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Abstract

Recently, non-standard de Rham cohomologies with causally restricted supports have
proven to be useful in ongoing theoretical physics research. In this work, we present them
starting from the most elementary notions of cohomology in manifolfds and spacetime,
thereby offering an overview of de Rham cohomology and an introduction to Lorentzian
manifolds and their causal structure. We also characterize these cohomologies in globally
hyperbolic spacetimes, exhibiting isomorphims with the standard de Rham cohomolo-
gies and providing examples of computation for some well-known physical models of the
spacetime.

Resum

Recentment, les cohomologies de de Rham no estàndards amb suports causalment restrin-
gits han provat ser útils en la recerca en f́ısica teòrica. En aquest treball, les presentem
partint de les nocions més elementals de cohomologia en varietats i de espaitemps, oferint
d’aquesta manera un compendi de cohomologia de de Rham i una introdució a les vari-
etats de Lorentz i a la seva estructura causal. També caracteritzem aquestes cohomologies
en espaitemps globalment hiperbòlics, exhibint isomorfismes amb la cohomologia de de
Rham estàndard i proporcionant exemples de càlcul per alguns models f́ısics coneguts del
espaitemps.
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0 Introduction

The abstract understanding of the physical space and its properties, has always been a
human concern. It responds to our inner impulse of modeling the most immediate physical
world that we can perceive with our senses. The recognition of geometrical patterns, forms
and magnitudes is so deeply embedded in our nature that is even thought to be present
in animal cognition. It is no coincidence then that geometry emerged as one of the oldest
branches of mathematics and therefore of the human knowledge. Since its origins as such
in the ancient Mesopotamia, it has evolved branching out in many subfields, creating new
whole areas of mathematics.

One of these areas, topology, which can be traced back to the celebrated L. Euler
solution to the problem of the bridges of Königsberg in 1736, emerged from shifting
the focus to the structural properties of geometric objects, leaving the metric properties
that had dominated classical geometry as secondary. In topology, the exact shape of
objects is no longer contemplated; instead its cornerstone are the properties that are
preserved under continuous deformations. This gave way to a new class of equivalencies,
the homeomorphism and the homotopy equivalence, which allow to identify objects with
the same topological properties.

The study of these equivalences and topological properties would not be the same
without algebraic invariants. Despite the fact that some invariants such as the Euler char-
acteristic or Betti’s numbers had already been discovered, the birth of algebraic topology
is often set in the revolutionary papers published by H. Poincaré between 1895 and 1904,
which also constitute one of the firsts systematic treatments of topology that consolidate
it as a field. Poincaré tackled the until then arduous problem of distinguishing between
non-homeomorphic topological spaces by using algebraic structures, namely the funda-
mental group and simplicial homology. This achievement, reduces the complexity of the
problem to a computation of these algebraic entites which are preserved under homeo-
morphism and homotopy equivalence. Algebraic topology was then further developed by
E. Noether, W. Mayer and L. Vietoris and spread out, given rise to the homotopy groups
and the wide variety of homology constructions we know nowadays.

In parallel, from the XVII century contributions of Galileo and Newton, physicists had
been conceiving the physical space as given by the classical Euclidean axiomatization of
geometry, and understood time as an absolute entity totally independent of space. This
conception suffered a catastrophic failure in the early XX century with the development
of the special and general theories of relativity by A. Einstein.

In order to account for experimental results such as the Michelson-Morley experiment,
in his exceptional paper published in 1905 Einstein postulated the invariance of the speed
of light under the change of inertial frames of reference, which, together with the principle
of special relativity that claims that all laws of physics are the same in every inertial frame
of reference, led to the Lorentz transformations as the characterization of the kinematic
description relative to different inertial frames. From them follows that time is not abso-
lute but dynamic, as its perception depends on the observer, and it is, furthermore, deeply
entangled with the notion of space. Consequently, special relativity ended up being more
elegantly accommodated in a model of space and time that merged them together in a
unique object, the spacetime. More precisely, it was the model of spacetime introduced
by H. Minkowski in 1908 that seemed to fit perfectly, a 4-dimensional affine space with
a inner product of index 1. Instead of considering physical positions and instants of time
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separately, points of the affine space represent physical events, i.e., ideal physical occur-
rences without spatial extension or time duration, such as an instant in the trajectory of
a point-like particle.

However, the special relativity framework and the Minkowski model of spacetime have
a major drawback: they do not account for gravity. It was Einstein himself who in 1915
brilliantly generalized his own theory proposing the theory of general relativity. He de-
veloped it from his famous equivalence principle, which states that the outcome of any
local experiment in a freely falling laboratory is independent of its velocity, its location
in the spacetime and the gravitational field; and the principle of general relativity, that
extents the principle of special relativity to all kind of reference frames. In this new
formalism, the Minkowski spacetime is just taken to be valid as local approximation of
the spacetime, and its affine space description is replaced by a equivalent description in
terms of a geometrical object known as a flat Lorentzian manifold. General spacetimes
are modeled by a wider class of Lorentzian manifolds which allow to describe gravity
through the curvature of spacetime caused by matter and energy according to the famous
Einstein’s field equations. Since in the general relativity framework different configura-
tions of matter and energy give rise to different models of the spacetime, we will refer
to them as spacetimes in plural. The study of Lorentzian manifolds, a particular case
of semi-Riemannian manifolds, lies in the branch of differential geometry known as semi-
Riemannian geometry, which explores the notions derived of endowing smooth manifolds
with a so-called semi-Riemannian metric.

At this point, given this more sophisticated geometrical model of spacetimes which
leaves behind the trivial flat classical Euclidean geometry, one may ask the question of
what does algebraic topology have to say about them, and what applications may it have
in physics theories that involve general spacetimes. To present a proper simple answer
to this question we first have to narrow it down, constraining the algebraic tools chosen
among all the available. Although homotopy groups are more intuitive and can exhibit
a vastly richer structure, the computation of homology is far more simpler, specially in
high dimensions, and is enough for many applications, remaining as the primary method
for classifying topological spaces. Nonetheless, it is cohomology, the algebraic dualization
of the concept of homology, which has proven to be stronger, as it is suitable for an extra
ring structure.

In topological spaces the most paradigmatic example of homology is the singular ho-
mology, a powerful invariant that encodes plenty of topological information. Therefore,
as Lorentzian manifolds are themselves smooth manifolds and thus topological spaces, we
can consider the singular homology of spacetimes and its dual cohomology. In addition,
the smooth structure with which smooth manifolds are furnished, defines a wide variety
of objects linked to differential calculus. One of this objects, differential forms, allows to
naturally construct an alternative notion of cohomology in smooth manifolds, de Rham
cohomology. Astonishingly, this construction which in principle lies entirely in the realm
of differential geometry, is deeply linked to bare topology, and is in fact equivalent to the
singular cohomology as asserted by the acclaimed de Rham’s theorem.

Unfortunately, the cohomology of physical spacetimes which are found in physics lit-
erature is, by itself, quite simple and uninteresting, as usually they are nothing but ele-
mentary manifolds that can be trivially studied with the tools provided by any algebraic
topology book. Nevertheless, some results of de Rham cohomology such as Poincaré du-
ality have found applications in classical and quantum electromagnetic theory on curved
spacetimes, namely in the separability of field configurations for the Faraday tensor (see
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[Ben16]). However, it is a slightly modified version of de Rham cohomology motivated by
open problems in gauge field theories, the so-called causally restricted cohomologies, that
is finding many applications in these field theories which are a current area of research
(see for instance [Ben16] and [Kha16]). More precisely, they play an important role in
understanding the (pre)symplectic and Poisson structure of these field theories.

These cohomologies exploit the fact that spacetimes are not just smooth manifolds, but
are endowed with a Lorentzian metric, that allows to consider an extra feature of them,
the causal structure. Under the classical conception of absolute space and time, the no-
tions of past and future, cause and effect, are trivial. Time flows in one direction, defined
by the so-called arrow of time, establishing the causal relations by ordering the physical
events. However, when the distinction between space and time fades away until almost
becoming a mere mirage, and the speed of light limit constrains the physical acceptable
causal relations, some extra considerations have to be made. The reason why Lorentzian
manifolds are suitable for model spacetimes is precisely the fact that they provide the
natural causal structure we should expect of a spacetime. From the characterization of
this causal structure, some sets naturally arise as appropriate to constitute the support
of physical fields, the sets that are indeed used to construct the already mentioned co-
homologies. This construction can be generalized beyond the de Rham complex to other
complexes which have important applications in other field theories, such as the Calabi
complex in linearized gravity on constant curvature backgrounds (see [Kha16]).

With the ultimate goal set in understanding and depicting these cohomologies, in
this work we will encompass a description of de Rham cohomology in smooth manifolds,
together with an outline of Lorentzian manifolds from a physical perspective. For this
purpose, we have organized this work in the following way. Section 1 is devoted to lay
the foundations of differential geometry needed to carry out our study. In Section 2, we
introduce the basic notions of cohomology on smooth manifolds, namely singular and de
Rham cohomology, presenting the main results regarding them. Finally, Section 3 is ded-
icated to the definition and characterization of de Rham cohomologies with non-standard
support in causally well-behaved spacetimes. It contains a preliminary introduction to
semi-Riemannian manifolds and the causal structure of Lorentzian manifolds, followed by
a brief presentation of some tools of the Hodge theory. These are then used to introduce
and study the desired cohomology theories.

Overall, we hope that our presentation of these cutting-edge de Rham cohomologies
with non-standard support, offers also an interesting introductory dive into the concepts
of de Rham cohomoloy and Lorentzian manifolds with a physical perspective, without
requiring further previous knowledge than undergraduate general topology, algebra, and
calculus.
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1 Differential geometry of smooth manifolds

The basic mathematical object studied in differential geometry is the smooth manifold. In
the same way that topological spaces provide the minimal support necessary to naturally
extend the notion of continuity in R to the most possible general sense, smooth manifolds
constitute the minimal mathematical structure that allow us to generalize the essentials
of differential calculus. Intuitively, they are topological spaces locally similar to Euclidean
spaces in an enough fine way to permit the definition of differentiation. In this section
we will introduce the basic notions regarding smooth manifolds mainly following [O’N83],
presenting the most relevant related objects and describing their most remarkable prop-
erties. These includes the concepts of tangent vector spaces and tensor fields, which will
allow, later on, to present the modern model of spacetimes, Lorentzian manifolds, and to
construct de Rham cohomology.

1.1 Smooth manifolds

We denote by Rn the set of n-tuples of real numbers with the usual algebraic structure and
the Euclidean topology. We will often use the Einstein summation convention to simplify
the notation, specially when working with coordinates, by which a repeated index on two
adjacent terms, one superscript and one subscript, denotes the summation over the range
of values of the index, whenever it makes sense and if it is not otherwise specified. For
example aibi denotes the sum

∑
i∈I a

ibi. However, we will still use the usual Σ notation if
we want to specify the range of the indices or to avoid confusion. Let X be a topological
space.

Definition 1.1. A n-dimensional local chart on X is pair (U,ϕ) where U ⊆ X is an open
set and ϕ : U −→ ϕ(U) ⊆ Rn is a homeomorphism. The functions xi = ui ◦ ϕ : U −→ R,
where ui : Rn −→ R are the canonical coordinate functions on Rn ui(a1, . . . , an) = ai,
are called coordinate functions of ϕ and satisfy that ϕ = (x1, . . . , xn). We say that
{x1, . . . , xn} is a coordinate system on U for which each p ∈ U is said to have coordinates
(x1(p), . . . , xn(p)).

Remark 1.2. Given two local charts (U,ϕ), (V, ψ) of X such that U ∩ V 6= ∅ we have the
following commutative diagram:

U ∩ V

ϕ(U ∩ V ) ψ(U ∩ V )

ϕ ψ

ψ ◦ϕ−1

The real multivariable function given by the composition ψ◦ϕ−1 : ϕ(U ∩V ) −→ ψ(U ∩V )
which maps the coordinates of ψ into the coordinates of ϕ is called the transition map.
Since the restricted applications ϕ|U∩V and ψ|U∩V are homeomorphism the transition
map is also a homeomorphism.

Definition 1.3. An atlas A on X is a a family of local charts of X, A = {(Ui, ϕi)}i∈I , such
that X =

⋃
i∈I Ui. If all the charts are of dimension n, we say that A is a n-dimensional

atlas on X.

Definition 1.4. An atlas A = {(Ui, ϕi)}i∈I on X is smooth (or C∞) if for all i, j ∈ I such
that Ui ∩ Uj 6= ∅ the transition map ϕj ◦ ϕ−1

i is a function of class C∞. The coordinate
systems induced by the local charts are said to overlap smoothly.
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Definition 1.5. Given A1 and A1 two smooth atlases on X, we say that they are com-
patible if A1 ∪ A2 is a smooth atlas on X, and we denote A1 ∼ A2.

The compatibility of atlases ∼ is an equivalence relation. Two compatible atlases
will endow a space with equivalent properties, so instead of working with atlases we will
consider equivalence classes.

Definition 1.6. A smooth structure [A] on X is an equivalence class of atlases on X.

Definition 1.7. A topological manifold M is a second-countable Hausdorff space which
is locally Euclidean, i.e, there is a positive integer n such that for all p ∈ M there is a
neighbourhood of p homeomorphic to Rn. We say that M is n-dimensional topological
manifold.

Remark 1.8. The dimension n of a nonempty topological manifold is unique thanks to the
the theorem of the topological invariance of the domain, which implies that no nonempty
open subset of Rn is homeomorphic to an open subset of Rm if m 6= n.

Remark 1.9. The Euclidean locality property is equivalent to the existence of an atlas
A on M of a certain dimension n. Moreover, by the previous remark, a n-dimensional
topological manifold only admits n-dimensional atlases.

Definition 1.10. A n-dimensional smooth manifold is a pair (M, [A]), where M is a
n-dimensional topological manifold and [A] is a (n-dimensional) smooth structure on M .

If there is no need of specify the smooth structure we will often denote a smooth
manifold (M, [A]) simply by M . A chart of M will refer to a local chart of one of the
atlases of the implicit smooth structure. From now on, we may refer to a smooth manifold
simply as a manifold or n-manifold, and M will denote a n-manifold if it is not otherwise
specified.

Examples 1.11. Here are some basic examples of smooth manifolds:

1. For all n ≥ 1, Rn with the standard smooth structure [{(Rn, idRn)}] is a n-dimensional
smooth manifold. We will refer to it simply as Rn.

2. For all n ≥ 1, the n-dimensional sphere

Sn = {(a1, . . . , an+1) ∈ Rn+1 : (a1)2 + . . . (an+1)2 = 1}

with smooth structure given by the atlas {(UN , ϕN ), (US , ϕS)} is a n-dimensional
smooth manifold, where

UN = Sn\{pN = (1, 0, . . . , 0)}, US = Sn\{pS = (0, , . . . , 0, 1)}

and ϕN : UN −→ Rn and ϕS : US −→ Rn are the stereographic projections from pN
and pS respectively.

3. Any n-dimensional real vector space V is a n-dimensional smooth manifold with
the initial topology for any isomorphism φ : V −→ Rn (which does not depend on
the choice of isomorphism) and smooth structure given by [{(V, φ)}]. Then, any
isomorphism ψ : V −→ Rn is a global chart on V .
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4. If (M, [{(Ui, ϕi)}i∈I ]) and (N, [{(Vj , ψj)}j∈J ]) are smooth manifolds of dimension m
and n then M ×N is a smooth manifold of dimension n+m with smooth structure
represented by the atlas {(Ui × Vj , ϕi × ψj)}i∈I,j∈J .

Given a smooth manifold M , its smooth structure can naturally induce a smooth
structure on some subsets P ⊆M . We call them submanifolds of M .

Definition 1.12. A subset P ⊆ M is said to be a k-dimensional smooth manifold if for
every p ∈ P there is a chart (U,ϕ) of M such that p ∈ U and

ϕ(U ∩ P ) = ϕ(U) ∩ {Rk × {0} ×
(n−k)
· · · × {0}}

Remark 1.13. A k-submanifold is a subset of M for which every point is covered by a chart
such that they only have the first k coordinates respect to the chart non-zero. Consider
the maps

π : Rn −→ Rk j : Rk −→ Rn

(a1, . . . , an) 7−→ (a1, . . . , ak) (a1, . . . , ak) 7−→ (a1, . . . , ak, 0, . . . , 0)

If {(Ui, ϕi)}i∈I is an atlas that represents the smooth structure on M , a submanifold
P ⊆ M is a smooth manifold with the topology of subspace (which ensures that P
is Hausdorff and second-countable) and with the smooth structure given by the atlas
{(Ui ∩ P,ψi)}i∈I where ψi = π ◦ ϕi|U∩P . It is clear that the atlas has dimension k and
covers P . Then, by definition of submanifold ψ−1

i = ϕ−1
i ◦ j so the transition maps

ψk ◦ ψ−1
j = π ◦ ϕk ◦ ϕ−1

i ◦ j are C∞.

Examples 1.14. Bellow are some prominent examples of submanifolds.

1. Any open subset U ⊆ M is a smooth submanifold of the same dimension that
M , since for all p ∈ U there exists a chart (V, ϕ) in M such that p ∈ V , so by
compatibility (U ∩ V, φ|U∩V ) will be another chart of M covering p and satisfying
the property of Definition 1.12.

2. Any k-dimensional subspace F of a real vector space V is a k-submanifold of V .

As we previously advanced, the introduction of smooth structures allow us to naturally
extend the C∞-differentiability (or smoothness) of the usual real multivariable functions
in Euclidean spaces f : U ⊆ Rn −→ Rm to maps between general manifolds.

Definition 1.15. Let M and N be smooth manifolds and p ∈M . A map F : M −→ N
is said to be smooth at p if for all charts (U,ϕ) of M , (V, ψ) of N such that p ∈ U and
F (p) ∈ V , the coordinate expression of F in such charts, which is the real multivariable
map

ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V )) −→ ψ(V ),

is of class C∞. We say that F is smooth if it is smooth for all p ∈M .

U ∩ F−1(V ) V

ϕ(U ∩ F−1(V )) ψ(V )

F

ϕ ψ

ψ◦F◦ϕ−1
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Remark 1.16. It is straightforward to see that:

1. It suffices to the check the smoothness for a pair of charts (U,ϕ) of M and (V, ψ)
of N such that p ∈ U and F (p) ∈ V thanks to the smooth overlap of charts.

2. Every smooth map is also continuous.

3. The identity on a smooth manifold is a smooth map.

4. The composition of smooth maps is smooth.

Definition 1.17. A map F : M −→ N such that it is smooth, bijective and its inverse
F−1 is smooth, is called diffeomorphism. If there exists a diffeomorphism between M and
N , they are said to be diffeomorphic and we denote M ∼= N .

Remark 1.18. Every diffeomorphism is also a homeomorphism, but not every smooth
homeomorphism is also a diffeomorphism. For instance F : R −→ R given by F (a) = a3

is smooth and hence continuous but its inverse, although continuous is not smooth.

There are two particular cases of smooth maps that are of special interest:

Definition 1.19. Let I ⊆ R be an open real interval. A smooth curve or simply a curve
on M is a smooth map γ : I −→ M , where I has the smooth structure given by the
inclusion in R as a global chart.

Definition 1.20. A smooth function or simply a function on M is a smooth map of the
type f : M −→ R. The set of all functions on M , denoted by F(M), has a R-algebra
structure with the operations defined by

(f + g)(p) := f(p) + g(p), (fg)(p) := f(p) · g(p), (λf)(p) := λ · f(p)

for all p ∈M .

1.2 Tangent vector space

Given a smooth manifold M , the tangent vector space at a point formalizes the concept of
tangency and tangent directions, which is, roughly speaking, the intuitive notion of all the
possible different directions in which we can pass through the point within the manifold.
In Euclidean spaces, tangent spaces are usually defined through an ambient space in
which the manifold is embedded into. However, when making a general treatment, it is
more convenient to present a definition intrinsic to the manifold without depending on
the existence of a given embedding. The following definition is based upon an abstract
generalization of the concept of directional derivative of functions which axiomatize its
key properties.

Definition 1.21. Let M be a smooth manifold and p ∈M . A vector tangent to M at p
is a map v : F(M) −→ R such that:

1. v(λf + µg) = λ · v(f) + µ · v(g) (R-linearity)

2. v(fg) = v(f) · g(p) + f(p) · v(g) (Leibniz rule)

7



for all f, g ∈ F(M) λ, µ ∈ R. The set of all vectors tangent to M at p, denoted by TpM ,
is called the tangent space of M at p. It is a real vector space with the operations defined
by

(v + w)(f) := v(f) + w(f), (λv)(f) := λ · v(f)

for all f ∈ F(M).

This definition is somehow natural because from elementary differential calculus in
R to curves and surfaces on Euclidean spaces, tangent vectors and tangent spaces are
formalized through derivatives. In fact, exploiting this idea, the tangent space at p can
be defined more intuitively as the quotient set of all smooth curves γ : (−ε, ε) −→ M
on M such that γ(0) = p by the equivalence relation of “having the same derivative”
at 0, in the sense that γ and ξ are said to be equivalent if there is a chart (U,ϕ) such
that (ϕ ◦ γ)′(0) = (ϕ ◦ ξ)′(0) as a curves on Rn. Equivalence classes are often denoted
by γ′(0). However, the two definitions are canonically isomorphic by the map given by
associating to any smooth curve γ : (−ε, ε) −→M such that γ(0) = p the tangent vector
at p, vγ : F(M) −→ R, defined by vγ(f) = (f ◦ γ)′(0).

Remark 1.22. Tangent vectors are local objects. This is expressed by the fact that given
v ∈ TpM , it follows from the definition that if if f ∈ F(M) is constant in a neighborhood
of p then v(f) = 0. The linearity then implies that if f and g are equal on a neighborhood
of p then v(f) = v(g).

A set of tangent vectors of particular interest are the ones given by partial differenti-
ation, which is locally defined using a chart to work with a coordinate expression of the
function in an Euclidean space.

Definition 1.23. Let (U,ϕ) be a chart on M such that p ∈ U and ϕ = (x1, . . . , xn). For
each 1 ≤ i ≤ n the function ∂

∂xi

∣∣
p
: F(M) −→ R defined by

∂

∂xi

∣∣∣∣
p

(f) =
∂f

∂xi
(p) :=

∂(f ◦ ϕ−1)

∂ui
(ϕ(p))

where u1, . . . , un are the canonical coordinate functions of Rn and ∂
∂ui

denote the partial
derivative respect of them, is a vector tangent to M at p, which is said to be the coordinate
vector tangent to M at p in the xi direction. If there is no need to specify the coordinate
system we will simply denote it by ∂i|p.

The following result provides a useful description of tangent spaces by linking tangent
vectors and coordinates (see for example Section 1 of [O’N83], Theorem 12).

Theorem 1.24. Let M be a smooth manifold, p ∈ M and (U,ϕ) a chart on M with
coordinate system {x1, . . . , xn} such that p ∈ U . Then, {∂i|p}i∈{1,...,n} is a basis of TpM
in terms of which every v ∈ TpM can be expressed as

v =

n∑
i=1

v(xi)∂i|p

Corollary 1.25. The vector space TpM has the same dimension than M .

The real numbers v(xi) are the coordinates of v ∈ TpM in the basis {∂i|p}i∈{1,...,n},
and will often be denoted by vi, so v = vi∂i|p.
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Remark 1.26. From Corollary 1.25, if P ⊆M is a k-dimensional submanifold of M , then
for every p ∈ P the tangent space TpP is a k-dimensional real vector space that can be
regarded as a subspace of the n-dimensional tangent space TpM by the isomorphism that
identifies each v ∈ TpP with ṽ ∈ TpM defined by ṽ(f) = v(f |P ). In particular, for all
U ⊆M open, TpU ∼= TpM , which express once again the locality of the tangent vectors.

Remark 1.27. In the particular case of M being a real vector space, there exist a natural
isomorphism between TpM and M for all p ∈M . For any basis {ei}i∈I , the isomorphism
is given by mapping each vp = vi∂i|p ∈ TpM onto v = viei ∈ M , where ∂i|p are the
coordinate vectors for the global chart that maps {ei}i∈I onto the canonical basis in Rn
(see Page 25 in [O’N83] for instance).

Definition 1.28. Given a manifold M and p ∈ M the cotangent space of M at p is the
dual space T ∗p (M) of Tp(M). Its elements α ∈ T ?p (M) are called linear forms or covectors.

Tangent spaces somehow recover the idea always present in differential calculus of
locally approximating smooth objects by linear objects. Following this approach, roughly
speaking, the so-called differential map induced by a smooth mapping between manifolds
will approximate it around each point by a linear transformation of tangent spaces. It
formalizes the non-rigorous notion of infinitesimal functional variations used in physics,
as the linear approximation resembles more the function the closer we are to the point.

Definition 1.29. Let F : M −→ N be a smooth map. For each p ∈ M the differential
map dpF of F at p is the linear map defined by

dpF : TpM −→ TF (p)N

v 7−→ dpF (v) : F(N) −→ R
g 7−→ dpF (v)(g) = v(g ◦ F )

An alternative definition in terms of equivalence classes of curves, which is perhaps
more intuitive, is given by mapping each curve on M to the curve in N given by the
composition with F :

dpF : TpM −→ TF (p)N

α′(0) 7−→ dpF (α′(0)) = (F ◦ α)′(0)

which does not depend on the choice of class representatives.

Remark 1.30. If F : M −→ N and G : N −→ P are smooth mappings, then for each
p ∈M dp(G ◦F ) = dF (p)G ◦ dpF . This property is the generalization of the chain rule, in
particular, when combined with the next result.

Proposition 1.31. Let F : M −→ N a smooth mapping and p ∈M . If (U,ϕ) is chart of
M such that p ∈ U with coordinate system {x1, . . . , xn} and (V, ψ) is a chart of N such
that F (p) ∈ V with coordinate system {y1, . . . , ym}, then for all 1 ≤ j ≤ n

dpF

(
∂

∂xj

∣∣∣∣
p

)
=

m∑
i=1

∂F i

∂xj
(p)

∂

∂yi

∣∣∣∣
F (p)

where F i := yi ◦ F ∈ F(M).
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Proof. We denote w = dpF
(

∂
∂xj

∣∣
p

)
∈ TF (p)N . By Theorem 1.24 we can express w as

w =

m∑
i=1

w(yi)
∂

∂yi

∣∣∣∣
F (p)

And by the definition of differential map and vector tangent in the direction of a coordinate
we have

w(yi) = dpF

(
∂

∂xj

)
(yi) =

∂

∂xj

∣∣∣∣
p

(yi ◦ F ) =
∂F i

∂xj
(p)

�

Definition 1.32. Let F : M −→ N be a smooth map and p ∈M . The matrix JpF asso-
ciated to dpF : TpM −→ TF (p)N in basis {∂/∂xj |p}j∈{1,...,n} and {∂/∂yi|F (p)}i∈{1,...,m}, is
called the Jacobian matrix of F at p relative to (U,ϕ) and (V, ψ), and as a consequence
of the previous result is expressed as(

∂F i

∂xj
(p)

)
1≤i≤m, 1≤j≤n

Example 1.33. Any linear map φ : V1 −→ V2 between real vector spaces is a smooth
map. Using the previous result the differential can be expressed as dpφ(vp) = (φ(v))φ(p),
with the notation of the isomorphism on Remark 1.27, as we should expect for a linear
approximation of a map which is already linear.

Definition 1.34. Given a function f ∈ F(M) and p ∈M the differential of f at p is the
linear form difpf ∈ T ∗pM defined by difpf(v) = v(f).

Since the differential can be naturally associated to the differential map dpf , by think-
ing of dpf(v) as the function v(· ◦f) (or more precisely, by expressing difpf as the compo-
sition of dpf with the natural isomorphism between Tp(R) and R given by Remark 1.27),
the differential difpf is simply denoted by dpf .

Remark 1.35. Given a manifold M , a point p ∈M and chart (U,ϕ) such that p ∈ U with
coordinate system {x1, . . . , xn}, for all 1 ≤ i ≤ n we have that xi ∈ F(U) and the linear
form dpx

i ∈ T ∗pU ∼= T ∗pM satisfies that

dpx
i(∂j |p) =

∂xi

∂xj
(p) = δij

where δ is the Kronecker delta. Therefore, {dpxi}i∈{1,...,n} is the dual basis of {∂i|p}i∈{1,...,n}.

The following result is the generalization of the inverse function theorem in manifolds,
and follows from applying the classical theorem to a coordinate expression for a map F
around a point p.

Theorem 1.36. Let F : M −→ N be a smooth mapping and p ∈ M . The differential
map dpF is an isomorphism if and only if there is a neighborhood U ⊆M of p such that
F |U : U −→ F (U) ⊆ N is a diffeomorphism.

Note that if dpF is an isomorphism then F defines a local diffeomorphism at p. More
in general, we introduce the following terminology.
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Definition 1.37. Let F : M −→ N be a smooth mapping and p ∈M . F is a immersion,
a submersion, or a local diffeomorphism at p if dpF is respectively injective, surjective or
isomporhism. We say that F is a immersion, a submersion or a local diffeomorphism is
the properties hold for all p ∈M . An injective immersion is called an embedding.

Remark 1.38. It follows from the generalized inverse function theorem, that a local dif-
femorphism which is bijective is a diffemorphism. On the other hand, if a inclusion
i : P ↪→M is an embedding then P is a submanifold of M . In fact, this is a more natural
definition of submanifold, which is equivalent to the definition presented.

The differential map also provides a proper generalization of the notion of derivative of
a curve as a vector tangent to M . Since the paradigmatic example of curves are physical
trajectories parametrized in time, it is often referred as the velocity of the curve.

Definition 1.39. Let γ : I −→ M be a curve and u : I −→ R the only coordinate given
by the inclusion as a global chart of I. The velocity vector of γ at t ∈ I is

γ′(t) := dtγ

(
d

du

∣∣∣∣
t

)
∈ Tγ(t)M,

where
(
d
du

∣∣
t

)
∈ TtI denotes the unit vector tangent to I at t in the u positive direction.

Remark 1.40. The velocity vector γ′(t) applied to any f ∈ F(M) gives

γ′(t)(f) = dtγ

(
d

du

∣∣∣∣
t

)
(f) =

d

du

∣∣∣∣
t

(f ◦ γ) =
d(f ◦ γ)

du
(t) = (f ◦ γ)′(t),

which is consistent with the notation used previously, as the tangent vector γ′(0) will have
associated the equivalence class of curves γ′(0).

Notice also that, according to Proposition 1.31 and considering the chart in I given
by the inclusion, the components of γ′(t) on the basis {∂i|α(t)}i∈{1,...,n} given by the
coordinate system {x1, . . . , xn} of a certain chart are ((x1 ◦ γ)′(t), . . . , (xn ◦ γ)′(t)), which
is usually denoted simply by ((γ1)′(t), . . . , (γn)′(t)) generalizing naturally the expression
of the derivative of a curve in Rn by components.

1.3 Vector fields and one-forms

A tangent vector field on a manifold is a map that assigns to each point a vector tangent at
that point. It results more convenient to express vector fields introducing a new manifold
that glues together all tangent spaces.

Definition 1.41. The tangent bundle TM of a manifold M is the disjoint union of all
tangent spaces of M:

TM :=
⊔
p∈M

TpM =
⋃
p∈M
{p} × TpM = {(p, v) : p ∈M, v ∈ TpM}

The tangent bundle is, indeed, a smooth manifold with topology and smooth structure
defined as follows:

Given a chart (U,ϕ) ofM with coordinates ϕ = (x1, . . . , xn), we consider the projection
map

π : TM −→M

(p, v) 7−→ π(p, v) = p

11



and the function

ΨU : π−1(U) ⊆ TM −→ R2n

(p, v) 7−→ (x1(p), . . . , xn(p), v1, . . . , vn)

where v = vi∂i|p. Then, the topology of TM is generated by the preimages by ΨU of all
open sets of R2n and all charts U of M . In addition, if {(Ui, ϕi)}i∈I represents the smooth
structure of M then {(π−1(Ui),ΨUi)}i∈I represents a smooth structure in TM .

Definition 1.42. The set Mp := π−1(p) is called the fibre of TM at p and is canonically
identified with TpM by mapping each (p, v) onto v.

Definition 1.43. A smooth vector field or simply a vector field on M is a section of the
tangent bundle, that is to say a smooth mapping X : M −→ TM such that π ◦X = Id.

Vectors fields are then defined by X(p) = (p,Xp) with Xp ∈ TpM ,i.e., by mapping
each point p ∈ M onto a point of the fibre of TM at p, which is identified with TpM .
Therefore, as we advanced, they can be thought as assigning to each point of the manifold
a vector tangent to the manifold at that point. For all f ∈ F(M) we denote by fX the
function fX : M −→ R defined by fX(p) = Xp(f). We also denote by X (M) the set of
vector field on M .

Remark 1.44. The fact that X is smooth implies that fX is also smooth, so fX ∈ F(M)
for all f ∈ F(M). Moreover, it suffices for fX to be smooth for all f ∈ F(M) to ensure
that a function X : M −→ TM such that π ◦X = Id is smooth.

Remark 1.45. X (M) is a real vector space with operations induced by the operations in
TpM defined by:

(X + Y )(p) := (p,Xp + Yp), (λX)(p) := (p, λXp)

for all p ∈M . It is also a F(M)-module with the action given by

(fX)(p) := (p, f(p)Xp)

for all p ∈M .

Remark 1.46. Given a smooth map F : M −→ N , the differential map dpF induces a
smooth map between the corresponding tangent bundles dF : TM −→ TN defined by
dF (p, vp) = (F (p), dpF (vp)) and a linear map (abusing of notation) dF : X (M) −→ X (N)
given by dF (X)(p) = dF (p,Xp).

Definition 1.47. A derivation D on F(M) is a map D : F(M) −→ F(M) satisfying

1. D(λf + µg) = λD(f) + µD(g) (R-linearity)

2. D(fg) = D(f)g + fD(g) (Leibniz rule)

for all λ, µ ∈ R and for all f, g ∈ F(M).

Remark 1.48. Notice the similarity between the definition of derivations and tangent
vectors. In fact, derivations and vector fields can be identified since every vector field
X ∈ X (M) defines a unique derivation DX on F(M) by DX(f) = fX and conversely,
every derivation D on F(M) defines a unique vector field XD ∈ X (M) by the property
XDp(f) = D(f)(p). This association is indeed a canonical isomorphism, so the notation
is abused by referring to a vector field and the corresponding derivation both as X, and
thus X(f) := fX .
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Definition 1.49. Let (U,ϕ) be a chart of M with coordinate system {x1, . . . , xn}. For
each 1 ≤ i ≤ n the map

∂i : U −→ TU

p 7−→ (p, ∂i|p)

is a vector field, since the function ∂i(f) = ∂f/∂xi : M −→ R given by ∂i(f)(p) = ∂i|p(f)
is smooth for all f ∈ F(M). It is called the coordinate vector field of (U,ϕ) in the xi

direction.

Remark 1.50. From Theorem 1.24 any vector field X can be locally expressed on U as

X|U = Xi∂i

where Xi := X(xi) : U −→ R are called the local coordinates of X on the chart (U,ϕ).
Note that the smoothness of X implies that X(xi) ∈ F(U). Since M is covered by charts
we can always define local coordinates of a vector field in a neighbourhood of any point
p ∈ M . However, this does not mean that X (M) is finite dimensional as a vector space
over R. We have that, in general, F(M) is infinite dimensional, as given a non-zero vector
field X, {fX : f ∈ F(M)} spans a infinite dimensional subspace of X (M). As a F(M)-
module, the maximal number of linear independent elements is finite, but there does not
exist any basis in general.

The notion of vector field on a curve can also be introduced as follows.

Definition 1.51. Let γ : I −→ M a curve on M . A vector field on γ is a smooth map
V : I −→ TM such that π ◦ V = γ.

A vector field V on γ is given by V (t) = (γ(t), Vγ(t)), so it smoothly assigns to each
t ∈ I a tangent vector to M at γ(t). The set of all vector fields on γ is denoted by X (γ),
and has a F(I)-module structure.

Examples 1.52. Let γ : I −→M a curve.

1. The velocity vector field of γ, γ′, is the vector field on γ defined for all t ∈ I by
γ′(t) = (γ(t), γ′(t)).

2. The restriction of any vector field X ∈ X (M) to γ(I) defines a vector field Xγ on γ
by Xγ(t) = (γ(t), Xγ(t)).

We can dualize the notion of vector field using the cotangent spaces.

Definition 1.53. Let M be a manifold. The cotangent bundle T ∗M is the disjoint union
of all the cotangent spaces T ∗M :=

⊔
p∈M T ∗pM . The cotangent bundle is a manifold with

the smooth structure obtained in the same way as that the tangent bundle. Fibres are
defined likewise.

Definition 1.54. A differential one-form or simply a one-form on M is a section of the
cotangent bundle, i.e., a smooth map ω : M −→ T ∗M such that π∗ ◦ ω = Id, where
π∗ : T ∗M −→M is the projection defined by π∗(p, λ) = p.
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Similarly to vector fields, one-forms are defined by ω(p) = (p, ωp) with ωp ∈ T ∗pM ,
so they assign to each point a covector at that point. Analogously to the derivation
approach to vector fields, for each X ∈ X (M), we can also define maps ω(X) : M −→ R
by ω(X)(p) = ωp(Xp), in terms of which the smoothness can be equivalently defined,
and identify each one-form with its corresponding map ω : X (M) −→ F(M). We denote
X ∗(M) the set of all one-forms of M , which is a real vector space and a F(M)-module
with operations defined by

(ω + η)(p) = (p, ωp + ηp), (λω)(p) = (p, λωp), (fω)(p) = (p) = (p, f(p)ωp)

for all p ∈ M . Notice that, indeed, X ∗(M) can be regarded as the dual space of X (M)
thinking of one-forms as maps X (M) −→ F(M).

Definition 1.55. The differential of a function f ∈ F(M) is the one-form df ∈ X ∗(M)
defined by df(p) = (p, dpf). It assigns to each point the differential of f at that point.

Remark 1.56. Given a chart (U,ϕ) of M with coordinate system {x1, . . . , xn} we can
consider the coordinate one-forms dx1, . . . , dxn on U which by Remark 1.35 satisfy that
dxi(∂i) = δij . It follows from applying to both sides of the following equation a vector
field expressed in terms the coordinate vector fields, that any one-form ω ∈ X ∗(M) can
be expressed in U as

ω|U = ωidx
i

where ωi := ω(∂i) are smooth. In particular, if f ∈ F(M), since df(∂i) = ∂f/∂xi on U :

df =
n∑
i=1

∂f

∂xi
dxi

1.4 Tensor fields

Functions, vector fields and one-forms can be regarded as a particular case of a more
general entity called tensor field. Tensor fields provide also the generalization on manifolds
of inner product on which semi-Riemannian geometry is based, and lead to the definition
of the building block of de Rham cohomology, differential forms. Lets first introduce the
concept of a tensor over a module. Let V be a module over a ring R and V ∗ its dual
module. For any integers r, s ≥ 0, we can consider the R-modules

(V ∗)r = V ∗ ×
(r)
· · · × V ∗, V s = V ×

(s)
· · · × V

with the usual component-wise operations.

Definition 1.57. Let r, s ≥ 0. A tensor of type (r, s) or (r, s)-tensor over V or is an
R-multilinear map

A : (V ∗)r × V s −→ R

i.e., A is R-linear in each slot. For r = 0, s 6= 0 we understand A as A : V s −→ R, for
r 6= 0, s = 0, A : (V ∗)r −→ R, and for r = s = 0, A ∈ R. We denote by T rs (V ) the set of
all tensors of type (r, s) over V .

Remark 1.58. T rs (V ) is an R-module with the usual definitions of functional addition and
action by an element of R. A (0, 0)-tensor is an element of λ ∈ R. A (0, 1)-tensor is a
linear form α ∈ V ∗. A (1, 0)-tensor is a linear form on V ∗, that is to say an element of
the double dual module ṽ ∈ V ∗∗, which can be regarded as an element of v ∈ V by the
canonical identification of V and V ∗∗, which maps the double dual element defined by
ṽ(α) = α(v) into v. A (0, 2)-tensor is a bilinear form on V .
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Definition 1.59. Let A ∈ T rs (V ) and B ∈ T r′s′ (V ). The tensor product of A and B is

the tensor A⊗B ∈ T r+r′s+s′ (V ) defined by

(A⊗B)(α1, . . . , αr+r
′
, v1, . . . , vs+s′) =

= A(α1, . . . , αr, v1, . . . , vs)B(αr+1, . . . , αr+r
′
, vs+1, . . . , vs+s′)

Remark 1.60. The tensor product defines an operation on the set T (V ) :=
⊕

r,s∈N T rs (V )
which is associative, and compatible with the other operations induced by the operations
on each T rs (V ), endowing it with a (graded) R-algebra structure. It is called the tensor
algebra. However, in general, the tensor product it is not commutative.

Proposition 1.61. Let V be a vector space, {ei}i∈I a basis and {e∗j}j∈I its dual basis.
The set {ei1 ⊗ · · · eir ⊗ e∗j1 ⊗ · · · ⊗ e∗js}ik,jl∈I (which is well-defined due to the tensor
product associativity) is a basis of T rs (V ) and all tensors can be expressed as:

A = Ai1...irj1...js
ei1 ⊗ · · · ⊗ eir ⊗ e∗j1 ⊗ · · · ⊗ e∗js

where Ai1...irj1...js
:= A(e∗i1 , . . . , e∗ir , ej1 , . . . , ejs) are called the components of A relative to

the basis.

The result follows form a straightforward check of the linear independence of the given
set, and the use of multilinearity and the expression of coordinates relative to the basis of
V and V ∗ on the arguments of A to show that A(α1, . . . , vs) = Ai1...irj1...js

ei1(α1) . . . e∗js(vs).

Remark 1.62. From the definition of components of a tensor relative to a basis it follows
that:

1. If A ∈ T rs has components Ai1...irj1...js
and B ∈ T r′s′ has components B

i1...kr′
j1...js′

on a certain
basis, C = A⊗B has components

C
i1...ir+r′
j1...js+s′

= Ai1...irj1...js
B
ir+1...ir+r′
js+1...js+s′

2. Given two basis {ej}j∈I and {e′i}i∈I . We consider the change of basis matrix
Q = (Qij)i,j∈I defined by ej = Qije

′
i and its inverse matrix Q′. If Ai1...irj1...js

are the
components of a tensor A relative to the {ej}j∈I basis, then

A
′i1...ir
j1...js

= Qi1k1 · · ·Q
ir
kr
Q
′l1
j1
· · ·Q

′ls
js
Ak1...krl1...ls

are the components of A relative to the basis {e′i}i∈I . The upper indices are said to
be contravariant (change according to Q) and the lower indices covariant (change
according to Q′). Thus, (r, 0)-tensors are called contravariant tensors and (0, s)-
tensors are called covariant tensors

Definition 1.63. Let A be a covariant or contravariant tensor of type at least two. A
is said to be symmetric if transposing any two of its arguments leave its image on R
unchanged. A is said to be skew-symmetric if each such reversal produces a sign change.
Tensor fields of type (1, 0), (0, 1) and (0, 0) are taken to be both symmetric and skew-
symmetric.

The concept of tensor field in manifolds is the natural way of introducing tensors
through the modules of vector fields and one-forms. More precisely, we define them as
follows.
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Definition 1.64. For any integers r, s ≥ 0, a tensor field of type (r,s) on M is a tensor
of type (r, s) over the F(M)-module X (M), i.e., a F(M)-multilinear map

A : (X ∗(M))r × (X (M))s −→ F(M)

We denote by T rs (M) the F(M)-module of tensor fields of type (r, s) over M .

Examples 1.65. Smooth functions are (0, 0)-tensor fields, vector fields are (1, 0)-tensor
fields and one-forms are (0, 1)-tensor fields.

Remark 1.66. A tensor over the tangent space TpM at a given point p ∈ M is called a
tensor at p. Any tensor field A of type (r, s) on M can be considered as a field on M
that assigns smoothly to each point p ∈ M a tensor at it Ap : (T ∗pM)r × (TpM)s −→ R.
Since A(ω1, . . . , ωr, X1, . . . , Xs)(p) depends only on ω1

p, . . . ω
r
p, X1p, . . . Xsp and not on the

entirety of each one-form and vector field evaluated (see for instance Section 2 of [O’N83],
Proposition 2), Ap can be defined by

Ap(α
1, . . . , αr, v1, . . . , vs) = A(ω1, . . . , ωr, X1, . . . , Xs)(p)

where for all 1 ≤ i ≤ s, 1 ≤ j ≤ r, ωi is any one-form on M such that ωip = αi ∈ T ∗pM
and Xj is any vector field on M such that Xip = vi ∈ TpM . In fact, the association
between M and the tensor bundle (defined analogously) is smooth. Conversely, a choice
of Ap determines a unique tensor field A. In the same way that with vector fields and one-
forms, the smoothness can be equivalently defined in terms of the smoothness of the maps
A(ω1, . . . , ωs, X1, . . . Xs) : M −→ R for all ω1, . . . ωr ∈ X ∗(M), for all X1 . . . Xs ∈ X (M),
which can be regarded as

A(ω1, . . . , ωr, X1, . . . Xs)(p) = Ap(ω
1
p, . . . , ω

r
p, X1p, . . . Xsp)

The following result generalizes the coordinate expressions obtained for vector fields
and one-forms.

Proposition 1.67. Let (U,ϕ) be a chart on M with coordinate system {x1, . . . , xn}. Any
tensor field A ∈ T rs (M) can be expressed on U as:

A = Ai1...irj1...js
∂i1 ⊗ · · · ⊗ ∂ir ⊗ dxj1 ⊗ · · · ⊗ dxjs

where ik, jk ∈ {1, . . . , n} for all k ∈ {1, . . . , s}, l ∈ {1, . . . , r} and the smooth functions
Ai1...irj1...js

:= A(dxi1 , . . . , dxir , ∂j1 , . . . , ∂js) ∈ F(U) are called the components of A relative
to (U,ϕ).

Proof. It is a direct consequence of the fact that according to Proposition 1.61 the set
{∂i1 |p ⊗ · · · ⊗ ∂ir |p ⊗ dpxj1 ⊗ · · · ⊗ dpxjs}ik,jk∈{1,...,n} is a basis of the real vector space of
tensors at p, T rs (TpM), and the local expressions we have for vector fields and one forms.
�

Remark 1.68. Given another chart (V, ψ) with coordinate system {y1, . . . , yn} such that
U ∩ V 6= ∅. In U ∩ V we have that

∂

∂xj
=

n∑
i=1

∂yi

∂xj
∂

∂yi

Thus, the components of A relative to (V, ψ) on U ∩ V can be expressed in terms of the
components relative to (U,ϕ) as in Remark 1.62(2) with Qij being the Jacobian matrix

Qij =
∂yi

∂xj
=
∂(ui ◦ ψ ◦ ϕ−1)

∂uj
= J(ψ ◦ ϕ−1)ij

16



Definition 1.69. Let F : M −→ N a diffeomorphism and A ∈ T rs (M), B ∈ T rs (N) with
s and r not both 0. The pushforward of A by F is the tensor field F∗(A) ∈ T rs (N) defined
by

(F∗(A))(η1, . . . , ηr, Y1, . . . , Ys) = A(η1∗, . . . , ηr∗, Y ∗1 , . . . , Y
∗
s )

where ηi∗ ∈ X ∗(M) is defined by ηi∗(X) = ηi(dF (X)) and Y ∗j ∈ X (M) is Y ∗j = dF−1(Yj)
for all i ∈ {1, . . . , r} j ∈ {1, . . . , s}. The pushforward of a (0, 0)-tensor is defined as the
function given by F∗(f)(p) = F (f(p)), i.e. F∗(g) = F ◦ g.

Analogously, the pullback of B by F is the tensor field F ∗(B) ∈ T sr (M) defined by

(F ∗(B))(ω1, . . . , ωr, X1, . . . , Xs) = B(ω1
∗, . . . , ω

r
∗, X1∗, . . . , Xs∗)

where ωi∗ ∈ X ∗(N) is defined by ωi∗(Y ) = ωi(dF−1(Y )) and Xj∗ ∈ X (N) is Xj∗ = dF (Xj)
for all i ∈ {1, . . . , r} j ∈ {1, . . . , s}. The pullback of a (0,0)-tensor is defined as the function
given by F ∗(g)(p) = g(F (p)), i.e. F ∗(g) = g ◦ F .

Remark 1.70. Pushforwards and pullbacks are F(M)-linear and compatible with the ten-
sor product, i.e., F∗(A⊗A′) = F∗(A)⊗F∗(A′) (and idem for the pullback). Note that for
smooth maps which are not diffeomorphisms, pullbacks and pushforwards are well-defined
for covariant or contravariant tensors respectively.
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2 Cohomology of smooth manifolds

Once the preliminaries of differential geometry have been set, the goal of this section is
to present an introduction to de Rham cohomology that will be the starting point for the
study of non-standard cohomologies in Section 3. We will start by providing the general
abstract notions of homology and cohomology, to then define the singular cohomology of
topological spaces, for which we will present the main results, such as invariance under
homeomorphism and homotopy equivalence and Poincaré duality. Then, we will go on
by constructing from differntial forms de Rham cohomology and its counterpart with
compact support, that will also play a relevant role in Section 3. Finally, we will briefly
present the theory of integration of differential forms that will provide the necessary tools,
in particular the generalized Stokes’ theorem, to give an insight into the major result
regarding de Rham cohomology and singular cohomology, de Rham’s theorem. For this
section we have mainly followed [Hat02], [War83], and also [Kri99], [Nak03] and [FOT08].

2.1 Homology and cohomology

As we introduced, algebraic topology is the study of topological spaces using algebraic
tools, in particular through the association of algebraic entities to the topological spaces.
Homology, one of the most remarkable among these tools, is based on an algebraic struc-
ture known as chain complex. Let R be a commutative unitary ring.

Definition 2.1. A chain complex (over R) is a pair (C•, d•) formed by a sequence of
R-modules C• = {Ck}k∈N and a sequence of morphisims d• = {dk : Ck −→ Ck−1}k∈N\{0}
such that dk ◦ dk+1 = 0 for all k ≥ 1. The elements of Ck are called k-chains and the
morphisms are called boundary operators or differentials.

· · · Ck−1 Ck Ck+1 · · ·dk dk+1

Remark 2.2. For R = Z the notion of Z-module is equivalent to the notion of abelian
group, so a chain complex over Z can be regarded as sequence of abelian groups and the
corresponding differential morphisms.

Definition 2.3. Let (C•, d•) be a chain complex. For k ≥ 1 we define

1. The R-module of k-cycles or closed elements Zk(C•, d•) = ker dk ⊆ Ck.

2. The R-module of k-boundaries or exact elements Bk(C•, d•) = imdk+1 ⊆ Ck.

3. The k-th homology R-module Hk(C•, d•) = Zk/Bk, which is well-defined since
imdk+1 ⊆ ker dk. We may vaguely refer to the sequence of homology R-modules of
a given complex as its homology.

A chain complex is said to be exact if and only if for all k ≥ 1, ker dk = im dk+1, i.e, if
Hk(C•, d•) = {0}.
Definition 2.4. A chain map f• : (C•, d•) −→ (C ′•, d

′
•) between chain complexes is a

sequence of morphisms f• = {fk : Ck −→ C ′k}k∈N such that the diagram

· · · Ck−1 Ck Ck+1 · · ·

· · · C ′k−1 C ′k C ′k+1 · · ·

fk−1

dk

fk

dk+1

fk+1

d′k d′k+1
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is commutative, i.e., fk ◦ dk+1 = d′k+1 ◦ fk+1, for all k ≥ 0.

Remark 2.5. A straightforward computation shows that a chain map f• induces a mor-
phism on the homologies Hk(f•) : Hk −→ H ′k for all k ≥ 0 by Hk(f•)([z]) = [fk(z)].
If f• is an chain isomorphism, i.e. fk are isomorphisms for all k, then Hk(f•) are also
isomorphism for all k.

Definition 2.6. Let f•, g• : (C•, d•) −→ (C ′•, d
′
•) be two chain maps. We say that f• and g•

are chain homotopic and denote f• ∼ g• if there exists a sequence of R-linear morphisms
h• = {hk : Ck −→ C ′k+1}k∈N such that for all k ≥ 0

fk − gk = d′k+1 ◦ hk + hk−1 ◦ dk

with the convention that h−1 = 0. In that case we say that h• is a chain homotopy
between f• and g•.

· · · Ck−1 Ck Ck+1 · · ·

· · · C ′k−1 C ′k C ′k+1 · · ·
hk−1

dk

fkgk
hk

dk+1

d′k d′k+1

Remark 2.7. If f• ∼ f• then Hk(f•) = Hk(g•) for all k ≥ 0, because if [c] ∈ Hk(C•, d•) then
dkc = 0 and fk(c)− gk(z) = d′k+1(hk(c))⇒ fk(c)− gk(z) ∈ im d′k+1 ⇒ [fk(c)] = [gk(z)].

Definition 2.8. A cochain complex (over R) is a pair (C•, d•) formed by a sequence of
R-modules C• = {Ck}k∈N and a sequence of morphisims d• = {dk : Ck −→ Ck+1}k∈N
such that dk+1 ◦ dk = 0 for all k ≥ 0. The elements of Ck are called k-cochains and the
morphisms are called coboundary operators or differentials.

· · · Ck−1 Ck Ck+1 · · ·dk−1 dk

Analogously, for each k ≥ 1 we can define the R-module of k-cocycles(or closed ele-
ments) Zk(C•, d•) = ker dk ⊆ Ck, the R-module of k-coboundaries (or exact elements)
Bk(C•, d•) = imdk−1 ⊆ Ck and the k-th cohomology R-module Hk(C•, d•) = Zk/Bk.
Cochain maps and cochain homotopy are defined likewise, and the results that involve
them are straightforward dualized.

Definition 2.9. Let (C•, d•) be a chain complex (over R). Its dual complex (C•, d•) is
the cochain complex defined by the dual R-modules Ck = C∗k and the dual morphisms
dk = d∗k+1 : C∗k −→ C∗k+1 given by d∗k(ϕ) = ϕ ◦ dk+1.

Remark 2.10. From this construction, one may expect to have a natural isomorphism
Hk(C•, d•) ∼= (Hk(C•, d•))

∗ but this is not always true. Nonetheless, the universal coeffi-
cient theorem for principal ideal domains (see [Hat02] for instance) ensures that this is the
case for chain complexes over a field F . Thus, in this case, we will treat them indistinctly.
In addition, this implies that for complexes over fields, Hk(C•, d•) is (non-canonically)
isomorphic to Hk(C•, d•).

The notion of exactness can be generalized to any sequence of linear maps by the prop-
erty that the images of the preceding maps are included in the kernels of the succeeding
ones. With this consideration in mind, we end this section presenting the following well-
known result (see for instance [BT82], Page 17) that will be useful to prove the main
result on Subsection 3.4. We have also the completely analogous result for homology.
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Proposition 2.11. Given a exact sequence of cochain maps

{0} A• B• C• {0}f • g•

known as short sequence, there exist linear maps τk : Hk(C•) −→ Hk+1(A•) induced by
the differentials of the complexes such that the so-called long sequence in cohomologies

· · ·Hk(A•) Hk(B•) Hk(C•) Hk+1(A•) Hk+1(B•) · · ·Hk(f •) Hk(g•) τk Hk+1(f •)

is also exact.

2.2 Singular cohomology

As we advanced, in the realm of topological spaces the most prominent construction of
homology is the singular homology.

Definition 2.12. (Singular homology) Let X be a topological space, R be a commutative
unitary ring and

∆k =

{
(a1, . . . , ak+1) ∈ Rk+1 : ai ≥ 0 ∀i and

k+1∑
i=1

ai = 1

}

be the k-simplex standard. A singular k-simplex on X is a continuous map σ : ∆k −→ X.
We define the singular k-chain R-module of X Sk(X,R) as the free R-module generated
by the singular k-simplices, i.e

Sk(X,R) =
⊕

σ:∆k−→Xcont.

R(σ)

where R(σ) is the free R-module generated by σ. The elements of Sk(X,R) are called
k-chains over R of X. For each k ≥ 1 we consider the maps

δki : ∆k−1 −→ ∆k

(a1, . . . , ak+1) 7−→ (ai, . . . , ai−1, 0, ai, . . . ak+1)

for all i ≤ k, and we define the singular differential morphism or boundary operator ∂k as

∂k : Sk(X,R) −→ Sk−1(X,R)

σ 7−→
k∑
i=0

(−1)iσ ◦ δki

and ∂0 = 0. They satisfy that ∂k−1 ◦ ∂k = 0 for all k > 0, so we can define the singular
chain complex over R of X as (S•(X,R), ∂•), and the singular k-th homology R-modules
of X, Hk(X,R) := Hk(S•(X,R), ∂•). In particular, for R = Z we obtain the singular
group chain complex of X (S•(X), ∂•) and the k-th homology groups of X, Hk(X).

A close look into the definition of k-chains and the differential morphism shows that
k-cycles of the singular chain complex can be regarded as k-dimensional loops on X
whereas k-boundaries can be regarded as the boundaries of (k+ 1)-dimensional chains on
X (with an orientation given by ∂). Intuitively, the existence of a k-cycle which is not the
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Figure 1: Visualization of the construction of the singular chain complex.

boundary of any (k + 1)-chain, indicates the presence of a k-dimensional hole in X (see
Chapter 2 in [Hat02]). The homology spaces are simply the quotient spaces of k-cycles
obtained by factoring out the k-boundaries, that are not linked to holes. More precisely,
given a topological space X, the dimension of the singular k-th homology vector spaces
(or the dimension of the singular k-th homology group or modules if they are free) can
be thought as formalizing the number of k-dimensional holes of X.

A continuous map between topological spaces f : X −→ Y induces a chain map be-
tween their singular chain complexes S•(f) by considering Sk(f) : Sk(X,R) −→ Sk(Y,R)
defined by Sk(f)(σ) = f ◦ σ, and therefore f induces a morphism on their homologies.
In particular, if f is a homeomorphism, the induced morphism on the homologies is an
isomorphism. Furthermore, the singular homology R-modules are aslo homotopically
invariant, i.e., if X is homotopic-equivalent to Y , X ∼ Y , then Hk(X,R) ∼= Hk(Y,R).

Despite he fact that ∆k is not a submanifold of Rk+1, and therefore given a smooth
manifold M we can not, in principle, discuss whether a k-simplex on M , σ : ∆k −→ M
is smooth or not, a notion of smoothness can be introduced on simplices as follows: we
say that a singular k-simplex σ on M is smooth at a given p ∈ ∆k if there exists a
submanifold P ⊂ Rk+1 with p ∈ P and a smooth function F : P −→ M such that
f |P∩∆k = σ. Furthermore, σ is said to be smooth if it is smooth for every p ∈ ∆k. With
these considerations, given a smooth manifold M , we can also consider the smooth singular
chain complex over R of M (S∞,•(M,R), ∂•) defined by the R-submodules generated by
the smooth k-simplices, S∞,k(M,R) = 〈{σ : ∆k −→ M : σ is smooth}〉 ⊆ Sk(M,R)
and the restriction of the singular differential morphisms ∂k. However, the inclusion
i : S∞,k(M,R) ↪→ Sk(M,R) defines a chain map and the induced morphism on homologies
is, in fact, a isomorphism, giving Hk(M,R) ∼= H∞,k(M,R).

Examples 2.13. Some well-known results of the singular homology (see for example
[Hat02] Section 2.1) are:

1. If X is a non-empty path-connected space H0(X,R) ∼= R.

2. If {Xi}i∈I are the path-connected components of a non-empty space, then, for all
k ≥ 0, Hk(X,R) =

⊕
i∈I Hk(Xi, R).

3. If X = {p} then Hk(X,R) = {0} for all k > 0
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4. For all n ≥ 1,

Hk(Sn, R) ∼=
{
R if k = 0, n
{0} otherwise

Given a topological space X, in addition to the singular chain complex we can consider,
we can also consider its dual complex, the singular cochain complex over R, (S•(X,R), ∂•)
and the singular cohomology R-modules of X, Hk(X,R). The main properties of the
singular homology, namely its invariance, are directly transfer to singular cohomology.
This dualization allows to define a natural product in the singular cochain complex which
does not have a well-behaved analogous in the chain complex. The cup product of singular
cochains is defined by its action on simplices by

`: Sk(X,R)× Sl(X,R) −→ Sk+l(X,R)

(ϕ,ψ) 7−→ ϕ ` ψ : Sk(X,R) −→ R

σ 7−→ ϕ
(
σ|[0,...,k]

)
ψ
(
σ|[k,...,k+l]

)
where [0, . . . , k] = {(a1, · · · , ak+l+1) ∈ ∆k+l : ai = 0∀i > k} and [k, . . . , k + l] is defined
likewise. This product endows the R-module S(M,R) =

⊕
k∈N S

k(M,R) with a (graded)
R-algebra structure, and induces a product on cohomology

`: Hk(X,R)×H l(X,R) −→ Hk+l(X,R)

which also endows the R-module H(M,R) =
⊕

k∈NH
k(M,R) with a (graded) R-algebra

structure (see for instance [Hat02], Section 3.2).

We can also define the cap product for each k ≥ l by

a: Sk(X,R)× Sl(X,R) −→ Sk−l(X,R)

(σ, ϕ) 7−→ σ a ϕ = ϕ
(
σ|[0,...,l]

)
σ|[l,...,k]

which, again, descends to a product on homologies and cohomologies

a: Hk(X,R)×H l(X,R) −→ Hk−l(X,R)

Then, this map is used to construct one of the main results in the singular cohomol-
ogy theory the so-called Poincaré duality, that asserts that in a n-dimensional compact
oriented smooth manifold we have natural isomorphisms Hk(M,R) ∼= Hn−k(M,R) for
all k ≤ n (see for instance [Hat02], Section 3.3). Although the natural isomorphism is
given between the cohomology and the homology, if R is a field, thanks to Remark 2.10,
in practice we can use Poincaré duality with all indices up or down. This will hold, in
particular, for Poincaré duality of de Rham cohomology.

2.3 Differential forms and de Rham cohomology

As we already mentioned, differential forms compose the core of a natural construction
of cohomology on smooth manifolds, de Rham cohomology. They are a particular type
of tensor field that provide a generalization of the integration on R, curves and sur-
faces to general manifolds under a unified approach. Intuitively, interpreting dxi as the
formalization of an infinitesimal variation or increment in the xi coordinate direction,
covariant tensors of the form dxi ⊗ dxj may be interpreted as representing infinitesimal
2-dimensional variations or surfaces which locally approximate the ∂i − ∂j plane. The
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same intuition extends to k dimensions. However, the fact that the tensor product of
covariant tensors is commutative implies that there is no distinction in the order of the
coordinates, as for instance dxi⊗dxj = dxj⊗dxi. Then, k-forms are defined as covariant
skew-symmetric tensors so that they naturally carry with them a notion of orientation,
which, as we will later discuss, is crucial to define a consistent integration.

Definition 2.14. Given an integer k ≥ 0, a differential k-form or simply a k-form on M
is a skew-symmetric tensor field of type (0, k). The set of k-forms on M is denoted by
Ωk(M).

Remark 2.15. Notice that Ω0(M) = F(M) and Ω1(M) = X ∗(M). In general, the set of
k-forms Ωk(M) ⊆ T 0

k (M) is a F(M)-submodule of T 0
k (M).

Although the tensor product of differential forms is not in general a differential form
because is not skew-symmetric, we can define a product of forms by skew-symmetrizing
the tensor product. This new operation, denoted by ∧, allows to consider, for example,
differential forms of the type dxi ∧ dxj which can be thought as representing infinitesimal
oriented surfaces, as the order of the coordinates changes their sign dxi∧dxj = −dxj∧dxi.
As we will see, these coordinate forms play a fundamental role, because every k-form can
be expressed locally as a F(M)-linear combination of k-coordinates forms.

Definition 2.16. Given ω ∈ Ωk(M) and η ∈ Ωl(M) the exterior product ω∧η ∈ Ωk+l(M)
is defined by

ω ∧ η =
1

k!l!

∑
σ∈Sk+l

ε(σ)σ(ω ⊗ η)

where Sn is the symmetric group, ε(σ) is the sign of the permutation σ, and σ(ω ⊗ η) is
the tensor defined by

σ(ω ⊗ η)(X1, . . . , Xk+l) = (ω ⊗ η)(Xσ(1), . . . Xσ(k+l))

Remark 2.17. The exterior product is associative and skew-commutative, i.e.,

ω ∧ η = (−1)klη ∧ ω

which implies that ω ∧ ω = 0. It defines a binary operation on the F(M)-module
Ω(M) :=

⊕
k≥0 Ωk(M) that is compatible with the other operations yielding a struc-

ture of a (graded) F(M)-algebra. It is called the differential forms algebra or the de
Rham algebra.

In particular, for k 1-forms α1, . . . , αk ∈ Ω1(M) we have that

α1 ∧ · · · ∧ αk =
∑
σ∈Sk

ε(σ)ασ(1) ⊗ · · · ⊗ ασ(k)

Given a local chart (U,ϕ) of M with coordinate system {x1, . . . , xn} any k-form ω, which
is in particular a tensor, can be locally expressed as

ω|U = ωj1...jkdx
j1 ⊗ · · · ⊗ dxjk

where ωj1...jk = ω(∂j1 , . . . , ∂jk), and since the skew-symmetry implies that if there is a
repeated index the coefficient is zero because ωjσ(1)...jσ(k) = ε(σ)ωj1...jk , we can rewrite the
expression as

ω|U =
∑

j1<···<jk

∑
σ∈Sk

ωjσ(1)...jσ(k)dx
jσ(1) ⊗ · · · ⊗ dxjσ(k) =

∑
j1<···<jk

ωj1...jkdx
j1 ∧ · · · ∧ dxjk
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or equivalently using Einstein’s summation convention, as

ω|U =
1

k!
ωj1...jkdx

j1 ∧ · · · ∧ dxjk

In particular, for k = n we have that the summation for j1 < · · · < jn just have the term
j1 = 1, . . . , jn = n so

ω|U = ω1···ndx
1 ∧ · · · ∧ dxn

Note that if k > n there must be a repeated index on each coordinate so Ωk(M) = {0}.
For k ≤ n, if we consider the real vector spaces of k-forms as tensors at a point p ∈ M ,
we can construct basis from the local coordinate expressions. Since there are

(
n
k

)
different

choices for k indices over a set of n indices, the spaces will be generated by
(
n
k

)
linear

independent elements, and therefore their dimension will be
(
n
k

)
.

The following result proves the existence of the differential map needed to construct
the sought cochain complex of differential forms.

Proposition 2.18. Let M be a manifold. There exists a unique map d : Ω(M) −→ Ω(M)
called exterior derivative satisfying:

(i) If ω ∈ Ωk(M), dω ∈ Ωk+1(M).

(ii) d is R-linear.

(iii) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη for all ω ∈ Ωk(M) for all η ∈ Ωl(M).

(iv) If f ∈ Ω0(M) df is the differential of f .

(v) If f ∈ Ω0(M) d(df) = 0.

Proof. We first suppose that such a map exists to prove the uniqueness. From the defini-
tion of exterior product and Properties (iii) and (v) it follows that if g1 . . . , gk ∈ Ω0(M)
then d(dg1 ∧ · · · ∧ dgk) = 0. Since fω = f ∧ ω for f ∈ Ω0(M) , ω ∈ Ωk(M), this implies
that

d(fdg1 ∧ · · · ∧ dgk) = df ∧ dg1 ∧ · · · ∧ dgk
Therefore, if ωj1...jk ∈ F(M) are the local components of a k-form ω relative to a chart
on U , which are unique, then dω is completely determined on U by the expression

dω =
1

k!
d(ωj1...jk) ∧ dxj1 ∧ · · · ∧ dxjk (2.1)

which, as M can be covered by charts, proves the global uniqueness.

The existence is then given by defining d on any local chart by its action on coordinates
according to Equation 2.1 and check that the properties hold (see Theorem 2.5.1 on
[Kri99]). Then, as the properties imply the uniqueness the expressions in different charts
must agree on overlaps. Therefore d is well-defined globally proving the existence. �

Note that the exterior derivative is a R-linear map, that can be regarded indeed as
a sequence of R-linear maps {dk : Ωk(M) −→ Ωk+1(M)}k∈N. Hence, we shall consider
the F(M)-modules of differential k-forms Ωk(M) just as real vector spaces. Further-
more, applying the exterior derivative to Equation 2.1 directly shows that Property (v)
in Proposition 2.18 is, in fact, stronger, as for any k-form d(dω) = 0 in all coordinate
system, so d2 = d ◦ d = 0. This gives the last ingredient needed to finally define the
following cochain complex.
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Definition 2.19. Let M be a smooth manifold. The de Rham complex on M is the
cochain complex (Ω•(M), d•), where Ω•(M) is the sequence of the real vector spaces of
k-forms and d the exterior derivative. The de Rham cohomology of M are the real vector
spaces defined by the cohomology of the de Rham complex, Hk

dR(M) = Hk(Ω•(M), d•).

· · · Ωk−1(M) Ωk(M) Ωk+1(M) · · ·dk−1 dk

Remark 2.20. In the same way that the cup product induces a R-algebra structure in
H(X,R), the exterior product induces a product in the cohomology classes endowing
HdR(M) =

⊕
k∈NH

k
dR(M) with a (graded) R-algebra structure.

Whereas the condition d2 = 0 implies that any exact form is closed, the converse
is not true in general. Nonetheless, for f ∈ Ω0(M), if df = 0, from its coordinate
expression follows that the partial derivatives of f are zero, which implies that f is locally
constant. For the remaining degrees we have the following extension (see for instance,
[Kri99] Theorem 2.5.2).

Theorem 2.21. (Poincaré lemma) Let M be a manifold and ω ∈ Ωk(M) with k ≥ 1.
If dω = 0, then for every p ∈ M there exists a neighbourhood of p and a (k − 1)-form
η ∈ Ωk−1(M) such that ω|U = dη.

Remark 2.22. As we will justify in Section 3.3, Poincaré lemma is nothing but a gen-
eralization of the fact that every real function with zero derivative is locally constant
and in 3-dimensional Euclidean spaces every curl (divergence)-free vector field has a lo-
cal scalar(vector) potential. Note that in the same way that, roughly speaking, singular
homology measures how cycles are not boundaries, which as we have discussed indicates
the presence of holes, de Rham cohomology measures how closed forms are not exact, or
in other words the failure of Poincaré lemma globally.

However, surprisingly, this failure can also be linked to holes. For example, we can
define in R \ {0} a function by f(x) = −1 if x < 0 and f(x) = 1 if x > 0 which is
differentiable in the whole domain with zero derivative but is non-constant. The existence
of such functions can be interpreted as an indication of a 0-dimensional hole in the domain
at x = 0. Similarly, in a cylinder which has a 1-dimensional hole we can define a curl-free
vector field which has not a scalar potential, and the same happens for divergence-free
vector fields and 3-dimensional holes. This fact seems to hide a deep connection between
the two homologies that appear to be two sides of the same coin encoding the same
information. The next section will introduce the necessary tools to present the result that
makes this relation explicit, de Rham’s theorem.

Before, to end this section, we present a variant of de Rham cohomology that will
by pivotal for the discussion carried out in the last section. Recall that given some
module V , a topological space X and a map f : X −→ V , the support of f is defined
as supp(f) = {p ∈ X : f(p) 6= 0}. Then, in particular, we can consider the subsets of
differential k-forms Ωk

c (M) = {ω ∈ Ωk(M) : supp(ω) is compact}. Note that for any
λ ∈ R \ {0} and for any ω ∈ Ωk

c (M) supp(λω) = supp(ω) and therefore is compact. On
the other hand for any ω, η ∈ Ωk(M)

supp(ω + η) ⊆ {p ∈M : ωp 6= 0} ∪ {p ∈M : ηp 6= 0} = supp(ω) ∪ supp(η)

which is compact because is a finite union of compact sets. Consequently, supp(ω + η) is
a closed subset of a compact set and thus compact. These two observations together with
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the fact 0 ∈ Ωk(M) is trivially compactly supported, show that Ωk
c (M) are real vector

subspaces of Ωk(M).

Furthermore, if a k-form ω has compact support then dω is also compactly supported,
i.e., d restricts to Ωk

c (M). Therefore, the following cochain complex is well-defined.

Definition 2.23. Let M be a smooth manifold, the compactly supported de Rham complex
is the cochain complex given by (Ω•c(M), d•). The corresponding cohomology is called de
Rham cohomology with compact support and is denoted by Hk

c,dR(M).

Remark 2.24. If M is compact then for any ω ∈ Ωk(M) supp(ω) is a closed set of a
compact set and therefore compact. Consequently, if M is compact Ωk(M) = Ωk

c (M) and
Hk
dR(M) = Hk

c,dR(M).

The exterior product also endows Hc,dR(M) with R-algebra structure. However, the
compactly supported de Rham cohomology exhibits, in general, a different behaviour
compared to the standard de Rham cohomology. In particular, regarding the cohomology
of degree k = 0, we have the following result.

Proposition 2.25. Let M be a smooth manifold with m compact connected compo-
nents. Then H0

c,dR(M) ∼= Rm. In particular, if M is non-compact and connected then

H0
c,dR(M) ∼= {0}.

Proof. By definition,

H0
c,dR(M) = Z0

c (M) = {f ∈ Ω0(M) : df = 0 and supp(f) is compact}

Then, if f ∈ H0
c,dR(M), df = 0 implies that f is locally constant, and the smoothness

implies that it has to be constant on each connected component. In addition, since f has
compact support, it has to be zero on all non-compact connected components. Conse-
quently, the statemet follows from the fact that every element of H0

c,dR(M) is determined
by the value of the function on each connected compact component, i.e., a m-tuple of real
numbers where m is the number of connected compact components. �

From this result follows directly that the compactly supported de Rham cohomology
is not homotopy invariant. As a counterexample, Rn is homotopy equivalent to a point
{p}, but H0

c,dR(Rn) ∼= {0} for being non-compact and connected whereas H0
c,dR({p}) ∼= R

for being compact and connected. In contrast, for the standard de Rham cohomology,
the homotopy invariance will be given directly by the homotopy invariance of the singular
cohomology thanks to de Rham’s theorem. Nevertheless, there is a closed relation between
the standard de Rham cohomology and its compactly supported counterpart in oriented
manifolds, Poincaré duality, that will also be presented in the next section.

2.4 Integration of forms and de Rham’s theorem

De Rham’s theorem is perhaps the most remarkable result regarding de Rham cohomology.
As we introduced, it beautifully connects the worlds of differential geometry and topology.
To get an overall idea of how it operates, we need to understand the integration of forms
and its main result, Stokes’ Theorem. However, prior to that, we have to introduce the
concept of oriented manifold which is essential provide a consistent notion of integration.
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In R3, the orientation of a curve (as a 1-submanifold) is a formalization of the notion
of a direction on it. It can be defined as a smooth unitary tangent vector field on the
curve, or as an equivalence class on the smooth tangent vector fields on the curve by the
relation Vγ ∼ Uγ ⇐⇒ for all t ∈ I ∃λt > 0 such that Vγ(t) = λtUγ(t), for which unit
vector fields can be chose as representative. On the other hand, regrading surfaces of R3

as 2-submanifolds, orientation formalizes the notion of consistently identifying an inner
and an outer side by defining a smooth unitary normal vector field (or an equivalence class
on the set of normal vector fields). Equivalently, orientation of surfaces can be thought
as a consistent choice of a positive or clockwise direction of the loops on the surface. The
general formulation, which encompasses these two cases and can be naturally generalized
to n-dimensional manifolds, is to define orientation through the concept vector space
orientation, which is a equivalence class of basis by the equivalence relation defined by

{ei}i∈I ∼ {vi}i∈I ⇐⇒ |Q| > 0

where |Q| is the determinant of the matrix of basis change ej = Qijvi. Then, on curves,
a consistent choice of orientation on its tangent vector spaces uniquely determines a
orientation on the curve and vice versa. In the same way, on surfaces, an orientation in
its tangent spaces uniquely determines a vector product on it, so a consistent choice of
orientations uniquely determines a orientation on the surface. However, in general, such
consistent choices may not exist. We define the concept of general manifold orientability
as follows.

Definition 2.26. Two charts (U,ϕ), (V, ψ) of a manifold M such that U ∩V 6= ∅ are said
to be positively compatible if their coordinates basis at TpM are equivalent in the sense
specified above for all p ∈ U ∩V , i.e, if |Jp(ϕ◦ψ−1)| > 0 for all p ∈ U ∩V 6= ∅. A manifold
M is said to be orientable if there exists an atlas formed by positively compatible charts.

Although all manifolds are locally orientable, i.e., each point has a neighbourhood
than can covered by positively compatible charts (choosing only one chart for instance),
not all of them are orientable, the paradigmatic counterexample being the Möbius strip
(see Example 2.5.1 in [Kri99]).

Definition 2.27. Let M be an orientable manifold and P be the set of all atlases of the
smooth structure of M formed by positive compatible charts. Two atlases of P are said to
be positively compatible if all of their overlapping charts are positively compatible. This
defines an equivalence relation, the classes determined by which are called orientations of
M . An orientable manifold is said to be oriented if an orientation is fixed, or, equivalently,
an oriented manifold is considered to be a pair (M,O) where M is a an orientable manifold
and O a orientation in M .

The orientation O will often be omitted to simplify the notation if it does not need to
be specified. Orientability can be alternative characterize using differential n-forms.

Definition 2.28. A volume form ω on a n-dimensional manifoldM is a nowhere vanishing
n-form on M , i.e., a n-form ω such that for all vector fields X1, . . . , Xn ∈ X (M) the
functions ω(X1, . . . , Xn)(p) are non-zero for all p ∈ M , or equivalently for all p ∈ M
ωp(v1, . . . , vn) ∈ R is non-zero for all v1, . . . , vn ∈ TpM .

Given a volume form ω, the collection of charts that pullback ω to a positive multiple
of the volume form du1 ∧ · · · ∧ dun of Rn form an atlas of positively compatible charts.
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Conversely, an atlas formed by positively compatible charts allows to define a nowhere
vanishing n-form. More precisely, we have the following result (see for instance [Kri99]
Proposition 2.5.2).

Proposition 2.29. A manifold is orientable if and only if there exists a volume form.

Given a volume form ω on M a ordered basis of tangent vectors to M at p, (v1, . . . , vn)
is said to be positively (negatively) oriented or right (left)-handed by ω if ωp(v1, . . . , vn) > 0
(< 0). Then, orientations of M can be equivalently defined as the equivalence classes in
the set of volume forms by the equivalence relation of defining the same set of positively
oriented vectors.

Examples 2.30. Below are some examples regarding orientations.

1. The orientation defined by volume form ω = du1 ∧ · · · ∧ dun in Rn is called the
standard orientation.

2. A connected orientable manifold with volume form ω admits just two orientations,
namely O1 = {fω : f ∈ F(M) and f(p) > 0 ∀p ∈M} and O2 = −O1.

With these considerations in mind, we can begin to introduce the notion of integration
of forms.

Definition 2.31. Let ω be a n-form of Rn and ω1···n the unique function that defines the
coordinate expression in the canonical basis ω = ω1···ndu

1 ∧ · · · ∧ dun. Let A ⊆ Rn be a
measurable set. The the integral of ω on A with the standard orientation is defined (if it
exists) as ∫

A
ω =

∫
A
ω1···ndu

1 ∧ · · · ∧ dun :=

∫
A
ω1···ndu

1 · · · dun

where the last expression denotes the usual integration on Rn.

Note that fixing an orientation is required for the integral to be well-defined because
forms are skew-symmetric but the integral is independent of the order of variables. Forms
do not necessarily have to be smooth or to be defined on the entire manifold but just on
a neighbourhood of the domain for the integration to be well-defined. Moreover, we just
need to be able to define an orientation on the domain of integration, so we can weaken
the previous and the following definitions. On the other hand having a compact support
is a sufficient condition for a form in order to ensure that its integral exist. Although it
is not a necessary condition it will sometimes be assumed.

Definition 2.32. Let M be an oriented manifold and A ⊆ M such that there exists
a chart (U,ϕ) positively compatible with the orientation of M with A ⊆ U and ϕ(A)
measurable. Let ω be a n-form. The integral of ω on A is defined (if it exists) as the
integral of the pullback (ϕ−1)∗ω ∈ Ωn(Rn) on ϕ(A), i.e.:∫

A
ω :=

∫
ϕ(A)

(ϕ−1)∗(ω)

Remark 2.33. In terms of the coordinate expressions on the given chart (U,ϕ), if the
coordinate of ω is ω1···n = ω(∂1, . . . , ∂n) then the coordinate of its pullback in the canonical
basis is

((ϕ−1)∗ω)1···n = (ϕ−1)∗ω(∂̃1, . . . , ∂̃n) = ω(dϕ−1(∂̃1), . . . , dϕ−1(∂̃n)) = ω1···n ◦ ϕ−1
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where ∂̃j = ∂/∂uj and we have used that by definition of coordinate tangent vectors

dpϕ
−1(∂̃j |p)(f) = ∂̃j |p(f ◦ ϕ−1) = ∂j |ϕ−1(p)(f)

Thus, ∫
A
ω1···ndx

1 ∧ · · · ∧ dxn =

∫
ϕ(A)

(ω1···n ◦ ϕ−1)du1 · · · dun

The definition is independent of the coordinates chosen for cover A as long as they are
positively oriented, because for another chart (V, ψ) positively compatible with (U,ϕ)
with coordinate system {y1, . . . , yn}, using the tensor change of coordinates of Remark
1.68 if ω′1···n is the local coordinate of ω on (V, ψ), then

ω1···n =
∂yl1

∂x1
· · · ∂y

ln

∂xn
ω′l1···ln =

∑
l1<···<ln

∑
σ∈Sn

ε(σ)
∂ylσ(1)

∂x1
· · · ∂y

lσ(n)

∂xn
ω′l1···ln =

=
∑
σ∈Sn

ε(σ)
∂yσ(1)

∂x1
· · · ∂y

σ(n)

∂xn
ω′1···n = detJ(ψ ◦ ϕ−1)ω′1···n

Consequently, since |det J(ψ ◦ ϕ−1)| = det J(ψ ◦ ϕ−1), using the change of coordinates
formula on Rn, we obtain∫

ψ(A)
ω′1···n ◦ ψ−1 =

∫
ϕ(A)

ω′1···n ◦ ϕ−1| det J(ψ ◦ ϕ−1)| =
∫
ϕ(A)

ω1···n ◦ ϕ−1

For a chart which is not positively compatible the integral will change the sign.

Remark 2.34. We can define the integration of a k-forms ω in subsets A ⊆ P where P is a
k-submanifold of M . Given the inclusion i : P ↪→M which is an embedding, we consider
the k-form i∗(ω) on P (which is simply ω|P ) and define the integral as∫

A
ω :=

∫
A
i∗(ω)

where the last expressions refers to the integral with the smooth structure of P . In
particular the integral of a function f as a 0-form over a point p is given by∫

p
f = f(p)

We can extend the definition of integral to smooth k-chains over R by imposing linearity
and using the fact that smooth simplices can be extended to smooth maps so their pullback
is well-defined (point by point, and it does not depend on the extensions chosen because
the exterior derivative is local).

Definition 2.35. Let M be a manifold and c =
∑k

i=1 λiσi ∈ S∞,k(M,R) a real smooth
k-chain and ω a k-form. The integral of ω over c is defined by∫

c
ω :=

k∑
i=1

λi

∫
∆k

σ∗i (ω)

Notice that there is no need in orienting the manifold for defining the integration along
chains, because the pullback is directly defined by the simplices. Observe that, in terms
of chains and forms, the fundamental theorem of calculus can be expressed as∫ b

a

df

dx
dx = f(b)− f(a) =

∫
b
f −

∫
a
f ⇒

∫
[a,b]

df =

∫
∂[a,b]

f
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In manifolds, this result turns out to be just a particular case of a more general theorem
(see [War83], Theorem 4.7).

Theorem 2.36. (Stokes’ theorem for smooth chains) Let M be a n-dimensional manifold,
ω a (k − 1)-form, and c a real smooth k-chain (k > 0). Then,∫

c
dω =

∫
∂c
ω

Stokes’ theorem not only generalizes the fundamental theorem of calculus to manifolds,
but also, as we will justify, generalizes and simplifies the classic vector calculus theorems,
such as Gauss’s divergence theorem and Kelvin-Stokes theorem in R3, Green’s theorem
in R2, and the fundamental theorem of calculus on curves. It synthesizes the notion
that integrating an object along the boundary of a domain is equal to integrating a
certain differential operation acting on it over the whole domain. In other words, roughly
speaking, it formalizes the intuitive idea of that the total change in the boundary equals
to the total sum of infinitesimal changes within the domain.

Stokes’ theorem plays also crucial role in de Rham’s theorem. As we advanced, it states
that de Rham cohomology and singular cohomology, although having been constructed
in very different ways with objects of different nature that do not seem to be related, are
the same entity describing the same idea.

Theorem 2.37. (De Rham’s theorem) Let M be a manifold. Then Hk
dR(M) ∼= Hk

∞(M,R)
with a natural isomorphism.

The proof is non-trivial and we shall refer to [War83] for a detailed discussion. Bellow
we offer just an sketch. The result is based on the fact that the linearity of the integration
allows to define bilinear form for every k ≥ 0

〈 · , · 〉 : Ωk(M)× S∞,k(M,R) −→ R

(ω, c) 7−→ 〈ω, c〉 =

∫
c
ω

which induces R-linear maps

Λk : Ωk(M) −→ Sk∞(M,R)

ω 7−→ Λk(ω) : S∞,k(M,R) −→ R
c 7−→ Λk(ω)(c) = 〈ω, c〉

Stokes’ theorem ensures that they are compatible with the differential morphisms in the
sense that 〈dω, c〉 = 〈ω, ∂c〉. Therefore, the following diagram is commutative

· · · Ωk(M) Ωk+1(M) · · ·

· · · Sk∞(M,R) Sk+1
∞ (M,R) · · ·

dk

Λk Λk+1

∂k

since for all ω ∈ Ωk(M), c ∈ Sk+1
∞ (M,R)

(∂k ◦ Λk)(ω)(c) = Λk(ω)(∂c) = 〈ω, ∂c〉
(Λk+1 ◦ dk)(ω)(c) = Λk+1(dω)(c) = 〈dω, c〉
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Consequently they define a cochain map between (Ω•(M), d•) and (S•∞(M,R), ∂•) which
by Remark 2.5 induces R-linear maps on cohomology by

Hk(Λ) : Hk
dR(M) −→ Hk

∞(M,R)

[ω] 7−→ Hk(Λ)([ω]) = [Λk(ω)]

which are indeed isomorphisms.

Remark 2.38. Note that since Hk(M,R) ∼= Hk
∞(M,R) de Rham’s theorem gives indeed an

isomorphism between de Rham cohomology spaces and the singular cohomology spaces.
In fact the isomorphism is an isomorphism of R-algebras between HdR(M) and H(M,R).
Having shown the isomorphism between cohomologies, from now on we will denote de
Rham cohomology symply by Hk(M) if no additional specification is needed.

To end this section, we consider a further extension of the integration that will lead to
a version of Poincaré duality for de Rham cohomology. By using partitions of unity (see
[War83] for a detailed discussion) we can define the integration of compactly supported
forms over regular domains on oriented manifolds. A regular domain is a subset D ⊆M
such that for every p ∈M one of the following holds:

(i) There is an open neighbourhood of p contained in M \D.

(ii) There is an open neighbourhood of p contained in D.

(iii) There is a chart (U,ϕ) with p ∈ U such that ϕ(U ∩ D) = ϕ(U) ∩ Hn where Hn is
the half-space of Rn, Hn = {(a1, . . . , an) ∈ Rn : an ≥ 0}.

Points of type (iii) define the boundary of D, ∂D which is an oriented (n−1)-dimensional
submanifold with orientation induced by the orientation onM . In particular, any manifold
is itself a regular domain with no boundary. Stokes’ theorem is then expressed as follows
(see Theorem 4.9 in [War83]).

Theorem 2.39. (Stokes’ theorem on regular domains) Let D be a regular domain in an
oriented n-dimensional manifold M , and let ω be a smooth (n − 1)-form with compact
support (on D). Then ∫

D
dω =

∫
∂D

ω

In addition, for any oriented n-dimensional smooth manifolds we can define the fol-
lowing bilinear form

( · | · ) : Ωk(M)× Ωn−k
c (M) −→ R

(ω, η) 7−→ (ω|η) =

∫
M
ω ∧ η

Notice that we can consider (ω|η) and for forms with not necessarily compact support
as long as supp(ω) ∩ supp(η) is compact so that the exterior product also has compact
support and the integral on M is well-defined. In particular if supp(η) is compact, then
supp(ω) ∩ supp(η) is a closed subset of a compact set and therefore compact. Finally,
as discussed in [BT82], Page 44, this bilinear form is non-degenerate and descends to a
non-degenerate bilinear form in cohomology, which gives the following result.

Theorem 2.40. (Poincaré duality for de Rham cohomology) Let M be a n-dimensional
oriented smooth manifold. Then Hk(M) ∼= Hc,n−k(M) for all k ≤ n.
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3 Cohomology of Lorentzian manifolds

In the previous sections, we have been working with smooth manifolds, defining the
elementary concepts regarding them and introducing the most paradigmatic examples of
cohomologies. Now it is time to add a new layer of structure, the Lorentzian metric. As
we presented, the importance of Lorentzian manifolds, smooth manifolds endowed with
a Lorentzian metric, lies in the fact that they are the bedrock of the modern relativistic
model of spacetime. A primary understanding of them and their causal structure is
required to define the sets that will lead to the cohomologies that we want to study.
These sets, which we will refer to as causally compact sets, emerge from somehow being
compatible with the causal sets relative to compact subsets of the spacetime. Then,
the compactly supported de Rham cohomology is adapted to them giving rise to the
cohomologies with causally restricted support.

We will start this section by offering a general introduction to semi-Riemannian man-
ifolds that will supply us with the necessary tools to approach our study of spacetimes.
Then, we will continue by describing the causal structure arose in Lorentzian manifolds
from their metric, providing a parallelism with the intuitive Minkowski spacetime. We
will also discuss and justify from a physical perspective the causality constrains that will
be assumed, in particular the gloablly hyperbolicity. This part is mainly based on [O’N83],
[Kri99] and also [Ben16].

Finally, following [War83], [Bär15] and [Kha16], we will briefly present some tools of
the Hodge theory, namely the Laplace-de Rham operator and its Green’s operator, before
defining and characterizing the already mentioned cohomologies. More precisely, based
on the work carried out in [Kha16], we will show isomorphisms between these causally
restricted cohomologies and the standard de Rham cohomology and its counterpart with
compact support in globally hyperbolic spacetimes, which are essential for simplify their
computation.

3.1 Semi-Riemannian manifolds

Semi-Riemannian geometry generalizes the concept of metric or inner product from Eu-
clidean vector spaces to manifolds, allowing us to introduce the metric notions derived
from it. This is done through furnishing manifolds with an object known as a metric
tensor, which induces a inner product on the tangent spaces. Then Lorentzian manifolds
emerge as a particular case. The description of semi-Riemannian manifolds is often ac-
companied with a presentation of metric related objects, namely the connection and the
curvature tensor, but we have not included it here in the sake of brevity and due to the
lack of direct applications for our purposes.

First, let us recall the basic definitions of a metric on a real vector space. Let V be a
finite dimensional real vector space.

Definition 3.1. A symmetric bilinear form on V g ∈ T rs (V ) is said to be a inner product
on V if it is non-degenerate, i.e., if g(v, w) = 0 for all w ∈ V then v = 0.

Definition 3.2. An inner product g on V is positive(negative)-definite if g(v, v) > 0
(g(v, v) < 0)) for all v 6= 0.

The positive-definiteness is sometimes included in the definition of inner product. We
will adopt the convention of naming positive-definite inner products as scalar products.
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Definition 3.3. The index ν of an inner product g on V is the higher dimension of a
subspace F ⊆ V for which g|F is negative-definite.

Definition 3.4. Two vectors v, w ∈ V are said to be orthogonal for an inner product g
if g(v, w) = 0. A vector v ∈ V is called a unit vector for g if g(v, v) = ±1. A basis {ei}i∈I
of V consisting of mutually orthogonal unit vectors, that is that g(ei, ej) = 0 if i 6= j and
g(ei, ei) = ±1 for all i, j ∈ I, is called a n orthonormal basis for g.

Some well-known results of linear geometry, based on the generalization of the Gram-
Schmidt process are summarized on the following theorem.

Theorem 3.5. Let g be a inner product on a n-dimensional vector space V . There
exists an orthonormal basis {e1, . . . , en} for g. The number of basis vectors ei for which
g(ei, ei) = −1 is the same for any such basis and equals the index of g.

Remark 3.6. Notice that an orthonormal basis diagonalizes the matrix defined by the
components of g, as gij = g(ei, ej) = δijεj , where εj = g(ej , ej) = ±1. We will consider
all orthonormal basis ordered so that the n-tuple (ε1, . . . , εn), called signature of g satisfy
that εj = −1 if j ≤ ν and εj = 1 if j ≥ ν, which is often denoted by (ν, n− ν). If v = viei
and w = wiei then

g(v, w) = −
ν∑
i=1

viwi +
n∑

j=ν+1

vjwj

The inner product notion is introduced on smooth manifolds in the following way:

Definition 3.7. A metric tensor g or simply a metric on a manifold M is a symmetric
non-degenerate (0, 2)-tensor field on M of constant index ν.

The non-degeneracy and the constant index can be understood in terms of regarding
g ∈ T 0

2 (M) as smoothly assigning to each point p ∈M an inner product gp on TpM , with
the index of gp being the same for all p.

Definition 3.8. A pseudo-Riemannian or semi-Riemannian manifold is a pair (M, g)
where M is a smooth manifold and g a metric tensor on M . We say that (M, g) is a

1. Riemannian manifold if ν = 0. g is called a Riemannian metric

2. Lorentzian manifold if dimM ≥ 2 and ν = 1. g is called a Lorentzian metric

We will usually denote semi-Riemannian manifolds simply by M if the metric does not
need to be specified.

Remark 3.9. Any smooth manifold admits a Riemannian metric but not all manifolds
admit a non-Riemannian metric (see [Kri99], Theorem 4.1.1 and Corollary 4.1.3). How-
ever, under certain conditions, the existence of Lorentzian metrics, is guaranteed (see for
instance [Kri99], Theorem 4.1.2). A Riemanniam metric defines on each tangent space a
scalar product, allowing the definition of a distance induced by the metric.

Remark 3.10. Given a local chart (U,ϕ) of M a metric tensor can be locally expressed
on U as

g = gijdx
i ⊗ dxj

with gij = g(∂i, ∂j) the local components relative to the chart. The symmetry implies
that gij = gji, and the non-degeneracy implies that (gij)i,j is a regular matrix. If X and
Y are vector fields such that locally X = Xi∂i and Y = Y j∂j then

g(X,Y ) = gijX
iY j
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Remark 3.11. Given a semi-Riemannian manifold M , g : X (M) × X (M) −→ F(M)
defines a natural F(M)-linear isomorphism (see Section 3 of [O’N83], Proposition 10)

[ : X (M) −→ X ∗(M)

X 7−→ X[ : X (M) −→ F(M)

Y 7−→ X[(Y ) = g(X,Y )

with inverse map is denoted by

] : X ∗(M) −→ X (M)

ω 7−→ ω]

which are called musical isomorphism. The notation is motivated by the fact that, if in a
local coordinate system X = Xi∂i then X[ = Xidx

i with Xi = gijX
j so given Y = Y k∂k

X[(Y ) = gijX
jdxi(Y k∂k) = gijX

jY i = g(X,Y )

Therefore, the association is said to be lowering-raising the index by the metric. The
situation is analogous for the real tangent and cotangent spaces at a point p with gp, for
which the ismorphism follows immediately from the non-degeneracy of gp.

Examples 3.12. Here are some examples of semi-Riemannian manifolds:

1. Rn with the metric defined for each p ∈ Rn by

gp(v
i∂i|p, wi∂i|p) = −

ν∑
i=1

viwi +
n∑

j=ν+1

vjwj

where ∂i|p are the canonical coordinate vectors, is a semi-Riemannian manifold
denoted by Rnν . This metric can be understood as the metric induced by a inner
product h in Rn defined for any a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn by

h(a, b) = −
ν∑
i=1

aibi +

n∑
j=ν+1

ajbj

through the isomorphism given by Remark 1.27, i.e, gp(vp, wp) = h(v, w). The
Lorentzian manifold Rn1 is called the standard Minkowski n-space, and the Rieman-
nian manifold Rn0 is called the Euclidean n-space and is denoted simply by Rn. The
metric in Rnν can be expressed globally in terms of the canonical coordinates, using

that gij = δijεi, as g = εidu
i ⊗ dui where (ε1, . . . , εn) = (−1, (ν). . .,−1, 1 . . . , 1) is the

signature of g.

2. More in general, any real vector space E endowed with a inner product h is itself
a semi-Riemannian manifold with the metric tensor g defined for each point p ∈M
by gp(vp, wp) = h(v, w), using the isomorphism of Remark 1.27.

3. If (M, g) and (N,h) are semi-Riemannian manifolds and π and ρ are the projections
of M ×N onto M and N respectively, then the tensor field given by the pullbacks
π∗(g) + ρ∗(h) is a metric tensor on M × N . In fact, Rnν can be regarded in these
terms.
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In the same way that with smooth manifolds, under certain circumstances, a subset
of a semi-Riemannian manifold inherits its metric structure.

Definition 3.13. Let P be a smooth submanifold of a semi-Riemannian manifold M of
metric g, and j : P ↪→ M the inclusion map. If the pullback j∗(g) is a metric tensor on
P , we say that (P, j∗(g)) is a semi-Riemannian submanifold of (M, g).

Remark 3.14. If (M, g) is a Riemannian manifold, any smooth submanifold P of M
is itself Riemannian with the restriction g|P . However, in general, this is not true for
non-Riemannian metric, because the pullback of the metric tensor may be degenerate or
without constant index. Nevertheless if (M, g) is a semi-Riemannian manifold with index
ν and U ⊆M is open, then (U, g|U ) is a semi-Riemannian submanifold with index ν.

Similarly to diffeomorphisms in smooth manifolds, the notion of equivalence for semi-
Riemannian manifolds is expressed as follows.

Definition 3.15. Let (M, g) and (N,h) be two semi-Riemannian manifolds. A map
F : N −→ M is an isometry if it is a diffeomorphism and it preserves the metric, i.e.,
F ∗(h) = g. Equivalently an isometry F is a diffeomorphism for which for all p ∈ M
the differential map dpF is a linear isometry, that is to say an isomporhism satisfying
gp(v, w) = hp(dpF (v), dpF (w)). If there exists a isometry between M and N we say that
they are isometric and we denoted by M ∼= N .

Example 3.16. Every linear isometry between real vector spaces with inner products
is an isometry between them as a semi-Riemannian manifolds with the induced metric
tensor. In particular, any vector space E with a inner product h of index ν is isometric
to Rnν . Consequently every tangent space, which is itself a semi-Riemannian manifold, is
isometric to Rnν .

3.2 Causal structure of spacetimes

As we introduced, the postulates of the special theory of relativity led to the modeling
of the physical (flat) spacetime as a Minkowski spacetime, a pair (V, η) where V is a 4-
dimensional real vector space and η a inner product of index 1. Strictly, the affine space
structure is more adequate to describe the concept of spacetime, with a set of points that
we call events and a vector space. However, the bijection between the set of points and
the underlying vector space imposed by the axioms of affine spaces allows us to identify
them, so, for simplicity, we will abusively consider just the vector space.

A choice of an orthonormal basis {e1, e2, e3, e4} on (V, η) in which the inner product has
components η(ei, ej) = ηij = εiδij with (ε1, ε2, ε3, ε4) = (−1, 1, 1, 1), allows to identify the
spacetime with (R4, η̃) through the linear isometry given by the coordinates, where η̃ is the
inner product on R4 with components in the canonical basis η̃ij = εiδij . This formalizes
the notion in physics of an inertial frame of reference centered at the origin, although, to be
precise, a further condition regarding the time orientation needs to be imposed to obtain
physically acceptable frames of references. Then, relative to a fixed frame of reference,
physical events are characterized by a quadruple of coordinates (x1, x2, x3, x4) ∈ R4, where
x1 = ct represents the time coordinate, (x1, x2, x3) the spatial Cartesian coordinates, and
c the speed of light, introduced to homogenize the physical dimensions. The worldline
of a physical point-like particle is defined as the set of events associated to it, and is
described by a smooth curve γ : I −→ V , or more precisely its image γ(I).
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The well-known fact implied by the special relativity postulates that no information,
energy or matter can be transferred faster than c, conditions the admissible particle
worldlines and the causal relations in the spacetime. First, note that given a vector v
with coordinates relative to the frame of reference (ct, x, y, z) then

η(v, v) = −c2t2 + x2 + y2 + z2

Consequently,
η(v, v) = 0⇐⇒ c|t| =

√
x2 + y2 + z2

which means that v represents an event such that the spatial distance from the origin
equals the distance travelled by the light in the time distance to the origin. Therefore
vectors with η(v, v) = 0, called lightlike (if non-zero), represent events associated to light
rays emitted from the origin. Then, the set set of events experienced by all possible such
light rays {v ∈ V : η(v, v) = 0} can be written in coordinates as

{(x1, x2, x3, x4) ∈ R4 : −x1 + x2 + x3 + x4 = 0}

which is a cone in R4 known as the light cone at the origin. The speed limit of c implies
that an event can be causally related to the origin if and only if the spatial separation
to it is smaller or equal than the distance that light travels in the temporal distance
to it, i.e., if it lies inside the light cone, η(v, v) ≤ 0 ⇐⇒ c|t| ≤

√
x2 + y2 + z2. Such

vectors are said to be causal (if they are non-zero). Furthermore, the speed of a mass
particle must be strictly smaller than c, which imposes that, parametrizing its worldline by
γ(t) = (ct, x(t), y(t), z(t)) then γ′(t) = (c, x′(t), y′(t), z′(t)) must satisfy η(γ′(t), γ′(t)) < 0
for all t to ensure that

c >
√

(x′(t))2 + (y′(t))2 + (z′(t))2 = v(t)

Note that given a reparametrization λ(t), since (γ(λ(t)))′ = γ′(λ)λ′(t), we have that
η(γ′(λ), γ′(λ)) = λ′(t)2η(γ′(t), γ′(t)) so the condition v < c for a mass particle is equivalent
to having a worldline described by a curve with velocity vector satisfying η(γ′, γ′) < 0
regardless of the parametrization. This implies that, the events that a particle may
experience (or may have experienced) must lie in the interior of the region limited by its
light cone. A vector satisfying η(v, v) < 0 is said to be timelike whereas if it satisfies
η(v, v) > 0 we say it is spacelike.

In order to account for the fact that our experience of time distinguishes between
past and future and the events that causally affect and are causally affected by another
event, we have to introduce an arrow of time by fixing the so-called time-orientation. It
is defined as class in the set of timelike vectors by the relation

v ∼ u⇐⇒ η(v, u) < 0

which is an equivalence relation with only two classes [v] and [−v], for a timelike vector
v. The vectors of the time orientation chosen are said to point to the future whereas the
vectors of the remaining class are said to point to the past, which allows us to distinguish
between the future light cone and the past light cone.

Since any vector space with a inner product is itself a semi-Riemannian manifold,
the (flat) spacetime can also be formalized as a Lorentzian manifold (M,η) isometric
to the standard Minkowski 4-space R4

1, with the events regarded as points p ∈ M and
the wordlines described by curves γ : I −→ M . This approach seems to unnecessary
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increase the conceptual complexity as introduces different tangent vector spaces instead
of a unique vector space (although they can be naturally identified). Nevertheless, as we
already motivated, it has proven to be the more adequate to be extended to the general
theory of relativity, in which spacetimes are modeled by a wider class of Lorentzian
manifolds (M, g). The causality structure in these general spacetimes emerges from the
local causality induced by the tangent vector spaces (TpM, gp), which are themselves
vector spaces with inner product of index 1, as the Minkowski spacetime. More precisely,
we have the following definitions.

Definition 3.17. Let (M, g) be a Lorentzian manifold. Given a p ∈M , a tangent vector
v ∈ TpM is said to be

1. Timelike if gp(v, v) < 0

2. Spacelike if gp(v, v) > 0

3. Lightlike or null if gp(v, v) = 0 and v 6= 0

A tangent vector v ∈ TpM is said to be causal if it is a non-zero, non-spacelike vector.

Similarly, a vector field X ∈ X (M) is said to be timelike (respectively, spacelike,
lightlike or null, causal) if for all p ∈M Xp is timelike (respectively, spacelike, lighlike or
null, or causal). A curve γ : I −→ M is called timelike (respectively, spacelike, lightlike
or null, causal) if its velocity vector field γ′ is timelike (respectively, spacelike, lightlike
or null, or casual). The class into which a vector, a vector field or a curve falls (if it does)
is called its causal character.

Figure 2: Left: Minkowski (3-dimensional) spacetime. The lightcone, a timelike curve (γ)
and a timelike (vt), a lightlike (vl) and a spacelike (vs) vectors are represented. Right:
Lorentzian (2-dimensional) manifold. A tangent space with its corresponding light cone
and a timelike curve are represented.

Definition 3.18. Let (M, g) be a Lorentzian manifold. A smooth submanifold S ⊆ M
is said to be

1. Timelike if gp|TpS is non-degenerate of index 1 for all p ∈ S.

2. Spacelike if gp|TpS is non-degenerate positive definite for all p ∈ S.

3. Lightlike if g|p|TpS is degenerate in for all P ∈ S.
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Remark 3.19. It follows immediately that a submanifold is timelike if all of its tangent
spaces contains a timelike vector, is spacelike if all non-zero tangent vectors are spacelike,
and is lighlike if it contains a null vector but not a timelike vector (see Section 5 of
[O’N83], Lemma 28,29). Note that an arbitrary smooth submanifold may not have a
definite causal character, and semi-Riemannian submanifolds of a Lorentzian manifold
are either timelike or spacelike

Definition 3.20. A Lorentzian manifold (M, g) is said to be time-orientable if there
exists a timelike vector field on M . A time-orientation is an equivalence class in the set
of timelike vector fields by the relation

X ∼ Y ⇐⇒ g(X,Y ) < 0

A time-oriented manifold is a pair (M, T ) where M is a Lorentzian manifold and T a
time-orientation on M . We will denote it simply as M if the time-orientation does not
need to be specified.

Definition 3.21. Let (M, T ) be a time-oriented manifold and X ∈ T . Given p ∈ M a
causal vector v ∈ TpM is called future-directed if gp(v,Xp) < 0 and is called past-directed
if gp(v,Xp) > 0. A causal vector field Y is said to be future-directed (past-directed) if Yp is
future-directed (past-directed) for all p ∈M . A causal curve γ : I −→M is called future-
directed (past-directed) if its velocity vector field γ′ is future-directed (past-directed).

From a physics point of view, the restrictions regarding the speed limit for the transfer
of information, energy and matter in general spacetimes are also inherit locally from
the tangent vector spaces and extended globally. Thus, analogously to the Minkowski
spacetime, the physical acceptable possible worldines on a general spacetime for mass
particle are described by timelike curves. Two events may be chronologically related (as
part of a particle worldline) if there exists a timelike curve connecting them and may be
causally related if there exists a causal curve connecting them. Taking into account the
time-orientation, this motivates the following definitions.

Definition 3.22. Let M be a time-oriented manifold and p, q ∈ M . We say that p
chronological precedes q and denoted by p� q if there is a future-directed timelike curve
from p to q. We say that p causally precedes q and denoted by p < q if there is a future-
directed causal curve form p to q. Given a subset U ⊂M and p, q ∈ U we say that p� q
(p < q) in U if there exists a future-directed timelike (causal) curve in U from p to q.

Definition 3.23. Let (M, T ) be a time oriented manifold and A ⊆ U ⊆ M . The
chronological future of A relative to U is

I+(A,U) = {q ∈ U : ∃p ∈ A such that p� q in U}

and the causal future of A relative to U is

J+(A,U) = {q ∈ U : ∃p ∈ A such that p < q in U}

If U = M we will simply denote I+(A) and J+(A).

Remark 3.24. Note that p � q =⇒ p < q so I+(A) ⊂ J+(A). All these concepts have
homologous definitions replacing future by past, reversing p and q in the inequalities and
replacing + by −. In particular we can define the chronological past and the causal
past, I−(A) and J−(A), of a subset A. We can also define the chronological set of A,
I(A) = I−(A) ∪ I+(A) and the causal set of A, J(A) = J−(A) ∪ J+(A). This sets are
the generalization of the interior and adherence of the region limited by light cones in the
Minkowki spacetimes, and, locally, they have a similar behaviour.
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Therefore, as we advanced, time-oriented Lorentzian manifolds are endowed with the
rudiments of the causal structure we expect from a model of spacetime, allowing the
formal definitions of future, past and the permitted causal relations. However, when con-
sidering models of our physical spacetime, we shall disregard not connected manifolds,
as it would be (in principle) impossible for us to notice the existence of a hypothetical
disconnected component. On paper, we could consider time-oriented non-orientable man-
ifolds as time-orinetability, which depends on the metric, is not related with orientability
(there exist orientable and non-orientable manifolds with both time-orientable and non-
time-orientable metric). Nonetheless, it does not seem too bold to constrain ourselves to
orientable manifolds, as we have no evidence of non-orinetability in our spacetime. This,
moreover, will allow us to overcome major technical obstacles in the study of cohomologies
regarding the integration of forms and Poincaré duality. These considerations lead to our
following definition of spacetime.

Definition 3.25. A spacetime is a connected oriented time-oriented Lorentzian manifold.

From a physical point of view, two isometric spacetimes are equivalent, so one can
define a physical spacetime as an equivalence class of spacetimes by the relation of being
isometric. Nevertheless, the object we have defined is still too general and allow certain
causal pathologies that are usually seen as not physically acceptable because they lead to
paradoxes. Thus, some additional restrictions are often made in discussions with certain
physical perspective. In addition, it goes without saying that, a part from the imposition
of further conditions regarding the causal structure that we are going to briefly present,
General Relativity confines physical spacetimes to 4-dimensional Lorentzian manifolds.
However, we will proceed with a general treatment for an arbitrary dimension n.

Definition 3.26. A spacetime M is said to be chronological (causal) if there does not
exist a closed timelike (causal) curve on M .

The chronological condition prevents the possibility of time-traveling back to a past
event of your worldline whereas the causal condition further imposes the impossibility of
communicating with a past event of your worldline (without violating the speed of light
limit). It is straightforward to check that the chronological condition already rules out
compact spacetimes (see Section 14 of [O’N83] Lemma 10 ). However, timelike or causal
curves that return arbitrary close to their origin are still allowed. With the next condition
this second type of problematic curves are forbidden.

Definition 3.27. A spacetime M is said to be strongly causal if for every p ∈M and for
every neighbourhood U ⊆ M of p there exists a neighbourhood V ⊆ U of p such that V
is crossed at most once by any causal curve on M , i.e., γ−1(V ) is connected for all causal
curve γ.

Note that a strongly causal spacetime is causal and therefore chronological. The
strongest causality condition that is often assumed, further imposes that the set of causal
curves connecting two given points is compact.

Definition 3.28. A spacetime M is called diamond-compact if for all p, q ∈ M the set
J+(p)∩J−(q) is compact. A spacetime M is said to be globally hyperbolic if it is strongly
causal and diamond-compact.

Remark 3.29. The definition of globally hyperbolic spacetime can be weaken to a causal
spacetime diamond compact, because, as shown in [BS07] the strong causality is already
guaranteed by these two properties.
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The most relevant properties of globally hyperbolic spacetimes that justify its as-
sumption when considering physical spacetimes, are regarding the following special type
of hypersurfaces.

Definition 3.30. A inextensible curve on a smooth manifold M is a curve γ : I −→ M
such that for every curve ξ : J −→ M satisfying that I ⊆ J and ξ|I = γ then I = J and
ξ = γ. A Cauchy hypersurface in a spacetime M is a subset Σ ⊆ M that is intersected
exactly once by any inextensible timelike curve.

Cauchy hypersurfaces are indeed topological (n − 1)-submanifolds of n-dimensional
spacetimes met by any inextensible causal curve in M (see Section 14 of [O’N83], Lemma
29) and any two Cauchy hypersurfaces in M are homeomorphic (see Section 14 of [O’N83],
Corollary 32), but, without further assumptions, they are not guaranteed to be smooth.

As it may be found in [Ger70], a spacetime M is globally hyperbolic if and only if
it contains a Cauchy hypersurface. In addition, [Ger70] laid the foundations for prov-
ing the following characterization of globally hyperbolic spacetimes in terms of Cauchy
hypersurfaces.

Theorem 3.31 ([BS03],[BS05][BS06]). Let M be a globally hyperbolic spacetime. Then,
it contains a (smooth) spacelike Cauchy hypersurface. Furthermore, for each spacelike
Cauchy hypersurface Σ, M is isometric to MΣ := R×Σ with the natural smooth structure
and endowed with the metric −βdt⊗ dt+ht where, t : R×Σ −→ R is the projection onto
the first component, β ∈ F(R× Σ) is strictly positive and ht is a Riemannian metric on
{t} × Σ for each t ∈ R, which is a spacelike Cauchy hypersurface in MΣ for all t.

Figure 3: Schematic representation of a 3-dimensional globally hyperbolic spacetime.
Cauchy hypersurfaces {t} × Σ and inextensible timelike curves γ are represented.

This last theorem allows to understand globally hyperbolic spacetimes in terms of a
foliation along a time axis of spacelike hypersurfaces {t}×Σ that are interpreted as spatial
hypersurfaces of simultaneity for each time t (in which we have a Riemannian metric and
hence a distance) and are intersected by each particle wordline exactly once, preventing
any kind of time travel or communicating back with the past. Thus, we should naturally
expect the globally hyperbolicity condition to be present in any physically reasonable
spacetime, as it is the case, for instance, of the Minkowski spacetime and the FLRW
universes. Consequently, the characterization of cohomologies that we will present, which
is constrained to globally hyperbolic spacetimes, is completely natural from a physical
perspective.

Now, we can finally introduce the causally compact sets, from which we will define the
cohomologies in question.
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Definition 3.32. Let M be a spacetime. A closed set S ⊆M is said to be:

1. Advanced (respectively retarded) if there is a compact K ⊆M such that S ⊆ J+(K)
(respectively S ⊆ J−(K)).

2. Spacelike compact if there is a compact K ⊆M such that S ⊆ J(K).

3. Future compact (respectively past compact) if S ∩ J+(K) (respectively S ∩ J−(K))
is compact for all K ⊆M compact.

4. Timelike compact if S is both future compact and past compact.

Figure 4: Representation of spacelike compact set S and a timelike compact set T .

Remark 3.33. If S is a compact set, then it follows from the definition of J that S is
advanced, retarded and spacelike compact. Moreover, in a globally hyperbolic spacetime
M , if a closed set S is advanced then it is also past compact. The reason is that for any
compact set K ′ ⊆M , S ∩J−(K ′) ⊆ J+(K)∩J−(K ′) which is compact as implied by the
definition of globally hyperbolicity. The same argument holds for retarded sets in relation
to future compact sets. The conversely, however is false (see Example 1.1 in [Bär15]).
Thus, advanced and retarded sets are also called strictly past compact and strictly future
compact respectively. As a result, in a globally hyperbolic spacetime, compact set is also
future compact, past compact and timelike compact. This is sumarized in the following
diagram of implications, where the vertical arrows hold in globally hyperbolic spacetimes.

compact

advanced spacelike compact retarded

past compact timelike compact future compact

The importance of these sets lies on the fact that, for certain differential equations
which occur often in physics, a field on a spacetime M which satisfies them with compactly
supported initial data will have spacelike compact support. Furthermore, the naturally
smooth dual evaluations of spacelike compactly supported fields turn out to have timelike
compact support. For a meticulous characterization of these sets in globally hyperbolic

41



spacetimes we shall refer to Section 1 in [Bär15]. In it, an interesting duality is exhibited
between them as well as results regarding its behaviour relative Cauchy hypersurfaces.
The later are summarized in the following theorem.

Theorem 3.34. Let M be a globally hyperbolic spacetime and S ⊆M a closed subset.

1. S is future compact (respectively past compact) if and only if there exists a Cauchy
hypersurface Σ ⊆M such that S ⊆ J+(Σ) (respectively S ⊆ J−(Σ)). Consequently,
S is timelike compact if and only if there exist two Cauchy hypersurfaces Σ1,Σ2 ⊆M
such that S ⊆ J+(Σ1) ∩ J−(Σ2).

2. S is advanced (respectively retarded) if and only if, for some compact subset KΣ

of some Cauchy hypersurface Σ, S ⊆ J+(KΣ) (respectively S ⊆ J−(KΣ)). S is
spacelike compact if and only if S ⊆ J(KΣ) for some compact subset KΣ of any
Cauchy hypersurface Σ. Then, for any Cauchy hypersurface Σ, the intersection
S ∩ Σ is compact.

3.3 Hodge theory for semi-Riemannian manifolds

Our last step before defining the causally restricted cohomologies, is to present another
object needed not only for their definition but also for analyse them, the Laplace-de Rham
operator. With this purpose, we first need to briefly introduce Hodge theory. Although
we are just interested in the Lorentzian case, we will proceed for general semi-Riemannian
manifolds.

Definition 3.35. Let (M, g) be a n-dimensional semi-Riemannian manifold. A local
frame field on U ⊆ M is a set {E1, . . . , En} of orthonormal vector fields on U , that is
that for all p ∈ U {E1(p), . . . , En(p)} is an orthonormal basis on TpM . Its local coframe
field is the set of dual one-forms {ω1, . . . , ωn} defined by ωi(Ej) = δij .

Given a p ∈ M , the existence of a local frame field on some neighbourhood of p is
guaranteed by the existence of the so-called normal neighbourhoods on each point which
allow to extend any orthonormal basis at a pont to a frame field through radial geodesics
(see Section 3 of [O’N83], Corollary 46).

Definition 3.36. Let (M, g) be an oriented n-dimensional semi-Riemannian manifold.
Given two local coframe fields {ω1, . . . , ωn} and {η1, . . . , ηn}, on U and V respectively,
since the corresponding change of basis matrix Q will be orthogonal on each point, the
same calculations of Remark 2.33 yield

ω1 ∧ · · · ∧ ωn =
1

det(Q)
η1 ∧ · · · ∧ ηn = ±η1 ∧ · · · ∧ ηn

on U∩V . The choice of a local coframe field on each point compatible with the orientation
implies that the corresponding n-forms will agree on overlaps, defining a unique global
volume form ωg called the metric volume form.

Remark 3.37. Let (U,ϕ) be a chart on M with coordinate system {x1, . . . , xn} such that
{E1, . . . , En} is a frame field on U with coframe field {ω1, . . . , ωn} and ωg = ω1 ∧ · · · ∧ωn

on U . Let Q be the change of basis matrix Ei = Qji∂j . We have that

ωg = ω1 ∧ · · · ∧ ωn =
1

det(Q)
dx1 ∧ · · · ∧ dxn
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Now, since in the {E1, . . . , En} frame g(Ei, Ej) = εjδij we have that

εjδij = g(Ei, Ej) = QkiQ
l
jg(∂k, ∂l) = QkiQ

l
jgkl =⇒ ±1 = det(QgQt) = det(Q)2 det(g)

so for a positively oriented coordinate system

ωg =
√
|detg|dx1 ∧ · · · ∧ dxn

Recall that, as discussed in Remark 2.17, given p ∈ M and considering the spaces
of k-forms (k ≤ n) as tensors at p, their dimension is

(
n
k

)
. The equality

(
n
k

)
=
(
n

n−k
)

implies that the space of k-forms at p and the space of (n − k)-forms at p have the
same dimension. More in general, the following proposition ensures the existence of a
canonical isomorphism between Ωk(M) and Ωn−k(M) in semi-Riemannian manifolds (see
for instance [Kri99], Proposition 4.2.1).

Proposition 3.38. Let (M, g) be an oriented n-dimensional semi-Riemannian manifold
with metric index ν and metric volume form ωg. There exists a unique F(M)-linear
operator ? : Ω(M) −→ Ω(M), called the Hodge star operator satisfying:

(i) For all k ≤ n, if ω ∈ Ωk(M) then ?ω ∈ Ωn−k(M).

(ii) ?1 = ωg where 1 is the constant 1 function.

(iii) For all k ≤ n, if ω ∈ Ωk(M), ? ? ω = (−1)k(n−k)+νω.

(iv) ω ∧ ?ω = 0 if and only if ω = 0.

(v) For all ω, η ∈ Ωk(M), ω ∧ ?η = η ∧ ?ω.

Remark 3.39. Property (ii) implies that, for all k ≤ n, (−1)k(n−k)+ν ? ? = id, so, as we
advanced, ? : Ωk(M) −→ Ωn−k(M) is an F(M)-isomorphism with inverse defined by
?−1 = (−1)k(n−k)+ν?.

Remark 3.40. Given P ⊆M a semi-Riemannian k-submanifold and i : P ↪→M its inclu-
sion, we can consider the induced metric volume for ωg|P = ωi∗(g) and the corresponding
Hodge star operator on P .

Examples 3.41. With these tools we can finally see, as we advanced in Section 2, how
Poincaré lemma and Stokes’ theorem generalize the corresponding classic statements of
calculus in Euclidean spaces.

1. For f ∈ F(M) and X,Y ∈ X (M), with the isomorphism of Remark 3.10

grad f := (df)] div X := ?d ? X[

And on a 3-dimensional manifold

X × Y := (?(X[ ∧ Y [))] curl X := (?dX[)]

With these considerations, we have for example:

curl X = (?dX[)] = 0 =⇒ dX[ = 0 =⇒ ∃f ∈ Ω0(M) such that X[|U = df

=⇒ X|U = grad f
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2. We can integrate functions as 0-forms over a point, but we can also define the
integral of a function f ∈ F(M) on a regular domain D ⊆ M of an oriented semi-
Riemannian n-dimensional manifold as∫

D
f :=

∫
D
?f =

∫
D
fωg

which generalizes the integration of functions on surfaces of Euclidean spaces. Like-
wise, the integral of a vector field X ∈ X (M) on a regular domain S of a (n − 1)-
submanifold and on a regular domain l of a 1-submanifold, are respectively defined
by ∫

S
X :=

∫
S
?X[

∫
l
X :=

∫
l
X[

With these considerations, under the Stokes’ theorem hypothesis we have, for in-
stance∫

∂D
X =

∫
∂D

?X[ =

∫
D
d ? X[ =

∫
D

(−1)n(n−n)+ν ? (?d ? X[) = (−1)ν
∫
D
?div X

which recovers the usual formula for the standard Riemannian metric of Euclidean
spaces.

Definition 3.42. Let M be an oriented n-dimensional semi-Riemannian manifold. The
codifferential is the map δ : Ω(M) −→ Ω(M) defined by the sequence of maps on each
degree δk : Ωk(M) −→ Ωk−1(M) given by δk = (−1)k ?−1 d ?.

Ωk(M) Ωk−1(M)

Ωn−k(M) Ωn−k+1(M)

(−1)kδk

? ?

dn−k

Remark 3.43. For a semi-Riemannian manifold M we can define another bilinear form
from ( · | · ) as follows

〈 · | · 〉 : Ωk(M)× Ωk
c (M) −→ R

(ω, η) 7−→ 〈ω|η〉 =

∫
M
ω ∧ ?η = (ω| ? η)

Following the same reasoning as for ( · | · ), as long as supp(ω)∩ supp(η) is compact, we can
always consider 〈ω|η〉. Moreover, in that case, 〈 · | · 〉 is symmetric. Since M is a regular
domain without boundary, Stokes’ theorem implies that

∫
M dω = 0 for all ω ∈ Ωn−1

c (M).
Therefore, using that

d(ω ∧ ?η) = dω ∧ ?η + (−1)k−1ω ∧ d ? η

we have that for all ω ∈ Ωk(M), η ∈ Ωk+1(M) such that supp(ω) ∩ supp(η) is compact,

〈dω|η〉 =

∫
M
dω ∧ ?η =

∫
M
d(ω ∧ ?η)− (−1)k−1ω ∧ d ? η = (−1)k

∫
M
ω ∧ d ? η =

= (−1)k
∫
M
ω ∧ (? ?−1 d ? η) =

∫
M
ω ∧ ?δη = 〈ω|δη〉

which justifies the prefactor (−1)k in the definition of codifferential.
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Definition 3.44. Let M be a semi-Riemannian manifold, the Laplace-de Rham operator
is the map ∆ : Ω(M) −→ Ω(M) defined by ∆ = dδ + δd.

Remark 3.45. If ω ∈ Ωk(M) then ∆ω ∈ Ωk(M), so we can consider the family of maps
∆k : Ωk(M) −→ Ωk(M). In fact, the Laplace-de Rham operator is a cochain map from
the de Rham complex to itself because d∆ = dδd = ∆d. Furthermore, by definition, it is
cochain homotopic to zero.

· · · Ωk−1(M) Ωk(M) Ωk+1(M) · · ·

· · · Ωk−1(M) Ωk(M) Ωk+1(M) · · ·

dk−1

∆k−1

dk

∆k
δk

∆k+1
δk+1

dk−1 dk

In addition, similarly to d, ∆ restricts to Ωk
c (M), defining a cochain map from the com-

pactly supported de Rham complex to itself cochain homotopic to zero.

Remark 3.46. We define the so-called solutions spaces as Ωk
∆(M) = ker ∆k. The exterior

derivative d restricts to these spaces, because if ω ∈ ker ∆ then

(dδ + δd)ω = 0 =⇒ dδω = −δdω

and therefore
∆dω = (dδ + δd)dω = dδdω = −δddω = 0

Hence, they define a subcomplex of the de Rham complex (Ω•∆(M), d•) for which we can
consider the cohomology Hk

∆(M). In addition, Ωk
∆,c(M) = ker ∆ ∩ Ωk

c (M) is a vector
subspace in which d also restricts, so we can consider the corresponding complex and the
corresponding cohomology Hk

∆,c(M).

In the particular case of Riemannian geometry, Ωk
∆(M) are called the spaces of har-

monic forms Hk and play a fundamental role in the Hodge decomposition theorem (see
Section 6 in [War83]) which asserts that in a compact oriented Riemannian manifold there
is an orthogonal direct sum decomposition

Ωk(M) = Hk ⊕ im ∆ = Hk ⊕ im d⊕ im δ

In this case, the cohomology Hk
∆(M) is simply Hk because Hk ∩ im d = {0}, and

furthermore, is isomorphic to Hk
dR(M) (see [FOT08], Theorem A.12).

3.4 Cohomology with causally restricted supports

At this point, we can finally present the cohomologies that we wanted to introduce. After
having described the causally compact sets and introduced the solution spaces for the
Laplace-de Rham operator all we have left to do is to adapt the compactly supported de
Rham cohomology to these sets.

Definition 3.47. Let M be a spacetime. Since supports are closed by definition we can
consider the sets of k-forms Ωk

x(M) = {ω ∈ Ωk(M) : supp(ω) is X}, where X = retarded,
advanced, spacelike compact, future compact, past compact, timelike compact and re-
spectively x = −,+, sc, fc, pc, tc. Similarly to the compact supported spaces, Ωk

x(M)
are indeed vector subspaces and the exterior derivative restricts to them. Therefore we
can consider the corresponding complexes and cohomologies Hk

x(M). In addition, in the
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same way as in Remark 3.46, we can also consider the subspaces with causally restricted
support on the solution space, denoted by Ωk

∆,x(M), and the corresponding complex and

cohomologies Hk
∆,x(M). All these cohomologies are known as causally restricted de Rham

cohomologies or cohomologies with causally restricted supports.

To provide a proper characterization of these cohomologies in globally hyperbolic
spacetimes we have to introduce some operators related to ∆. Nonetheless, we would
like to remark that [Ben16] presents an alternative approach that avoids them. However,
the one presented here, based on [Kha16], is simpler once the required tools are introduced
and, moreover, it can be generalized to other complexes.

Definition 3.48. Let M be a globally hyperbolic spacetime and ∆ its Laplace-de Rham
operator. An advanced (retarded) Green’s operator of ∆ is a R-linear map of the type
G± : Ωc(M) −→ Ω(M) such that for all ω ∈ Ωk

c (M)

(i) G±ω ∈ Ωk(M).

(ii) G±∆(ω) = ∆G±(ω) = ω.

(iii) supp(G±ω) ⊆ J±(supp ω).

Although we have just considered the particular case of the Laplace-de Rham operator,
one can define Green’s operators for any differential linear operator, and generalize the
following discussion. The Laplace-de Rham operator is indeed one of the most prominent
examples of Green-hyperbolic operators, that is to say that there exist advanced and re-
tarded Green’s operators for it (it follows from Corollary 3.4.3 in [BGP07]). Furthermore,
as it may be found in [Bär15], Corollary 3.12, Green’s operators of a Green-hyperbolic
operator are unique.

Remark 3.49. Note that condition (iii) implies that G±ω has advanced (retarded) support,
so indeed G± : Ωc(M) −→ Ω±(M). Green’s operators admit unique linear extensions (see
[Bär15], Theorem 3.8 and Corollary 3.10) G+ : Ωx(M) −→ Ωx(M) for x = +, pc, and
G− : Ωx(M) −→ Ωx(M) for x = −, fc. Then, it follows from the definition that they are
isomorphisms with inverse ∆ (which restricts to Ωk

x(M) as in Remark 3.45). Moreover
G± commutes not only with ∆, but also with d, defining the corresponding cochain maps.

With this observation, we can already show that, in globally hyperbolic spacetimes,
the spacelike and the timelike compactly supported cohomologies are the only relevant
cohomologies.

Theorem 3.50. Let M be a globally hyperbolic spacetime. For all k ≥ 0 the cohomologies
Hk
x(M) and Hk

∆,x(M) are trivial for x = +,−, fc, pc.

Proof. We consider, first, Hk
x(M). As noted in Remark 3.45 the Laplace-de Rham opera-

tor ∆ is a cochain map of the de Rham complex into itself cochain homotopic to zero and
therefore induces the zero map in the cohomology, which also holds for (Ω•x(M), d•). More-
over, on a globally hyperbolic spacetime the restriction of ∆ to Ωk

x(M) for x = +,−, fc, pc
is invertible with inverse given by G+, when x = +, pc or G− when x = −, fc. Therefore
the map in cohomology is both zero and bijective so the cohomology must be trivial.

For Hk
∆,x(M) note that using again the fact that ∆ is bijective for x = +,−, fc, pc,

Ωk
∆,x(M) = ker ∆|Ωkx(M) = {0} which implies that the cohomologies are also trivial. �
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Definition 3.51. The causal propagator of ∆ is the map

G := G+ −G− : Ωc(M) −→ Ω(M)

Remark 3.52. Note that supp(Gω) ⊆ J( supp ω) so, in fact, G : Ωc(M) −→ Ωsc(M).

The properties of the causal propagator in which we have the most interest are given
by the following result, stated in [Kha12], Proposition 4.

Theorem 3.53. Let M be a globally hyperbolic spacetime. For each k ≥ 0 the sequences
of maps

{0} Ωk
c (M) Ωk

c (M) Ωk
sc(M) Ωk

sc(M) {0}

{0} Ωk
tc(M) Ωk

tc(M) Ωk(M) Ωk(M) {0}

∆ G ∆

∆ G ∆

are exact.

The result for the first sequence is proven in [BGP07], Theorem 3.4.7, with the last
surjection covered by the proof in [BGC+09], Chapter 3, Corollary 5. Then for the
second sequence the result follows from the duality exhibited in Section 1 of [Bär15].
These sequence allow to prove the following result that gives isomorphisms between the
casually restricted cohomologies and the usual de Rham cohomologies.

Theorem 3.54. Let M be a globally hyperbolic spacetime. Then, for all k ≥ 0

Hk
sc(M) ∼= Hk+1

c (M), Hk
∆,sc
∼= Hk

c (M)⊕Hk+1
c (M),

Hk
tc(M) ∼= Hk−1(M), Hk

∆(M) ∼= Hk(M)⊕Hk−1(M)

with the convention that all cohomologies Hk
x(M) and Hk

∆,x(M) vanish whenever k < 0.

Proof. Let us start with the spacelike compact support case. Recall again that both ∆ and
G commute with d ans therefore define cochain maps between the de Rham complexes with
appropriate supports, inducing the corresponding maps in cohomology. The exactness of
the first sequence of Theorem 3.53 implies that im G = ker ∆ = Ωk

∆,sc(M), so for each
k ≥ 0, we can break the sequence into two exact sequences of cochain maps

{0} Ωk
c (M) Ωk

c (M) Ωk
∆,sc(M) {0}

{0} Ωk
∆,sc(M) Ωk

sc(M) Ωk
sc(M) {0}

∆ G

i ∆

(3.1)

where i is the inclusion. Therefore, since ∆ is cochain homotopic to zero and consequently
induces a zero map in cohomology, the long exact sequences associated to Equation 3.1
(see Proposition 2.11) can be broken up for each k into the following exact sequences

{0} Hk
c (M) Hk

∆,sc(M) Hk+1
c (M) {0}

{0} Hk−1
sc (M) Hk

∆,sc(M) Hk
sc(M) {0}

Hk(G) τk

τk−1 Hk(i)
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with the convention that any Hk
x(M) and Hk

∆,x(M) vanishes for k < 0. The exactness of
the sequences yields isomorphisms

Hk
c (M)⊕Hk+1

c (M) ∼= Hk
∆,sc(M) ∼= Hk−1

sc (M)⊕Hk
sc(M)

which already gives one of the sought isomorphisms. Given that M is connected and non-
compact and thus H0

c (M) = {0} (see Proposition 2.25), plugging k = 0 into the above
isomorphism yields H0

sc(M) ∼= H1
c (M). Then, induction on k shows that, as claimed,

Hk
sc(M) ∼= Hk+1

c (M) for all k.

The exact same argument to the second exact sequence of Theorem 3.53 gives the last
two isomorphisms. �

This theorem together with the characterization of globally hyperbolic spacetimes as
a foliation of Cauchy Hypersurfaces, directly implies the following result that allows to
compute cohomologies with causally restricted supports as ordinary cohomologies on a
Cauchy hypersurface.

Corollary 3.55. Let M be a globally hyperbolic spacetime and Σ a spacelike Cauchy
hypersurface. Then, for al k ≥ 0

Hk
sc(M) ∼= Hk

c (Σ), HK
∆,sc(M) ∼= Hk

c (Σ)⊕Hk−1
c (Σ),

Hk
tc(M) ∼= Hk−1(Σ), Hk

∆(M) ∼= Hk(Σ)⊕Hk−1(Σ)

with the convention that all cohomologies vanish for k < 0.

Proof. By Theorem 3.31, M ∼= R × Σ which implies that M is homotopy equivalent to
Σ and thus Hk(M) ∼= Hk(Σ). On the other hand, using Poincaré duality and the fact
that, over fields, cohomology is the dual space of the homology (see Remark 2.10) and
therefore they are (non-canonically) isomorphic, so we can use them indistinctly, we get

Hk
c (M) ∼= Hn−k(M) ∼= Hn−k(Σ) = H(n−1)−(k−1)(Σ) ∼= Hk−1

c (Σ)

The sought isomorphisms follow directly from applying this identity to Theorem 3.54. �

Remark 3.56. If M is a n-dimensional manifold we have that Hn
sc(M) is trivial because Σ

is a (n− 1)-dimensional manifold so there are no non-trivial n-forms. On the other hand,
directly from the previous corollary we also see H0

tc(M) is always trivial. In addition, if
Σ is compact then we have that Hk

c (Σ) = Hk(Σ) and consequently we get isomorphisms
Hk

∆,sc(M) ∼= Hk
sc(M)⊕Hk

tc(M) ∼= Hk
∆(M).

Finally, we would like to point out, that Theorem 3.54, also gives an analogous result
to Poincaré duality for causally restricted cohomologies.

Corollary 3.57. Let M be a n-dimensional globally hyperbolic spacetime. Then, for all
k ≥ 0, Hk

sc(M) ∼= Htc,n−k(M) and Hk
∆,sc(M) ∼= H∆,n−k(M).

Proof. As a direct consequence of Theorem 3.54 we have that Hk
sc(M) ∼= Hk+1

c (M), and
Hn−k
tc (M) ∼= Hn−(k+1)(M). Thus, Poincaré duality implies that Hk

sc(M) ∼= Htc,n−k(M).
On the other hand, again from Theorem 3.54, Hk

∆,sc(M) ∼= Hk
c (M) ⊕ Hk+1

c (M) and

Hn−k
∆ (M) ∼= Hn−k ⊕Hn−(k+1)(M) which also give the corresponding isomorphism using

Poincaré duality. �
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Examples 3.58. We end the section by reviewing the cohomology with causally restricted
support of two well-known physical spacetimes solution to Einsten’s field equations. We
use again the convention that Hk vanishes for k < 0.

1. Einstein’s static universe, E , was the first relativistic cosmological model in history,
proposed by A. Einstein shortly after completing the general theory of relativity.
Assuming a homogeneous universe static in time he was led to a finite universe of
spherical spatial curvature, defined on R× S3. In particular, any spacelike Cauchy
hypersurface is diffeomorphic to S3. Therefore, using Corollary 3.55 and the fact
that S3 is compact, Hk

sc(E) ∼= Hk
c (S3) ∼= Hk(S3). Thus, the singular homology of

spheres (Example 2.13.4), isomorphic to its de Rham counterpart by de Rham’s
theorem, implies that

Hk
sc(E) ∼=

{
R if k = 0, 3
{0} otherwise

On the other hand, Hk
tc(E) ∼= Hk−1(S3) and therefore

Hk
tc(E) ∼=

{
R if k = 1, 4
{0} otherwise

Moreover, Hk
∆,sc(E) ∼= Hk(S3)⊕Hk−1(S3) ∼= Hk

∆(E) so

Hk
∆,sc(E) ∼= Hk

∆(E) ∼=
{

R if k = 0, 1, 3, 4
{0} otherwise

2. The Schwarzschild spacetime, S, is a solution that describes the gravitational field
created by a spherical mass with electric charge and angular momentum null. The
resulting space contains a singularity at the center of the mass distribution, i.e.,
a point in which the curvature of the metric is not well-defined, as it becomes
infinite. Although it was initially interpreted as a non-physical solution, now we
regard it as describing a black hole, a region of spacetime where gravity is so strong
than no particles or even light can escape from it. This first solution, defined on
R×(R3 \{0}) ∼= R×(0,∞)×S2, can be maximally extended to a full spacetime S ∼=
R2×S2, where an hypothetical region completely opposite to the black hole emerges,
a white hole. In this spacetime, any spacelike Cauchy hypersurface is diffeomorphic
to R× S2 which is homotopy equivalent to S2. Consequently, using again Corollary
3.55 and Poincaré duality, Hk

sc(S) ∼= Hk
c (R×S2) ∼= H3−k(R×S2) ∼= H3−k(S2) which

yields

Hk
sc(S) ∼=

{
R if k = 1, 3
{0} otherwise

On the other hand, Hk
tc(S) ∼= Hk−1(R× S2) ∼= Hk−1(S2) which implies that

Hk
tc(S) ∼=

{
R if k = 1, 3
{0} otherwise

In addition, Hk
∆,sc(S) ∼= H3−k(S2)⊕H3−k−1(S2) and Hk

∆(S) ∼= Hk(S2)⊕Hk−1(S2)
which gives

Hk
∆,sc(S) ∼= Hk

∆(S) ∼=
{

R if k = 0, 1, 2, 3
{0} otherwise
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