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Active nematic fluids confined in narrow channels are known to generate spontaneous
flows when the activity is sufficiently intense. Recently, it was demonstrated [R. Green,
J. Toner, and V. Vitelli, Phys. Rev. Fluids 2, 104201 (2017)] that if the molecular anchoring
at the channel walls is conflicting, i.e., perpendicular on one plate and parallel on the other,
flows are initiated even in the zero activity limit. An analytical laminar velocity profile for
this specific configuration was derived within a simplified nematohydrodynamic model in
which the nematic order parameter is a fixed-magnitude unit vector n. The solution holds
in a regime where the flow does not perturb the nematic order imposed by the walls. In
this study, we explore systematically active flows in this confined geometry with a more
general theoretical model that uses a second-rank tensor order parameter Q to express
both the magnitude and orientation of the nematic phase. The Q-model allows for the
presence of defects and biaxial, in addition to uniaxial, molecular arrangements. Our aim
is to provide a unified picture, beyond the limiting regime explored previously, to serve
as a guide for potential microfluidic applications that exploit the coupling between the
orientational order of the molecules and the velocity field to finely control the flow and
overcome the intrinsic difficulties of directing and pumping fluids at the microscale. We
reveal how the nematic-flow coupling is not only dependent on geometrical constraints, but
is also highly sensitive to material and flow parameters. We specifically stress the key role
played by the activity and the flow aligning parameter, and we show that solutions mostly
depend on two dimensionless parameters. We find that for large values of the activity
parameter, the flow is suppressed for contractile particles while it is either sustained or
suppressed for extensile particles depending on whether they tend to align or tumble when
subject to shear. We explain these distinct behaviors by an argument based on the results of
the stability analysis applied to two simpler configurations: active flows confined between
parallel plates with either orthogonal or perpendicular alignment at both walls. We show
that the analytical laminar solution derived for the n model in the low activity limit is
found also in the Q model, both analytically and numerically. This result is valid for both
contractile and extensile particles and for a flow-tumbling as well as aligning nematics. We
remark that this velocity profile can be derived for generic boundary conditions. To stress
the more general nature of the Q model, we conclude by providing a numerical example
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of a biaxial three-dimensional thresholdless active flow for which we show that biaxiality
is especially relevant for a weakly first-order isotropic-nematic phase transition.

DOI: 10.1103/PhysRevFluids.6.113302

I. INTRODUCTION

Active fluids constitute a special class of complex fluids characterized by the presence of an
active phase that consists of, for example, microorganisms, actomyosin networks or self-propelled
colloids [1]. In these liquids the active component is able to sustain flows by continuously injecting
energy at the scale of its single constituents.

Numerous earlier studies have shown a compelling qualitative and quantitative correspondence
between behaviors predicted by continuum active nematohydrodynamic models [2,3] and phenom-
ena observed in a variety of active fluid systems [4–7]. Supported by this evidence, we focus on
studying the behavior of active nematic liquid crystals, a class of apolar materials that display orien-
tational order and whose particles self-propel. In the mathematical model the motility is accounted
for by an active force term derived by considering that active particles can be approximated to lead-
ing order as force dipoles [3]. In these systems the transition between a passive state, in which activ-
ity is macroscopically incoherent, and an active state, characterized by a spontaneous active flow, is
generally observed above a certain activity threshold [8–12]. However, there exists a family of flows
that violates this rule by developing steady state velocity fields even for vanishingly small activity.

The existence of thresholdless active flows was first reported numerically [13] and later formal-
ized theoretically [14] by identifying the asymptotic parameter regime required for their onset and
the topological constraints, boundary conditions and external forcing that allow for them. A nonuni-
form, minimum energy nematic profile, geometrically constrained and leading to a nonvanishing
curl active force constitutes the key ingredient for such a class of fluids [14]. A realization of this
situation is achieved with an active nematic liquid confined between parallel plates with hybrid
anchoring at the walls: parallel on one plate, perpendicular on the other; this is one of the examples
presented in [14] and studied in [13] and this is the setting our study focuses on. Configurations
with the same anchoring at both walls, e.g., parallel anchoring or perpendicular anchoring, lead
to uniform ground states which can support a coherent unidirectional active flow only above well
defined thresholds for the activity parameter as derived through the linear stability analysis [8,10].

The motivation for studying active flows confined in a slab geometry with hybrid anchoring at
the walls is of both applied and theoretical nature. On one hand this configuration is relevant to
microfluidic applications, on the other, the results reported in the literature [13,14] differ and call
for a more comprehensive unified picture.

In nematic liquid crystals the coupling between the orientational order of the molecules and
the flow is controlled by several material and flow parameters and the nematic configuration is
highly sensitive to geometrical constraints. The emerging complex dynamics of these active liquids
is of great promise for microfluidic applications since it provides a means to control and finely
tune the flow overcoming the intrinsic difficulties of directing and pumping isotropic fluids at
the microscale [15–17]. Devices that direct and sort nano and micro-particles have already been
presented in the literature: some exploit the anisotropic nature of the fluid to control the flow
resistance and streamlines through the application of external electrical fields [18], some use
defect lines as rails to transport colloids [19,20] in what is referred to generically as topological
microfluidics. Recently, it has been conceptualized how active liquid crystal can be exploited to
design autonomous microfluidic devices [21]. Numerical studies have also appeared to shed light on
the active flow dynamics and transition from coherent to turbulent state in two or three dimensional
microchannels [22,23].

The numerical [13] and theoretical [14] studies, we will mainly refer to, are performed in two
different frameworks: in [14] the hydrodynamic active nematic equations are expressed in terms of
the director field n, which represents the average long axis orientation for rodlike molecules, while
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in [13] the nematic is described by a more general tensor order parameter Q that expresses both
the magnitude, q0, and orientation, n, of the nematic phase. The tensor order parameter formulation
naturally embodies defects and allows for biaxial states [24] in three-dimensions.

The active nematic equations expressed in Q and n coincide for a uniaxial nematics with uniform
q0 up to second order terms in n (see Appendix C in [13]), yet the, respectively, numerical and
analytical results reported in [13] and [14] for a low activity laminar flow confined between parallel
plates with hybrid alignment at the walls differ. The aim of this work is therefore twofold: (i) provide
a unifying picture for this class of active flows that generalizes the regimes explored previously and
bridges the analytical results derived in [14] with the numerical ones in [13] and (ii) take advantage
of the more general nature of the Q formulation and explore the existence of biaxial thresholdless
active flows.

In this paper, we first present the mathematical and numerical model we use (Sec. II A) and list
a complete set of dimensionless numbers that characterize the dynamics and associated relevant
regimes (Sec. II B). We then show, in part III A, that the laminar flow solution derived for the n
model in the low activity limit [14] satisfies also the Q model for an appropriate choice of the
free-energy parameters. More specifically, in Sec. III A 1, we find that the analytical solution found
by Green et al. [14] can be recovered with the two-dimensional Q model and we remark that this
solution can be generalized to any choice of the anchoring angle. Although no analytical expression
is found for a thresholdless active flow given a three-dimensional Q tensor, in Sec. III A 2 we
show that the two-dimensional solution is a very good approximation for the three-dimensional
solution found numerically. Details are also given on the parameter values required to observe such
flows numerically. In Sec. III B we compute numerically steady state solutions in a wide portion of
parameter space and show that they mainly depend on two dimensionless groups: the flow aligning
parameter and a number that quantifies the distance from the low activity limit and a regime where
the flow does not perturb the nematic order imposed by the walls. We find that for large values of
the activity the flow is suppressed for contractile particles while is either sustained or suppressed
for extensile particles depending on whether they tend to align or tumble when subject to shear. We
explain these distinct behaviors in Sec. III C by an argument based on the results of the stability
analysis applied to two simpler configurations: active flows confined between parallel plates with
either orthogonal or perpendicular alignment at both walls. We find that the zero-flow solution
selected dynamically by the system for a contractile nematic corresponds to a free energy stationary
point that is not admitted in the n model. In Sec. III D we compare this zero-curl stationary point
with the thresholdless flow solution. Finally, to stress the more general nature of the Q model,
we provide a numerical example of a biaxial three-dimensional thresholdless active flow and we
show that biaxiality is especially relevant for a weakly first-order isotropic-nematic phase transition,
Sec. III E. We conclude by summarizing our findings in Sec. IV.

II. MATHEMATICAL AND NUMERICAL MODEL

A. The Q hydrodynamical model for active nematics

In the tensor order parameter model, the nematic is described by a second-order tensor Qi j

that expresses both the magnitude q0, and orientation n, of the nematic phase. The tensor order-
parameter formulation naturally embodies defects and allows for biaxial states [24], in fact Qi j can
be generically expressed as

Qi j = q0nin j − q1mimj − (q0 + q1)
δi j

d
, (1)

where n and m are perpendicular directors of unit length that represent the axes of reflection
symmetry of a biaxial nematic, q0 and q1 are the associated magnitudes, and d is the spatial
dimension of the problem. Biaxiality is possible only in three dimensions (3D). For a uniaxial
nematic, q1 = 0, and n is an axis of rotational symmetry; in this case, the order parameter reduces
to Qi j = q0(nin j − δi j/d ).
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In the Q-model it is customary to adopt the Landau–de Gennes free energy, which consists of a
distortion term multiplied by the elastic constant K and bulk terms with constants A, B, and C that
represent the thermotropic part of the free energy [2,3,24],

F =
∫

d3r
[K

2
(∂kQi j )

2 + A

2
Qi jQji + B

3
Qi jQjkQki + C

4
(Qi jQji )

2
]
. (2)

The molecular field tensor is then defined as

Hi j = − δF
δQi j

+ δi j

d
Tr

δF
δQkl

= K∇2Qi j − AQi j − BQikQk j − C(QlkQkl )Qi j + B
δi j

d
(QlkQkl ). (3)

For a uniaxial nematic and d = 2 and 3, Eq. (3) simplifies, respectively, into

Hi j = K∇2Qi j −
(

A + C

2
q2

0

)
Qi j (d = 2), (4)

Hi j = K∇2Qi j −
(

A + B

3
q0 + 2

3
Cq2

0

)
Qi j (d = 3). (5)

The active nematic equations with � as the rotational diffusivity and ρ as the fluid density read

∂iui = 0, (6)

(∂t + uk∂k )ui = 1

ρ
∂ j�i j, (7)

(∂t + uk∂k )Qi j − Si j = �Hi j, (8)

where Eq. (6) imposes the incompressibility condition on the velocity field ui, Eq. (7) is the Navier-
Stokes equation with pressure term �i j , and Eq. (8) describes the evolution of the nematic tensor
with Si j as the corotation term. The pressure term is

�i j = − Pδi j + 2ηEi j + 2ξ (Qi j + δi j/d )(QklHlk ) − ξHik (Qk j + δk j/d ) − ξ (Qik + δik/d )Hk j

− ∂iQkl (δF/δ∂ jQlk ) + QikHk j − HikQk j − αQi j, (9)

where α is the activity parameter. The active liquid crystal is contractile for α negative, and
extensile otherwise. Large values of the activity parameter are expected to destabilize the nematics
by triggering instabilities, eventually leading to a chaotic behavior. The corotation term is given by

Si j = (ξEik + 
ik )(Qk j + δk j/d ) + (Qik + δik/d )(ξEk j − 
k j ) − 2ξ (Qi j + δi j/d )(Qkl∂kul ), (10)

where Eik and 
ik are, respectively, the symmetric and antisymmetric part of the velocity gra-
dient tensor, that is, the strain rate tensor and the vorticity tensor, while the parameter ξ is the
flow-aligning parameter. The corotation term expresses the response of the nematic field to the
extensional and rotational part of the velocity gradients, a low value of the flow-aligning parameter
induces tumbling of the particles, while larger values correspond to a flow-aligning tendency.
The range of ξ values that correspond to a flow-tumbling and flow-aligning behavior can be
found in analogy with the n model: when λ = ξ

2+q0d−2q0

q0d is larger than unity, particles are in
the flow-aligning regime. In the case of a biaxial nematics, the flow-tumbling and flow-aligning
distinction will still hold true, but the additional q1 parameter expressing the magnitude of biaxiality
will enter into the expression for λ: λ = ξ (2 + q0d − 2q0 − 2q1)/(q0d ).

The active nematohydrodynamic equations (6)–(8) are solved numerically using a hybrid lattice
Boltzmann (LB) finite-difference method [25]. More precisely, the nematic pressure term and the
equation for the evolution of the Qi j tensor are integrated through a second-order finite-difference

113302-4



ACTIVE NEMATIC FLOWS CONFINED IN A …

FIG. 1. Left: schematic representation of a channel with hybrid alignment at the walls. The channel
walls located at y = 0 and y = L extend to infinity in the x and z directions. The anchoring of the active
nematic liquid crystals is parallel to the y = 0 wall (homogeneous anchoring) and normal to the y = L wall
(homeotropic anchoring). The numerical integration is performed in 1D. Right: Normalized root-mean-square
error measuring the deviation of the numerical velocity profile from the analytical expression Eq. (12) as
a function of the magnitude of the activity parameter. In the formula reported on the y-axes, N is the
number of grid-points. The numerical solution is obtained by integrating the full active nematohydrodynamic
equations with either a two-dimensional or a three-dimensional tensor order parameter Qi j .The parameters of
the simulations are ν = 0.33, ρ = 2, L = 256, t = 500 000, ξ = 0.7, � = 16 000, and K = 5 × 10−6. For the
two-dimensional case, q0 = 0.9998, A = −2.5 × 10−6, B = 0, and C = 5 × 10−6; for the three-dimensional
case, q0 = 0.5, A = 0, and B = −C = −3 × 10−5. These parameter values correspond to 10−2 < |�1| < 105,
�2 ≈ 6.8 × 10−3, �3 = 10 560.

scheme. The time integration of Qi j is performed by means of an explicit second-order Adams-
Bashforth time-stepping scheme. The contribution of the active and passive nematic pressure terms
is added to the Navier-Stokes equation as an external forcing. The Navier-Stokes equations are then
integrated through the lattice Boltzmann method [26]. The LB method makes the code ideally suited
for parallel computing; the code is parallelized on CPUs with an MPI distributed parallelism.

For this study, the equations are integrated in a channel that extends from y = 0 to y = L
with no-slip boundary conditions and hybrid anchoring at the walls. Specifically, for most of our
calculations, the nematic order parameter is aligned parallel to the wall at y = 0 and perpendicular to
it at y = L, that is, for θ = arctan(ny/nx ) with nx and ny the x- and y-components of the director field
n, one has θ (y = 0) = 0 and θ (y = L) = π/2. Different anchoring angles have been considered in
Sec. III D. See Fig. 1 (left) for a schematic representation of the geometrical configuration. We
carry out the numerical integration on 1D domains. This implies that only the x-component of the
velocity is nonzero and only the y-derivatives of the velocity and order tensor fields are nonzero,
hence instabilities can only manifest and grow in the y-direction. The order parameter Qi j is allowed
to have nonzero components on either a 2D plane or in the 3D space, that is, Qi j can be either
two-dimensional (d = 2) or three-dimensional (d = 3). The analytical solutions in Sec. III A 1 are
derived for a two-dimensional Qi j , the numerical results reported in Sec. III A 2 are obtained for
both a three-dimensional and two-dimensional Qi j , while the numerical results shown in Secs. III B
and III D are for a three-dimensional Qi j .

B. Dimensionless parameters

Several dimensional parameters appear in Eqs. (7) and (8): η, α, ρ, �, K , A, B, C. Three
characteristic length scales can be identified in this model: (i) a length scale representing the core
size of topological defects, lc, (ii) an active length marking the scale at which active energy is
injected into the system [27,28], la, and (iii) a geometrical length scale, L, representing the width of
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the channel. The scale of the defect core, lc, is estimated through a Taylor series expansion around
the minimum of the free energy Eq. (2). For a three-dimensional nematic tensor, this yields

lc =
√

K

A/3 + 2Bq0,eq/9 + 2Cq2
0,eq/3

,

where q0,eq is the equilibrium value of the magnitude of the nematic tensor for a uniform and
undistorted nematic. The active length scale is estimated balancing the active and passive nematic
terms la = √

K/|α|.
These three characteristic length scales combined with the characteristic velocity scale of the

flow, v0, and the dimensional parameters that do not appear in the definition of lc and la provide the
following complete set of dimensionless parameters:

(i) The balance between the inertia and viscous terms in Eq. (7) gives the Reynolds number
Re = ρv0L/η, note, however, that we are concerned with steady state solutions and effectively
one-dimensional profiles for which the material derivatives in both Eq. (7) and (8) are zero. The
Reynolds number is therefore always zero and not relevant to the problem under consideration.

(ii) A balance between the viscous terms and the passive nematic terms in Eq. (7) yields the
Ericksen number Er = ηv0L/K.

(iii) A balance between the active terms and the passive nematic terms gives the ratio between
the active length scale and the system characteristic length scale: �1 = αL2/K = sign(α)L2/l2

a .

(iv) The ratio between the characteristic length of the defect core and the channel length scale
provides �2 = lc/L.

(v) Finally, the dimensionless number used to identify the frozen director limit (FDL) discussed
in the following sections is �3 = �η.

A sixth dimensionless parameter that appears in the model in dimensionless form is the flow
aligning parameter ξ . Numerically, it is necessary to resolve all the relevant length scales, par-
ticularly the defect core, lc, and the active length, la. The time scale τ = L2/K� provides a
useful reference on the relaxation time scale and the duration of the initial transient that precedes
convergence to a steady-state solution.

Out of the six dimensionless parameters, we expect our system to be independent of Re, as
explained above, �2, since we select system sizes much larger than the characteristic defect core
(�2 � 1), and Er since in the absence of an external forcing the characteristic velocity v0 depends
on the other model parameters. The Ericksen number will coincide with �1 when the viscous and
active forces balance (v0 ∝ αL/η), with �3 when the molecular field term and the corotation term
balance in Eq. (8) (v0 ∝ �K/L), and it will be a function of �1 and �3 in all the other cases. In
conclusion, we expect our problem to depend on three independent parameters: �1, �3, and ξ .

III. RESULTS

A. Thresholdless active flow in a two-dimensional channel with mixed boundary conditions

1. Analytical solutions in the n and Q model

As Green et al. [14] noted, in steady state and in the absence of fluid flow the equation for
the evolution of the director field in the n-model simply reduces to the Euler-Lagrange equation
for minimizing the free energy with constraint |n| = 1: δF

δni
− ( δF

δn j
n j )ni = 0, where F is the Frank

free energy. If the director field is in the ground state, it is shown that the velocity field is zero
only if the pressure gradient balances the active force term fa,i = ∂ j (n jni ) exactly [14]. Hence,
a sufficient condition for the onset of thresholdless active flows is that the active force has a
nonvanishing curl [14]. Under this condition and in the regime where the nematic is not distorted
by the flow, referred to as the FDL (�3 � 1), analytic expressions for the flow field can be derived.
Green et al. [14] provide some solutions for various geometrical configurations, among them a
two-dimensional channel flow with hybrid alignment at the walls as shown in Fig. 1 (left).
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In a 2D channel with walls at y = 0 and y = L and mixed boundary conditions—nx (x, 0) = 1,
ny(x, 0) = 0, nx(x, L) = 0, ny(x, L) = 1—the equilibrium nematic profile

nx = cos
(πy

2L

)
, ny = sin

(πy

2L

)
(11)

induces an active force with nonvanishing curl [14]. In the zero activity limit and Stokes flow regime,
the velocity field can be computed analytically (see Appendix G in [14]) leading to

ux = − αL

2πη

(
cos

πy

L
+ 2

y

L
− 1

)
. (12)

Finding a solution analogous to (11) and (12) in the Q-model requires solving Hi j = 0 in two
dimensions with mixed boundary conditions: nx(x, 0) = 1, ny(x, 0) = 0, nx(x, L) = 0, ny(x, L) = 1
and the assumption of uniform q0. Given that Qi j is a function of y only and |n| is unitary, we have

Qxx

q0
= 1

2
− n2

y,
Qxy

q0
= Qyx

q0
= ny

√
1 − n2

y,
Qyy

q0
= n2

y − 1

2
. (13)

Since q0 is uniform, Eq. (4) can be rewritten as Hi j = K∇2Qi j − aQi j , where a is a constant, and
the stationary point condition Hi j = 0 corresponds to the system of ODEs,

−2
(
n′2

y + nyn′′
y

) = ā
(

1
2 − n2

y

)
, (14)[

−3nyn′2
y + 2n3

yn′2
y + n′′

y − 3n2
yn′′

y + 2n4
yn′′

y(
1 − n2

y

)3/2

]
= āny

√
1 − n2

y, (15)

2
(
n′2

y + nyn′′
y

) = ā
(
n2

y − 1
2

)
, (16)

for, respectively, the xx, xy, and yy components of the molecular field. Here n′
y and n′′

y are,
respectively, the first and second total derivative of ny, while ā = a/K . Note that the first and third
equations coincide. If we replace n′′

y = −n′2
y /ny + ā(n2

y − 0.5)/(2ny) obtained from Eq. (14) into
Eq. (15), we get n′2

y = ā(n2
y − 1)/4, which, solved with the mixed boundary conditions, gives

ny(y) = −1

2
ie−i πy

2L
(
1 − ei πy

L
) = sin

(πy

2L

)
. (17)

From Eq. (17) we have that a = −Kπ2/L2, hence for small K and large L (e.g., the values we have
chosen for our numerical calculations: K = 5 × 10−6 and 100 � L � 256) one has a � 1. This
shows that the ground-state configuration found in [14] [Eq. (11)] for mixed boundary conditions
and the active nematic equations expressed in terms of the director field n satisfies also the active
nematic equations formulated in terms of the tensor order parameter provided that a is nonzero and
as given above. The value of a prescribes the values for the constants A, C, and q0 according to
expression (4).

To find the velocity profile that corresponds to the nematic profile (17), we substitute it into
expression (9) and solve Eq. (7). We then have

�i j = − Pδi j + 2ηEi j − K (∂iQkl∂ jQlk ) − αQi j, (18)

where the third term in �i j is nonzero only for i = j = y, it is constant, and hence it does not
contribute to Eq. (7), which, as in [14], reduces to

ηu′′
x − αq0(nyn′

x + nxn′
y) = 0, (19)

−P′ − αq0(n2
y )′ = 0, (20)

which, once solved with no-slip boundary conditions gives the same solution as in [14], here
Eq. (12), except for an extra multiplicative factor q0.
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Note that Eqs. (17) and (12) are just a special case of a broader family of solutions with anchoring
conditions θ (y = 0) = θ0 and θ (y = L) = θL. By defining �θ = θL − θ0 we have that the general
solution is

nx = cos

(
�θy

L
+ θ0

)
, ny = sin

(
�θy

L
+ θ0

)
, (21)

ux = − αLq0

4η�θ

{
cos

(
2�θy

L
+ 2θ0

)
− y

L
[cos(2�θ + 2θ0) − cos(2θ0)] − cos(2θ0)

}
. (22)

The case �θ = 0 corresponds to the degenerate case with uniform nx and ny and zero velocity.
Consider also that for a 1D geometry, the zero-curl condition for the active force is satisfied
whenever the off-diagonal terms of Qi j are zero.

The analytical solutions (11) and (12) derived for a 2D Qi j in a 1D-geometry cannot be easily
extended to the case of a 3D Qi j . In fact, in 1D only the trivial q0 = 0 solution satisfies the system
Hi j = 0, for Hi j as in Eq. (5), mixed boundary conditions, and the simplifying assumptions of a
uniaxial nematic, uniform q0, and constant nz. Similarly, no analytical solutions were found for the
less restrictive conditions of a uniaxial nematic and (i) uniform q0 and variable director field nz(y)
or (ii) constant nz and variable q0(y). The stationary point solution for Hi j = 0 with a 3D Qi j can
be found numerically and will simultaneously involve a nonhomogeneous q0, a variable director
field, and biaxiality. This is shown in the next section, where we also stress that for our choice of
parameters the deviations from uniform q0 and uniaxiality are small.

2. Numerical analysis of the thresholdless active flow

Our first aim is to verify solution (12) numerically for a 2D and a 3D Q-tensor. This velocity
profile is found in the limit of small activity, |�1| � 1, and a “frozen” nematic, 2q0/� � η, or, for
q0 ≈ const and of order 1, �3 � 1. Reproducing (12) numerically requires a careful selection of
the model parameters because deviations from its perfectly symmetric shape are significant even for
small values of the coupled passive nematic terms, expression (9), and corotation terms, Eq. (10).
The following considerations guided us in identifying the right parameter range to replicate (12):
a stable numerical solution of the diffusion terms (∂t Qi j = �K∇2Qi j) in Eq. (8) for a central
difference second-order Adams-Bashforth time-stepping scheme requires �K < 2/21, hence the
large values of � called for by the FDL require correspondingly small values of K and force even
smaller α to satisfy the small activity limit.

Figure 1 (right) shows the normalized root-mean-square (RMS) deviation of the numerical results
from the analytical solution as a function of the magnitude of the activity parameter |α|. In this plot,
�3 = 10 560, while 10−2 < |�1| < 105. The numerical solution is in excellent agreement with the
analytical one in the small activity limit, and it deviates from it as |α| increases. As expected, the
deviation from solution (12) is continuous with the model parameters. In quantitative terms, we find
that the RMS error is below 0.26% for |α| � 10−7 (or |�1| = 103), suggesting that in reality the
condition for small activity, �1 � 1, holds for a wider range than predicted. We also find that for
a 3D order parameter, the deviation of the minimum-energy solution from Eq. (11) is small and
involves a variation of q0 in proximity to the walls as well as a small degree of biaxiality far from
the boundaries. These features have been verified numerically by letting

∂t Qi j = �Hi j (23)

relax to equilibrium for a 3D Q. For |α| = 10−12 the 3D n-profile shows a deviation of ≈0.015%
from the analytical profile (17), while the variation of q0, as well as the degree of biaxiality estimated
as the difference between the two lowest eigenvalues, are approximately ≈0.01%. Therefore, we
conclude that the 2D Q solution is a very good approximation for the 3D Q case.

In closing, retrieving the analytical solution (12) numerically served the double purpose of testing
the code and proving that the parameter regimes where the solution exists can be accessed and
explored numerically.
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B. Transition from symmetric to asymmetric velocity profiles

The velocity profile in the FDL is antisymmetric with respect to the midpoint of the channel. This
symmetry is readily broken by increasing α (or in dimensionless terms |�1|) and/or decreasing �

(or �3) as a consequence of the fact that the passive nematic terms in expression (9) as well as
term (10) start playing a role. The interplay between these terms and the active term also breaks
the positive/negative α-symmetry embodied in solution (12): in general, the behavior for negative
α differs from that of positive α. An example is provided by the low-activity asymmetric velocity
profiles reported in Figs. 13–15 in [13].

In this section, we explore how the velocity and nematic profiles evolve in parameter space
moving away from the FDL regime. The aim is to expand on previous studies and provide a
unified picture that includes both the laminar profile derived in [14], or more precisely, its numerical
analog for a 3D Q tensor (see Sec. III A 2), and the numerical results reported in [13]. We quantify
the deviations from the theoretical prediction, Eq. (12), through the ratio between the maximum
magnitude of the velocity and the maximum of the analytical profile: when the solution deviates
from (12), this quantity departs from unity.

In Figs. 2(a) and 2(b), we show the behavior of the rescaled maximum magnitude of the velocity
in a logarithmic scale for negative and positive values of the activity parameter as a function of
�3 and |�1| with �3 ranging over almost four orders of magnitude: 6.67 < �3 < 2 × 104, and
|�1| spanning over six orders of magnitude: 20 < |�1| < 2 × 107. As a comparison, in [13] 125 <

|�1| < 750 and �3 ≈ 0.45, while in [29] 50 < �1 < 800 and �3 ≈ 0.23, hence in these studies
|�1| spans at most one order of magnitude within a range we are also covering while �3 is fixed,
smaller than the values we select, and its effect is not assessed. We explore such a wide range of
parameter space to capture both the small and large activity range and include both the FDL regime
and a range of parameters where the velocity field has the ability to distort the nematic profile. The
lower boundary for the �3 = �η range is limited by the computational cost of simulations. We have
run simulations at least up to a time Tfinal ≈ τ = L2/�K , sufficient to ensure convergence to a steady
state if it exists. We have observed that there is no possibility to reach a steady state for an extensile
nematics, α > 0, at large �1 and away from the FDL (�3 � 1). Here solutions remain unsteady as
marked in Fig. 2(b). We stress that even in the flow-tumbling regime we obtain steady-state profiles
as reported in [13] rather than oscillatory solutions, as, for example, in [30].

In Figs. 2(a) and 2(b), the large �3 and low |�1| region where the solution is given to a very good
approximation by Eq. (12) is conveniently identified by a vanishing small magnitude. Outside this
area the numerical solution deviates from (12) differently for negative and positive α. In particular,
for large negative values of the �1 parameter the flow is suppressed, while for large positive values
the behavior becomes unsteady. For positive intermediate values of �1, large velocities develop
as signaled in the right panel by a dark blue band that bends toward larger �3 for larger |�1|.
Qualitatively these solutions correspond to those reported in Figs. 14 and 15 in [13].

Figures 2(c) and 2(d) show how the velocity profiles change with �3 for a fixed negative and
positive value of the �1 parameter. For negative α the rescaled velocity magnitude decreases with
�3, while in parallel the velocity profile becomes more and more asymmetric: the positive peak
moves toward the wall with parallel anchoring, while the negative peak flattens; the trend continues
until for the smallest �3 the velocity vanishes. For positive α the profile changes as �3 decreases,
from the analytical result, Eq. (12), to an either entirely positive or negative one of larger magnitude
(the sign is randomly selected by the system); in this configuration, the peak is roughly located in
the middle of the domain. As �3 is further decreased, the rescaled velocity magnitude is reduced,
sharper, and multiple peaks appear until the profile becomes unsteady. To provide an overall view
on the structure of the active nematics, panels (e)–(g) in Fig. 2 represent the director field in the
channel for three calculations of map (a) and (b) as indicated by the plot titles. Case (e) corresponds
to the analytical solution, Eq. (11).

We have verified the sensitivity of the steady-state solutions to different initial conditions by
repeating the calculations of Fig. 2 with different initial n-profiles as detailed in the caption of
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(g)

(h)

FIG. 2. Top: Base 10 logarithm of the maximum magnitude of the velocity computed numerically and
rescaled by the maximum of the analytical profile (12) for a contractile (a) and extensile (b) activity parameter,
α. This normalized velocity is plotted as a function of �3 and |�1| for a flow-aligning nematics (ξ = 0.7). The
axes are in logarithmic scale, and the map reports results for a total of 330 separate calculations. Simulations
with smaller values of �3 are more demanding in computational terms given the slower convergence: for
our choice of parameters, the slowest calculations run for 9.8 × 108 time steps. Middle: rescaled velocity
profiles corresponding to cases that lie on a vertical cut of the color maps in (a) and (b) as specified by
the legend and title of the plot for a negative (c) and positive (d) value of the activity parameter. In (d) the
flow profiles with �3 < 6.67 × 102 are unsteady. In these cases we display the configuration at the final time
Tfin. We label as unsteady those calculations for which the RMS deviation in the last 10 saved time steps
spaced by approximately τ/50 time units is below 0.25%. The thick black curves correspond to the analytical
solution (12). In (e) we show some intermediate configurations for a selected unsteady case. Bottom: (f)–(h)
director field orientation associated with three cases as detailed by the plot titles.
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(a) (b)

FIG. 3. Nematic angle θ = arctan(ny/nx ) (a) and velocity profile (b) for two of the calculations reported
in Figs. 2(b) and 2(d) and additional simulations performed for the same values of the model parameters and
different initial conditions (I.C.). In the legend, “I.C. 1” corresponds to the initial condition of Fig. 2, that is,
an nx = 1 field perturbed by random noise, “I.C. 2” is given by nx = cos(πy/L), ny = sin(πy/L), while “I.C.
3” is Eq. (11). In all cases, the velocity field is initialized to zero.

Fig. 3. We find some dependence on the initialization for the α > 0 solutions with values of the
parameters that lie in the parameter-space region located in between the FDL and the unsteady
solutions; see Fig. 3 for two representative examples. As expected, no dependence on the initial
conditions is found in the FDL region, as well as in the α < 0 semiplane of parameter space.

The results reported in Fig. 2 are obtained for a flow-aligning nematic, ξ = 0.7. For the flow-
tumbling regime, e.g., ξ = 0.3, the results differ: the velocity displays a behavior similar to panel
(a) of Fig. 2 for both positive and negative values of the activity parameter, and the rescaled velocity
profiles vary with �3 similarly to panel (c) of Fig. 2, see Figs. 4(a)–4(d). More precisely, although
even for the flow-tumbling case there are quantitative differences between the results for a negative
and positive activity parameter evident by comparing panels (a) and (b) of Fig. 4, qualitatively an
increment in the magnitude of activity or a decrease in �3 leads to a suppression of the flow field.
Similarly to the flow-aligning case, we also note some instabilities of the numerical solution for large
positive values of the activity parameter in the bottom right corner of Fig. 4(b). An interpretation
of the differences between the flow-aligning and flow-tumbling case is provided in the following
section, Sec. III C.

For both the flow-aligning and flow-tumbling case, the effect of decreasing the �3 parameter
is similar to that of increasing the |�1| parameter, hence for both positive and negative values of
activity the smooth transition from the frozen director limit regime occurs along lines of constant
|�1|/�3 = |α|L2/(�ηK ). We draw two of them in Figs. 2(a) and 2(b) and Figs. 4(a) and 4(b):
one for |�1|/�3 = 20 marking the deviation from solution (12), and one for |�1|/�3 = 2 × 104

signaling a second transition to the zero velocity or the unsteady behavior for α > 0. Given the
relevance of the �1/�3 dimensionless group, we will from now on refer to it with the new symbol
� := �1/�3. Note that in Figs. 4(c) and 4(d) we report the velocity profiles for calculations that in
Figs. 4(a) and 4(b) maps lie along a line of maximum variation of |�|, that is, a line perpendicular
to the |�| isolines, rather than on a vertical cut as in Figs. 2(c) and 2(d). We have verified in Fig. 5
that for the same value of |�| we obtain the same director field profile n(y), and the velocity profiles
collapse on a single curve provided that they are rescaled by the activity parameter α. In conclusion,
we have hypothesized in Sec. II B that solutions would depend on three parameters: �1, �3, and ξ ,
and we have found numerically that results practically depend on two parameters � and ξ .

For the flow-tumbling case, the profiles for the positive/negative � appear flipped left to right,
and top to bottom. We will provide an explanation for this in Sec. III C. Note that since we have
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(a) (b)

(c) (d)

(e)

FIG. 4. Top: Base 10 logarithm of the maximum magnitude of the velocity computed numerically and
rescaled by the maximum of the analytical profile (12) for negative (a) and positive (b) values of the activity
parameter and a flow-tumbling nematics (ξ = 0.3). The axes correspond to the �3 and |�1| parameters and
are in logarithmic scale. Two |�1|/�3 isolines are shown in panels (a),(b): |�1|/�3 = 2 × 104 (dashed-black
line) and |�1|/�3 = 20 (solid-black line). Middle: rescaled velocity profiles corresponding to calculations that
lie on a diagonal cut of the color maps in (a) and (b); the cuts originate at the top-left corner of the maps and
run perpendicular to the |�1|/�3 isolines. For clarity, the legend only labels the two curves that correspond
to the extreme values of �3/�1. The thick black lines correspond to the analytical solution (12). Observe
the remarkable resemblance of the rescaled velocity profiles in (c) with those reported in Fig. 2(c) for the
flow-aligning case. Bottom: nematic angle θ = arctan(ny/nx ) corresponding to the rescaled velocity profiles
in (c). The analytical solution corresponds to a straight line, while the zero-flow solution corresponds to a
discontinuous profile that suddenly jumps close to the bottom wall from nx = 1 to ny = 1; this is allowed in
the Q-model by a concomitant q0 = 0.
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(a) (b)

(c) (d)

FIG. 5. Nematic angle θ = arctan(ny/nx ) (a),(c) and velocity profile (b),(d) rescaled by the maximum of
the analytical profile for the flow-aligning case (a),(b) and the flow-tumbling case (c),(d) and two different
values of the � = �3/�1 dimensionless group.

collapsed two dimensionless parameters into one, this allows us to reproduce the solutions in Figs.
14 and 15 of [13] using larger �3 values if this is compensated by smaller |�1| and if the remaining
dimensionless numbers, specifically �2, are the same. This reduction of parameter space also
explains why in Sec. III A 2 solution (12) was found to a very good approximation up to |�1| = 103,
in that specific case in fact �3 ≈ 104 making the |�1| = 103 threshold equivalent to � ≈ 0.1 < 1.

As a final observation we note a qualitative similarity between the velocity profiles for a
contractile nematics for both the flow-tumbling and -aligning regime; compare Figs. 2(c) and
4(c). This suggests that those solutions may have only a weak dependence of the flow-aligning
parameter ξ .

C. Interpretation of results

A stability analysis performed on the n-model [8] and later results [10] built on expanding
concepts presented in [31] show that for a 1D slab geometry in a flow-aligning regime, a nematic
profile parallel to the walls is (i) unstable for extensile active particles (α > 0) and (ii) stable for
contractile ones (α < 0). Similarly, a nematic arrangement perpendicular to the walls is (iii) unstable
for extensile active particles and (iv) stable for contractile ones. In these cases, the instability appears
above a certain activity threshold αc that depends on several model parameters: the system size
L, the dynamic viscosity of the flow η, and the elastic, flow-aligning, and rotational diffusivity
parameter; see, e.g., [10] for an analytical expression for αc. We have verified numerically that
this critical threshold also predicts the transition to spontaneous active flows in the Q-model when
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FIG. 6. Schematic representation of the numerical results reported in Sec. III B. For small values of the
dimensionless parameter � = �1/�3 we observe thresholdless active flows [14] independently of the sign of
the activity parameter or the value of the flow-aligning parameter (green shaded area). For intermediate values
of |�| the velocity field is nonzero and depends on the sign of the activity parameter as well as the value of the
flow-aligning parameter (gray shaded area). There exists a very close resemblance of the velocity profiles in the
transition region for three cases over four: positive activity and flow tumbling Fig. 4(d), negative activity and
flow tumbling Fig. 4(c), negative activity and flow aligning Fig. 2(c). The positive activity and flow-aligning
case differs and shows some dependence on the initial conditions, Fig. 2(d). The behavior in the regions of large
magnitude of �, beyond the transition regions, can be rationalized on the basis of previous studies [8,10,31] for
the flows of active nematics in channels with either homeotropic or parallel boundary conditions. The hybrid
boundary condition (θ0 = 0, θL = π/2) can be interpreted as a combination of parallel and perpendicular
boundary conditions. For those cases, the stability conditions have been derived in the literature, and their
combination suggests the type of flow we observe in the hybrid case (blue and red shaded areas).

the anchoring is forced through Dirichlet boundary conditions nx = cos θ , ny = sin θ . In [10] free
boundary conditions were imposed for the director field at the walls (∂yni = 0).

Hybrid boundary conditions can be viewed as a combination of the four scenarios (i)–(iv). Both
nematic arrangements, parallel and perpendicular to the walls, are unstable and will result in a
nonzero flow for positive and large enough α, while instabilities are suppressed for both these
configurations when α < 0. This explains why a deviation from the FDL will lead for α < 0 to
a suppression of the flow and for α > 0 to a nonzero velocity profile providing an explanation for
the behavior reported in Figs. 2(a) and 2(b). More specifically, the analogy with the homogeneous
director field can be thought to hold locally according to the mechanism described in [31]. In
contractile systems, both the parallel and perpendicular nematic arrangements are stable. Therefore,
if in the neighborhood of the walls where the anchoring is fixed the nematic profile is distorted from
the parallel or perpendicular alignment, such distortions will die away. Two separate domains will
form, one with uniform nx = 1 and one with uniform ny = 1, and a discontinuity in the n profile
will appear where q0 will modulate its magnitude and go to zero; see Sec. III C 1. See Fig. 6 for a
schematic representation of our interpretation of the results.

The situation is different for the flow-tumbling regime: in this case a nematic arrangement
parallel to the walls is stable for extensile active particles and unstable for contractile ones. On the
contrary, a nematic arrangement perpendicular to the walls is unstable for extensile active particles
and stable for contractile ones [10]. Hence mixed boundary conditions in the flow-tumbling regime
correspond to the combination of a stable and unstable configuration in which the stable tendency
wins over the unstable one leading to a zero-velocity profile as the magnitude of activity increases;
see the schematic representation in Fig. 6.

For intermediate values of the activity parameter in the flow-tumbling regime, the velocity
profiles for α > 0 closely resemble the velocity profiles for the α < 0 case once “flipped” about
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FIG. 7. Map of the numerical solutions for the 1D velocity profile as a function of the flow-aligning
parameter ξ and the dimensionless number �. Different symbols correspond to different types of solutions:
circles denote zero-velocity solutions that correspond to a diagonal Q-tensor; triangles indicate solutions whose
normalized root-mean-square (RMS) value does not deviate from Eq. (12) by more than 0.01; squares indicate
all the other types of solutions, and diamonds designate unsteady solutions. The color represents the rescaled
magnitude of velocity as in Figs. 2(a) and 2(b) and Figs. 4(a) and 4(b). The boundary between the flow-tumbling
and flow-aligning behavior is given by ξ = 0.5 and is marked by a black line. Note the expression for the x-axis
chosen to display � in log-scale while distinguishing between the positive and negative cases.

the y-axis; this symmetry reflects the symmetries embodied in the equations for the nematic field
as stressed in [10]: a change in the sign of α is equivalent to a change in sign of the flow-aligning
parameter in conjunction with a π/2 rotation of the director field. Therefore, changing the sign of α

in our setting is equivalent to exchanging the y = 0 and y = L boundary conditions as emerges also
from Figs. 5(c) and 5(d).

Figure 7 displays on the ξ -� plane the different types of solutions described in this work for the
same � values of Figs. 2, 4, and some additional ξ values. This plot corresponds to the numerical
outcome and corroborates the schematic representation of Fig. 6.

1. Further remarks on the zero-flow solution

The nematic profile selected dynamically by the system and associated with the zero-flow steady
state is a free-energy stationary point that satisfies Hi j = 0 and corresponds to a zero-curl active
force. This second condition is verified in our setting anytime the off-diagonal terms of the Qi j

tensor are zero. The nematic profile will therefore satisfy an undamped unforced Duffing equation:
KQ′′

xx − AQxx − 2CQ3
xx = 0 in 2D and the system of nonlinear ODEs,
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in 3D. The solutions obtained with hybrid anchoring boundary conditions for �2 � 1 are charac-
terized by sharp fronts in the q0 profile where q0 → 0 while n changes orientation to match the
boundary conditions switching from nx = 1, ny = 0 to nx = 0, ny = 1 [see Fig. 4(e), blue curve].
In the 3D case, biaxiality develops in the region where n changes orientation (see Sec. III E). These
solutions reflect the greater generality of the Q-model, in fact they are not admitted in the n-model
where the magnitude of the nematic order parameter is fixed. In conclusion, we discover that in
addition to Eq. (11), which we refer to as fixed point 1 (FP1), the Euler-Lagrange equation for the
Q-model admits a second stable fixed point, FP2, that allows for steady-state zero-flow solutions
that manifest at nonzero activity. In the following section, we deepen our analysis of these two
configurations.

D. Comments on the minimum-energy solutions in the Q model

In Sec. III A 2 the numerical solution for a 3D-Q tensor, FP1, was obtained for values of the
thermotropic constants and q0 that corresponded to minimum-energy solutions for uniform states
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FIG. 8. (a) Rescaled Landau–de Gennes free energy as a function of the dimensionless parameters BL2/K
and CL2/K for the solution of Hi j = 0 obtained by relaxing the initial condition IC1 through Eq. (23). The free
energy is rescaled by a reference free-energy value, F0, corresponding to a homogeneous solution for a system
of size L. (b) Difference between the Landau–de Gennes free energy associated with IC1, F1, and IC2, F2,
rescaled by F0. These calculations have been performed for CL2/K = 60 000 and repeated for 0 < CL2/K <

100 000. In this parameter range, we observe qualitatively the same type of solutions; differences concern the
magnitude of q0 in a narrow region close to the boundaries.

(q0 = const); see the caption of Fig. 1. These same values were used when integrating the full
set of equations leading to the dynamical selection of FP2 for low �. We now test the sensitivity
of the two fixed points to the parameters A, B, and C, by looking for solutions of Hi j = 0 in a
neighbourhood of the previously selected values: we vary A and B in the range −1.67 � A/C � 1.67
and −1.67 � B/C � 0.0 with CL2/K = 6 × 104. We always constrain the choice of parameters
to thermodynamically stable states (C > 0) [32]. Numerically, we find minimum-energy solutions
relaxing the order parameter through Eq. (23) with fixed anchoring at the walls. We repeat the calcu-
lations for two different initial conditions: expression (11), referred to as “IC1,” and a discontinuous
initial state with nx(y) = 1 for y = [0, L/2), ny(y) = 1 for y = [L/2, L], IC2. As expected [24], the
solution converges to a nematic state for A < 0 and an isotropic state for A > 0. The isotropic state
is only attained in the middle of the domain given the fixed anchoring at the walls. For B/C < 0 and
IC1 the nematic solution corresponds to a nematic state with a nonzero curl active force of the kind
reported in Sec. III A 2: the nematic profile corresponds to Eq. (11) to a very good approximation
while the q0 profile slightly changes as a function of the thermotropic parameters. In Fig. 8(a) we
show the free energy of this solution as a function of the thermotropic parameters, and we find
that when compared to a uniform state solution, the most energetically favorable configurations are
attained for the largest AL2/K and BL2/K . For B/C < 0 and IC2 the solution is a nematic state
with a zero-curl active force and corresponds to FP2. For the special case B = 0 both IC1 and IC2
converge to FP2. When we compare the free-energy value for the solutions obtained with IC1 and
IC2, Fig. 8(b), we find that FP2 has the largest energy, hence it is a local minimum.

E. An example of biaxial thresholdless active flows in the Q model

The Landau–de Gennes free energy adopted in the Q-model [Eq. (2)] allows for a wider family
of minimum-energy solutions than the Franck free energy used in the n-model because it includes
a thermotropic term in addition to a distortion term. This fact is relevant when dealing with
thresholdless active flows since they require minimum-energy nematic profiles with a nonzero curl
active force. Potentially, the Q-model allows for more thresholdless active flow configurations than
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FIG. 9. (a) Root-mean-square deviation from uniaxiality measured in terms of the difference between
the closest eigenvalues of the Qi j tensor for FP1, FP2, and BL2/K → 0, here CL2/K = |A|L2/K = 60 000.
The solid and dashed lines represent power-law scalings as reported in the legend. (b) Velocity profile for a
thresholdless active flow for a 2D and 3D geometry and for a uniaxial case (ground state of type 3) and a
biaxial case (ground state of type 4). The 2D uniaxial profile is given by Eq. (22); the 3D velocity field has a
nonzero uz component that is not reported in the plot for clarity. All the curves are rescaled by the maximum
of the analytical profile (22). In panels (c) and (d) we report the nematic director field for the 2D (c) and 3D
(d) solution.

the n-model, including, in 3D, biaxial solutions. The objective of this section is to identify some of
them.

To decide whether the degree of biaxiality of a solution is non-negligible, a threshold is set on
the difference between the two closest eigenvalues λi, λ j of tensor Q: if

√∑
k (λi − λ j )2/L > 10−4,

where L is the system size and k are the grid points, then biaxiality is considered non-negligible.
We classify the type of minimum-energy solutions that we obtain in five categories: isotropic

states (type 0), nematic states with a zero-curl active force ∇ × fa = 0 and negligible biaxiality
(type 1), biaxial nematic states with a zero-curl active force (type 2), nematic states with a nonzero
curl active force ∇ × fa 
= 0 and negligible biaxiality (type 3), and biaxial nematic states with a
nonzero curl active force (type 4). Only solutions of type 3 and 4 can support thresholdless active
flows. The two fixed-point solutions discussed so far correspond to type 3, FP1, and type 2, FP2.
A closer inspection of FP1 reveals that this fixed-point solution has non-negligible biaxiality in the
neighborhood of BL2/K = 0. Similarly, the biaxial fixed point FP2 more markedly deviates from
a uniaxial arrangement as BL2/K → 0; see Fig. 9(a). The RMS deviation from biaxiality for both
FP1 and FP2 follows a power law as reported in Fig. 9(a).

The only biaxial solution identified so far for BL2/K = 0, FP2, will not be able to sustain a
thresholdless active flow, however different anchoring choices will change this picture. For example,
for anchoring angles of 60◦ and 45◦ and B = 0, the ground state is biaxial and has a nonzero curl
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active force, therefore it supports a biaxial thresholdless active flow, Figs. 9(b) and 9(d). If this
geometry is extended in 3D, meaning that the plane formed by the anchoring angles at the walls is
not orthogonal to the walls [the angle θ (0) lies on the x-y plane, the angle θ (L) lies on the y-z plane],
the picture is similar, Figs. 9(a)–9(d). Note that for B = 0 the isotropic-nematic phase transition is
second order instead of first order, and consider that the degree of biaxiality grows as the value of
the B parameter approaches zero, Fig. 9. We can therefore conclude that biaxiality is relevant for a
weakly first-order isotropic-nematic phase transition.

IV. CONCLUSIONS

We study active nematic flows confined in a quasi-one-dimensional channel geometry with
hybrid alignment at the walls. More specifically, we impose a fixed anchoring parallel to one wall
and perpendicular to the second. Active flows in this setting have been investigated in previous
studies revealing interesting features: in [13] it was shown how small positive and negative values
of the activity parameter lead to different velocity profiles, while in [14] it was demonstrated that
this geometry presents a nonzero velocity field even for vanishingly small values of the activity
parameter. In [14] an analytical solution for such a thresholdless active flow was derived within the
active nematohydrodynamic n-model for small activity and in the frozen director limit (FDL), that
is, in a regime where the nematic is not distorted by the flow and satisfies the Euler-Lagrange
equation for minimizing the free energy. In this paper, we have shown that this solution holds
also in the active nematohydrodynamic Q-model for a two-dimensional Q-tensor, a result that
can be generalized to any anchoring angle. We reproduce this solution numerically with a hybrid
lattice-Boltzmann code identifying the range of model parameters for which this result is found
with high accuracy. In addition, we verify numerically that this nematic and velocity profile is a
very good approximation of the solution for a three-dimensional Q-tensor.

The active nematohydrodynamic Q-model generally depends on six dimensionless numbers.
However, in our specific geometry, in the absence of an external forcing, and for system sizes much
larger than the characteristic defect core, we expect the solution to depend on three dimensionless
groups: �1, which is the square of the ratio between the active length scale and the size of the
system, �3, a parameter that measures the distance from the FDL regime identified by �3 � 1,
and the flow aligning parameter ξ that expresses the tendency of particles to tumble or align with
the flow. With the aim of providing a unifying picture for active flows in a channel with hybrid
anchoring at the walls, we have computed numerically steady-state solutions in a wide portion of
parameter space: the parameter |�1| spans six orders of magnitude, the parameter �3 spans almost
four orders of magnitude, while the values of ξ encompass both the flow-tumbling and -aligning
regime. These parameter ranges include both the FDL and a parameter region where the velocity
field has the ability of distorting the nematic profile, and they comprise both the small and large
activity limit. Our study reveals that the effect of decreasing �3 is similar to that of increasing |�1|
so that the transition from the FDL solution occurs along lines of constant � = �1/�3, hence the
solution only depends on two dimensionless groups: � and ξ , a result that could not be anticipated
theoretically.

We observe that the symmetric thresholdless active flow derived in [14] manifests to a very good
approximation for small values of � and is independent of the sign of activity and the value of ξ .
Moving away from the low � region, the transition from the symmetric active flow is smooth with
the model parameters and depends on them. In particular, for (i) a flow-aligning and contractile
nematic, the velocity profile becomes more and more asymmetric while its magnitude rescaled by
the activity parameter decreases as |�| increases until the flow is completely suppressed; for (ii)
a flow-aligning and extensile nematic, the velocity profile loses symmetry as � increases until it
becomes unsteady. For intermediate values of the parameter, the velocity profile has a single peak
located around the middle of the domain. This steady-state configuration displays some dependence
on the initial condition for the nematic director field. Unlike in the flow-aligning regime, in the flow-
tumbling regime the deviation from the FDL profile is similar for a (iii) contractile and (iv) extensile
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nematic; in both cases the profile decreases in relative magnitude until the flow is suppressed as |�|
increases.

We interpret the different flow-aligning and tumbling behaviors for large |�| in terms of the sta-
bility of simpler configurations with either parallel or perpendicular anchoring at both walls [10]. In
the flow-aligning regime, both a parallel and a perpendicular configuration is stable to perturbations
for negative activity and unstable for positive activity. This provides a rationale for the zero-flow
solution observed for a contractile nematic with hybrid anchoring at the walls and the nonzero large
magnitude or unsteady velocity solution found for an extensile nematic with hybrid anchoring. In
the flow tumbling regime, the picture is different. For a contractile particle, the flow is unstable
to perturbation for a parallel arrangement and stable for a perpendicular one, while the opposite
is true for extensile active particles. This means that mixed boundary conditions correspond to
a combination of a stable and unstable configuration for both negative and positive activity, and
we observe that the stable tendency wins over the unstable one leading to zero-flow solutions
qualitatively very similar to the zero-flow solutions found for the contractile flow-aligning case.
Therefore, unlike in the flow-aligning case, in the flow-tumbling case there is a symmetry in the
behavior for positive and negative values of activity.

In the zero-flow configuration, the nematic director n reorients abruptly from nx = 1, ny = 0
to nx = 0, ny = 1 to match the boundary conditions while q0 decreases to zero in correspondence
with the discontinuity. We clarify that this configuration supports a zero-flow steady state because
it corresponds to a local minimum of the free energy and a zero-curl active force. We have found
a second stationary point for the free energy in addition to the nematic profile responsible for the
thresholdless active flow. This stationary point is a local minimum of the Euler-Lagrange equation
and displays biaxiality for a three-dimensional Q-tensor.

Finally, we exploit the greater generality of the Q-model compared to the n-model and provide an
example of a biaxial thresholdless active flow for conflicting anchoring at the walls corresponding
to a 60◦ and 45◦ angle on either a two-dimensional or three-dimensional (out of the plane) geometry.
For this configuration, the biaxial thresholdless flow exists also in the special case of a symmetric
quartic free-energy expression that corresponds to a second-order isotropic-nematic phase transi-
tion. In our examples, we find that biaxiality is relevant for a weakly first-order isotropic-nematic
phase transition.

As a concluding remark, we remind the reader that our results have been obtained in a one-
dimensional domain as representative of two-dimensional channel flows that are uniform along the
longitudinal direction. We recall that in a truly two-dimensional system, instabilities can develop
in the longitudinal direction due to spontaneous symmetry breaking; see, for example, [29,33].
Therefore, an important underlying question is the range of validity of our analysis when extended
to 2D systems. Informed by the results of our study, we expect the critical longitudinal wavelength
to depend on two parameters: � and ξ . Preliminary results point to the fact that the lower the value
of the parameter � is, the more robust is the 1D approximation, or else, the longer is the critical
longitudinal wavelength, λx,c. Assessing the role of the flow-aligning parameter ξ proves to be more
difficult. Addressing the functional form of λx,c is by itself a relevant and complex matter that will
be the subject of future studies.
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