-&

GDHE)(%);ADE)(8*-7/*I%- ;ADE)(%)GDHE)(8*-7/*I%-

27&J)▷)K0/1J)@)27&L)▷ K0/1L H775&-)(>0)1*(*)80+05M01)5-)K0/1)L)%B)2077*&0L)(%)K0/1)J)

%B)2077*&0J#).>5+>).5//)N0)70-()N=)(>0)2015*(%8))

F
ig
.
1
3

E
m
erg

en
t
m
id
d
lew

a
re

20 N. Bencomo et al.

Discovery

Learning

SynthesisMonitoring

Evolution of the
NS Model

Changes
in Ontology

New NSs

Generating the
 NS Model

Generating the
 Mediator Model

Fig. 14 Evolution of Runtime Models

As depicted in Figure 14, the system is in this case a closed-loop system
to better deal with the partial knowledge it has about the environment. In-
deed, closed-loop systems have been recognised as fundamental to deal with
uncertainty [4,24]. Then a major challenge is to manage efficiently the changes
of the networked systems models in order to re-synthesise the mediator in an
incremental way. Evolution of the runtime models is an area of high research
relevance and potential. We hope that the experiences discussed and shown in
this paper pave the way for new achievements.

4 Related Work

The related work is presented in three different domains: (1) Mediation at
Runtime, (2) Self-representation and Reflection, and (3) Software Synthesis at
Runtime. The first is about the area of application where we have used our
approach, while the other two are related to specific runtime models issues.
We also talk about (4) Future Trends in the area of models@run,time.

(1) Mediation at Runtime. Mediation has deserved a large amount
of work in various domains, e.g., database integration [31], communication-
protocol conversion [34], component adaptation [54], control-system super-
vision [50], connector wrapping [48], and Semantic Web Services composi-
tion [51]. In particular, Yellin and Strom [54] devise an approach to the semi-
automated generation of mediators based upon declarative interface mapping.
They devise an algorithm to check behavioural compatibility between systems
without relying on model checking but assuming that the interface mapping
is not ambiguous. While the generation of mediators was mainly a design-
time concern, the increasing openness of today’s highly dynamic and complex
systems makes the mediator generation shifting towards runtime. Denaro et

al. [20] propose a solution to interoperability across different implementations
of the same standard interface in two phases. At design time, developers de-
fine common misuse cases of the interface and define the corresponding healing
strategies. At runtime, the system is tested against these case and the appro-
priate healing strategy is applied. At the architectural-level, Chang et al. [17]

The Role of Models@run.time in Supporting On-the-fly Interoperability 21

propose to use healing connectors to solve integration problem at runtime
by applying healing strategies defined by the developers of the Commercial
off-the-shelf (COTS) components.

Another direction is to rely on ontologies to automate the generation of the
mediator. Hence, WSMO [18] proposes a runtime framework, the Web Service
Execution Environment (WSMX), to mediate interaction between heteroge-
neous services by inspecting their individual protocols and performing the nec-
essary translation on basis of pre-defined mediation patterns. However, there
is no guarantee that the composition of these patterns will not lead to a dead-
lock. To ensure the correctness of mediation, Cavallaro et al. [16] consider
the semantics of data and relies on model checking to automatically identify
mapping scripts between interaction protocols. Nevertheless, they propose to
perform the interface mapping beforehand so as to align the actions of both
systems. However many mappings may exist and should be considered during
the mediator generation. Indeed, the interface and behavioural descriptions
are inter-related and should be considered in conjunction. Moreover, they fo-
cus on the mediation at the application layer assuming the use of Web services
for the underlying middleware.

The aforementioned research initiatives have made excellent contributions.
However, in environments where there is little or no knowledge about the sys-
tems that are going to meet and interact, the generation of suitable mediators
must happen at runtime whereas in all these approaches, the mediator models
or some mediation strategies and patterns are known a priori and applied at
runtime. In our approach, the construction of the individual models as well as
the generation of the appropriate mediator are performed at runtime.

(2) Self-representation and Reflection. Several research approaches
have used architectural-based models as the runtime representations of the
system to support the treatment of runtime phenomena [53,19,22,40]. In con-
trast to runtime models that represent directly behavior as in our work, ar-
chitectural runtime models represent structural views of the running system.
Different from [53,19,22], and as in [40], we maintain runtime models causally
connected with the running system (i.e. we use reflection). Causal connec-
tion means that if the model is modified, the running system will change
correspondingly. Finally, and different from those approaches that use archi-
tectural runtime models to represent structural views of the running system,
our approach deals directly with behaviour semantics based on the LTS-based
models and not just with architectural notions. To the best of our knowledge,
our approach is the first to pursue this.

(3) Software Synthesis at Runtime. Morin et al [40] and Welsh et

al. [52] also synthesize software artifacts supported by the runtime models.
The authors of [40] generate the adaptation logic (i.e. reconfiguration scripts)
to reconfigure the system by comparing the current configuration of the run-
ning system with the model which represents the target configuration. In [52],
Welsh et al. also generate the adaptation logic, but different from [40], they
use runtime requirement models. None of them infer information from the
runtime system to create the runtime models, i.e. in their cases, the runtime

22 N. Bencomo et al.

model is defined before execution. In our case, we novelly use machine learning
techniques to infer knowledge that will be used to create the runtime model
during execution.

(4) Future trends in Models@run.time. As seen above and in [9,6],
models@run.time so far has been used in different areas e.g. dynamic archi-
tectures, self-adaptation, and requirements-aware systems [45] among others.
These research initiatives have focused on runtime models which specification
is designed before the system’s execution. However, recently, researchers have
started to envision the use of runtime models in providing intelligent support
to software at runtime [5] as the line between development models and run-
time models gets blur [9]. Also, runtime models look useful when tackling the
uncertainty [52] common in the modern and future software systems [24]. To
be able to design these future software systems, inferring the knowledge nec-
essary to conceived runtime models during execution is crucial. In this paper,
we have shown early results to conceived runtime models, based on informa-
tion about the running system and inferred using learning techniques during
runtime. Finally, we highlight the need of efficient formal methods at runtime
to provide effective support in producing high-integrity systems [14].

5 Conclusions

In this paper, we have demonstrated the novel and unique use of runtime
models to support the dynamic synthesis of software. Our way of using run-
time models captures syntax and also semantics of behaviour and supports
runtime reasoning. Prior models@runtime approaches have generally concen-
trated on architectural-based runtime models and self-adaptation of existing
software artifacts. However, such artefacts cannot always be produced in ad-
vance, and we believe that models@runtime have a fundamental role to play
in the production of dynamic, adaptive, and on-the-fly software. To support
such a vision, two important methods underpin our approach:

– the realisation of runtime models during the execution of the system. Cru-
cially, we have illustrated how the required runtime models are automati-
cally inferred during execution and refined by exploiting learning and syn-
thesis techniques.

– the use of these runtime models to support the dynamic synthesis of soft-
ware. This dynamic software synthesis approach relies on a formal foun-
dation; during runtime, mediators are formally characterized to allow the
runtime synthesis of software. To do that, LTS based models were used
to define the matching and mapping relationships between mismatching
protocols. Such relationships allow the formal definition of the algorithm
that synthesized mediators.

As a first step in illustrating the potential of our solution, we have applied
our approach in the specific area of emergent middleware to support on-the-
fly interoperability. In particular cases requiring spontaneous interaction, the

The Role of Models@run.time in Supporting On-the-fly Interoperability 23

use of models@runtime provided the necessary technologies to produce the
required middleware software on-the-fly. Here, we leveraged the tools avail-
able from the Connect project to realize our vision. From this initial work,
we have shown how systems can infer information to build runtime models
during execution. Importantly, ontologies were exploited to enrich the run-
time models and facilitated the mutual understanding required to perform the
matching and mapping between the networked heterogeneous systems. Such
reasoning about information that was not necessarily known before execution,
is in contrast to the traditional use of runtime models.

Finally, we argue that to support future-proof software systems, the focus
of software development should shift away from a traditional approach where
environmental conditions are foreseen and behaviour of the system is coded ac-
cordingly. Dynamic approaches are required where components and/or services
are dynamically discovered and then composed together to recreate the sys-
tem according to the current requirements and environmental contexts. This
dynamic composition requires the synthesis of software on-the fly as shown in
this paper. We believe that the use of runtime models will play an important
role and hope that the approach we have presented provides the foundations
for further advances in the area.

Acknowledgements This work is carried out as part of the European FP7 ICT FET
Connect (http://connect-forever.eu/) project and the Marie Curie Fellowship Require-
ments@run.time. The authors would like to thank Antoine Leger from Thales for valuable
input about the GMES case study.

References

1. CONNECT consortium. CONNECT Deliverable D3.3: Dynamic connector syn-
thesis: revised prototype implementation. FET IP CONNECT EU project.
http://hal.inria.fr/hal-00695592/.

2. Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

3. Uwe Aßmann, Nelly Bencomo, Betty H. C. Cheng, and Robert B. France. Mod-
els@run.time (dagstuhl seminar 11481). Dagstuhl Reports, 1(11):91–123, 2011.

4. Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi. Toward open-world software:
Issue and challenges. IEEE Computer, 39(10):36–43, 2006.

5. Luciano Baresi and Carlo Ghezzi. The disappearing boundary between development-
time and run-time. In Proceedings of the FSE/SDP workshop on Future of software
engineering research, pages 17–22. ACM, 2010.

6. Nelly Bencomo, Gordon S. Blair, Franck Fleurey, and Cédric Jeanneret. Summary of
the 5th international workshop on models@run.time. In MoDELS Workshops, pages
204–208, 2010.

7. Amel Bennaceur, Valérie Issarny, Johansson Richard, Moschitti Alessandro, Spalazzese
Romina, and Daniel Sykes. Automatic Service Categorisation through Machine Learning
in Emergent Middleware. In Software Technologies Concertation on Formal Methods
for Components and Objects (FMCO’11), 2011.

8. Amel Bennaceur, Johansson Richard, Moschitti Alessandro, Spalazzese Romina, Daniel
Sykes, Rachid Saadi, and Valérie Issarny. Inferring Affordances Using Learning Tech-
niques. In International Workshop on Eternal Systems (EternalS’11), 2011.

9. Gordon Blair, Nelly Bencomo, and Robert B. France. Models@ run.time. Computer,
42(10):22–27, 2009.

24 N. Bencomo et al.

10. Gordon S. Blair, Amel Bennaceur, Nikolaos Georgantas, Paul Grace, Valérie Issarny,
Vatsala Nundloll, and Massimo Paolucci. The role of ontologies in emergent middleware:
Supporting interoperability in complex distributed systems. In Middleware’11, pages
410–430, 2011.

11. Yérom-David Bromberg, Paul Grace, and Laurent Réveillère. Starlink: runtime in-
teroperability between heterogeneous middleware protocols. In Distributed Computing
Systems (ICDCS), 2011 31st International Conference on, pages 446–455. IEEE, 2011.

12. Yérom-David Bromberg, Paul Grace, Laurent Réveillère, and Gordon S. Blair. Bridging
the interoperability gap: Overcoming combined application and middleware heterogene-
ity. In Middleware, pages 390–409, 2011.

13. Yérom-David Bromberg and Valérie Issarny. INDISS: Interoperable discovery system
for networked services. In Middleware, pages 164–183, 2005.

14. Radu Calinescu and Shinji Kikuchi. Formal methods @ runtime. InMonterey Workshop,
pages 122–135, 2010.

15. Mauro Caporuscio, Pierre-Guillaume Raverdy, Hassine Moungla, and Valérie Issarny.
ubisoap: A service oriented middleware for seamless networking. In ICSOC, pages 195–
209, 2008.

16. Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella. An automatic approach
to enable replacement of conversational services. In Proc. ICSOC/ServiceWave, pages
159–174. Springer, 2009.

17. Hervé Chang, Leonardo Mariani, and Mauro Pezzè. In-field healing of integration prob-
lems with cots components. In ICSE, pages 166–176, 2009.

18. Emilia Cimpian and Adrian Mocan. WSMX process mediation based on choreographies.
In Proceedings of Business Process Management Workshop, pages 130–143, 2005.

19. Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. Towards architecture-
based self-healing systems. In Proceedings of the first workshop on Self-healing systems,
WOSS ’02, pages 21–26, New York, NY, USA, 2002. ACM.

20. Giovanni Denaro, Mauro Pezzè, and Davide Tosi. Ensuring interoperable service-
oriented systems through engineered self-healing. In ESEC/SIGSOFT FSE, pages 253–
262, 2009.

21. Ting Deng, Wenfei Fan, Leonid Libkin, and Yinghui Wu. On the aggregation problem
for synthesized web services. In Proc. of the 13th International Conference on Database
Theory, ICDT, pages 242–251, 2010.

22. Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund, and Eli
Gjorven. Using architecture models for runtime adaptability. Software IEEE, 23(2):62–
70, 2006.

23. Carlos A. Flores-Cortés, Paul Grace, and Gordon S. Blair. Sedim: A middleware frame-
work for interoperable service discovery in heterogeneous networks. TAAS, 6(1):6, 2011.

24. David Garlan. Software engineering in an uncertain world. In FoSER, pages 125–128,
2010.

25. J.C. Georgas, A. van der Hoek, and R.N. Taylor. Using architectural models to manage
and visualize runtime adaptation. Computer, 42(10):52 –60, oct. 2009.

26. Paul Grace, Gordon S. Blair, and Valérie Issarny. Emergent middleware. ERCIM News,
2012(88), 2012.

27. Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren, and Christoph Bussler. Wsmx
- a semantic service-oriented architecture. In ICWS, pages 321–328, 2005.

28. C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, 1978.

29. Valérie Issarny, Amel Bennaceur, and Yerom-David Bromberg. Middleware-layer con-
nector synthesis: Beyond state of the art in middleware interoperability. In SFM-11,
volume 6659 of Lecture Notes in Computer Science, pages 217–255. Springer, 2011.

30. Valérie Issarny, Bernhard Steffen, Bengt Jonsson, Gordon S. Blair, Paul Grace, Marta Z.
Kwiatkowska, Radu Calinescu, Paola Inverardi, Massimo Tivoli, Antonia Bertolino,
and Antonino Sabetta. Connect challenges: Towards emergent connectors for eternal
networked systems. In ICECCS, pages 154–161, 2009.

31. Vanja Josifovski and Tore Risch. Integrating heterogenous overlapping databases
through object-oriented transformations. In VLDB, pages 435–446, 1999.

32. Robert M. Keller. Formal verification of parallel programs. Communications of the
ACM, 19(7):371–384, 1976.

The Role of Models@run.time in Supporting On-the-fly Interoperability 25

33. Ivo Krka, Yuriy Brun, Daniel Popescu, Joshua Garcia, and Nenad Medvidovic. Using
dynamic execution traces and program invariants to enhance behavioral model inference.
In ICSE (2), pages 179–182, 2010.

34. Simon S. Lam. Protocol conversion. IEEE Trans. Software Eng., 14(3):353–362, 1988.
35. Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.

Program. Lang. Syst., 16(6):1811–1841, 1994.
36. Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Automatic generation of soft-

ware behavioral models. In ICSE, pages 501–510, 2008.
37. Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. Next generation

learnlib. In TACAS, pages 220–223, 2011.
38. Robin Milner. Communication and concurrency. PHI Series in computer science. Pren-

tice Hall, 1989.
39. Sonia Ben Mokhtar, Pierre-Guillaume Raverdy, Aitor Urbieta, and Roberto Speicys

Cardoso. Interoperable semantic and syntactic service discovery for ambient computing
environments. IJACI, 2(4):13–32, 2010.

40. Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, and Arnor Solberg.
Models at runtime to support dynamic adaptation. IEEE Computer, pages 46–53,
October 2009.

41. Brice Morin, Olivier Barais, Grégory Nain, and Jean-Marc Jézéquel. Taming dynami-
cally adaptive systems using models and aspects. In ICSE, pages 122–132, 2009.

42. Natalya Fridman Noy, Abhita Chugh, William Liu, and Mark A. Musen. A framework
for ontology evolution in collaborative environments. In International Semantic Web
Conference, pages 544–558, 2006.

43. Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory
Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf.
An architecture-based approach to self-adaptive software. IEEE Intelligent Systems and
Their Applications, 14(3):54–62, 1999.

44. Peyman Oreizy, David S. Rosenblum, and Richard N. Taylor. On the role of connectors
in modeling and implementing software architectures. Technical Report 98-04, Univer-
sity of California, Irvine, 1998.

45. Pete Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and Anthony Finkelstein.
Requirements-aware systems: A research agenda for re for self-adaptive systems. Re-
quirements Engineering, IEEE International Conference on, 0:95–103, 2010.

46. Douglas C. Schmidt. Model driven engineering. IEEE Computer, pages 25–31, 2006.
47. Hui Song, Gang Huang, Yingfei Xiong, Franck Chauvel, Yanchun Sun, and Hong Mei.

Inferring meta-models for runtime system data from the clients of management apis. In
Proceedings of the 13th international conference on Model driven engineering languages
and systems: Part II, MODELS’10, pages 168–182, Berlin, Heidelberg, 2010. Springer-
Verlag.

48. Bridget Spitznagel and David Garlan. A compositional formalization of connector wrap-
pers. In ICSE, pages 374–384, 2003.

49. Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to active automata
learning from a practical perspective. In SFM, pages 256–296, 2011.

50. Andreas Tolk and J. Mark Pullen. Using web services and data mediation/storage
services to enable command and control to simulation interoperability. In DS-RT, pages
27–34, 2005.

51. R. Vaculin, R. Neruda, and K. Sycara. The process mediation framework for semantic
web services. volume 3, pages 27–58. Inderscience, 2009.

52. Kristopher Welsh, Pete Sawyer, and Nelly Bencomo. Towards requirements aware sys-
tems: Run-time resolution of design-time assumptions. In 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2011), pages 560–563,
2011.

53. Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich, and Rick Kazman. Dis-
cotect: A system for discovering architectures from running systems. In In Proc. 26th
International Conference on Software Engineering, pages 470–479, 2004.

54. D.M. Yellin and R.E. Strom. Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems (TOPLAS), 19(2):292–333,
1997.

