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Abstract: Salt is mechanically weaker than other sedimentary rocks in rift basins. It commonly
acts as a strain localizer, and decouples supra- and sub-salt deformation. In the rift basins discussed
in this paper, sub-salt faults commonly form wide and deep ramp synclines controlled by the thick-
ness and strength of the overlying salt section, as well as by the shapes of the extensional faults, and
the magnitudes and slip rates along the faults. Upon inversion of these rift basins, the inherited
extensional architectures, and particularly the continuity of the salt section, significantly controls
the later contractional deformation.
This paper utilizes scaled sandbox models to analyse the interplay between sub-salt structures

and supra-salt units during both extension and inversion. Series 1 experiments involved baseline
models run using isotropic sand packs for simple and ramp-flat listric faults, as well as for simple
planar and kinked planar faults. Series 2 experiments involved the same fault geometries but also
included a pre-extension polymer layer to simulate salt in the stratigraphy. In these experiments,
the polymer layer decoupled the extensional and contractional strains, and inhibited the upwards
propagation of sub-polymer faults. In all Series 2 experiments, the extension produced a synclinal
hanging-wall basin above the polymer layer as a result of polymer migration during the deforma-
tion. During inversion, the supra-polymer synclinal basin was uplifted, folded and detached above
the polymer layer. Changes in thickness of the polymer layer during the inversion produced pri-
mary welds and these permitted the sub-polymer deformation to propagate upwards into the
supra-salt layers.
The experimental results are compared with examples from the Parentis Basin (Bay of Biscay),

the Broad Fourteens Basin (southern North Sea), the Feda Graben (central North Sea) and the
Cameros Basin (Iberian Range, Spain).

Salt strata within rift basins commonly localizes
strains and decouples sub- and supra-salt deforma-
tion because it is mechanically significantly weaker
than other units (e.g. Jackson & Vendeville 1994;
Letouzey et al. 1995; Nalpas et al. 1995; Withjack
& Callaway 2000; Dooley et al. 2005; Krzywiec
2006). As a result of this strength contrast, the
style of supra- and sub-salt deformation can be sig-
nificantly different. In a rift system without salt
layers, the basement extension is accommodated
by the upwards propagation of faults throughout
the syn-extensional basin fill (i.e. thick-skinned
extension) (Ellis & McClay 1988; McClay 1989;
Withjack & Callaway 2000; Corti 2012) (Fig. 1a,
c). In contrast, in rift systems with salt layers, the
basement extension triggers salt flow towards the
margins of the basin decoupling the deformation

of sub- and supra-salt units and inhibits the upwards
propagation of the sub-salt faults, which results in
decoupled thin-skinned extension in the supra-salt
layers (Nalpas & Brun 1993; Jackson & Vendeville
1994; Soto et al. 2007; Ferrer et al. 2008a, b, 2014).
Similarly, upon inversion of rift basins without
salt in the stratigraphic section, the inverted fault
systems propagate upwards from the rift strata into
the overlying post-rift and syn-inversion strata
(Fig. 1b, d) (e.g. McClay 1989; Buchanan &
McClay 1992; McClay & Buchanan 1992).

Factors that control coupled/decoupled defor-
mation and the geometries of the supra-salt section
include:

† the thicknesses and strength of the salt layer and
the overburden layers;
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† the geometry of the main extensional fault;
† the rate of fault slip;
† the magnitude of displacement on the basin-

bounding fault;
† the location of the salt strata within the basin

stratigraphy (i.e. pre-, syn- or post-kinematic)
(e.g. Jackson et al. 1990; Koyi et al. 1993; Jack-
son & Vendeville 1994; Withjack & Callaway
2000; Soto et al. 2007; Ferrer et al. 2008b, 2014).

During extension, a thin salt layer or a very fast slip
rate on the main bounding fault will prevent salt
flow and produce coupled deformation between
the supra- and sub-salt strata (i.e. sub-salt structures
will propagate upwards through the stratigraphic
section). In contrast, a thick salt layer or a slow
fault slip rate favours salt flow and the development
of a hanging-wall monocline or synclinal basin
above the major extensional fault (e.g. Withjack &
Callaway 2000). In this case, salt acts as an inter-
mediate extensional décollement absorbing defor-
mation and inhibiting fault propagation from the
sub-salt units through to the supra-salt layers. Simi-
larly, evaporite compositions and strengths may
also control the deformation of the supra-evaporite
units decoupling supra- and sub-salt layers. Wet
halite has an extremely low shear strength at geolog-
ical strain rates (e.g. Vendeville & Jackson 1992)
in comparison with gypsum or anhydrite. Halite pre-
ferably deforms very easily and flows acting as a
regional detachment surface (e.g. Fiduk & Rowan
2012; Butler et al. 2014; Dooley et al. 2015).
In addition, changes in the salt thickness related
to the original salt syn-depositional environment
(pre-, syn- or post-rift) may also control the degree
of decoupling during extension (e.g. Jackson &

Vendeville 1994; Coward & Stewart 1995; Ferrer
et al. 2008b, 2014).

Many rift basins containing salt strata have
also undergone later contractional deformation
(inversion) where the main normal faults have been
reactivated, producing contractional geometries
superposed on the pre-existing extensional rift
architectures. Where there is no salt section in the
rift basin system, the main faults may propagate
upwards during inversion without decoupling, and
produce asymmetric anticlines, harpoon structures
and hanging-wall back-thrusts as a result of but-
tressing or footwall shortcut faults (McClay 1989,
1995; Bonini et al. 2012) (Fig. 1b, d). In contrast,
in rift basins with salt units, the salt structures at
the end of extension will critically control the kine-
matics and geometries of the inverted salt basins
producing partial or fully decoupled contractional
deformation. Primary salt welds as a result of salt
depletion during extension will inhibit later salt
migration and the development of detachment folds
during inversion. Natural examples of inverted salt
basins with similar structural features to those
described above include the central and southern
North Sea (Van Wijhe 1987; Gowers et al. 1993;
Nalpas et al. 1995), the Mid-Polish Trough with
Zechstein evaporites (Krzywiec 2006; Burliga
et al. 2012; Rowan &Krzywiec 2014), the Pyrenean
rift basins (Garcı́a-Senz 2002; Ferrer et al. 2008a,
2012; Roca et al. 2011), and the Atlas Mountains
(Letouzey et al. 1995; Teixell et al. 2003).

Scaled physical models are a widely used, pow-
erful tool for studying the geometry and kinematics
of basin structures formed during both extension
(e.g. McClay 1990; Corti 2012) and inversion (e.g.
review by Bonini et al. 2012). Many previously

Fig. 1.

Colour

online/

mono

hardcopy

Synoptic models for extension and inversion of (a) & (b) a simple listric fault and (c) & (d) a simple planar
fault dipping 608 (modified from McClay 1995).
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published sandbox models of inverted fault systems
with a rigid fault footwall did not include signi-
ficant mechanical anisotropies in the sand packs
(i.e. ductile polymer layers) within the hanging-wall
stratigraphy (e.g. McClay 1989, 1995; Buchanan &
McClay 1991; Keller & McClay 1995) (Fig. 1).
Only the experiments of Soto et al. (2007) and
Ferrer et al. (2008b, 2014) included a weak layer
(pre- or syn-kinematic) and a rigid footwall fault
during extension. However, the inversion of basins
with mechanical anisotropies has been modelled
using other sandbox configurations or numerical
models (e.g. Nalpas et al. 1995; Brun & Nalpas
1996; Dubois et al. 2002; Panien et al. 2005, 2006;
Del Ventisette et al. 2006; Buiter et al. 2009; Bonini
et al. 2012; Burliga et al. 2012). Many of these
experiments used a basal plastic sheet or a metal
plate attached to the moving wall to produce the
extension and the inversion to the brittle–ductile
layers in the hanging wall. The review of Bonini
et al. (2012) showed that in brittle–ductile models
the geometry of the fault is imposed by the velocity
discontinuity between the basal mobile plate and
the fixed part of the experiment, whereas models
with rigid footwall blocks permit the simulation of
hanging-wall geometries above a variety of footwall
fault geometries (e.g. Fig. 1). However, fixed foot-
wall fault models do not allow the deformation of
the rigid footwall with subsequent development of
footwall shortcut thrusts during inversion.

Taking the above limitation into account, this
paper presents two series of extension–inversion
sandbox models with rigid footwall blocks. Series 1
experimentswere isotropic sandboxmodels,whereas
Series 2 models contained a pre-kinematic polymer
layer that simulated a salt section in the natural pro-
totypes (Table 1). The experimental results are com-
pared with published natural examples of inverted
extensional basins that contain evaporite units.

Research methodology

Experimental set-up

The experimental set-up used was similar to that
applied by Yamada & McClay (2003a, b, 2004).

Sandbox experiments were carried out in a glass-
sided deformation rig that was 150 cm long, 30 cm
wide and up to 20 cm deep (Fig. 2). An electric
motor fixed to the base plate drove a worm screw
attached to the footwall block that produced uniaxial
lengthening or shortening and normal or reverse
slip of the basement fault. A constant displacement
rate of 1.83 × 1024 cm s21 was applied in all the
experiments during both extension and inversion
in order to allow ductile flow of the polymer layers
in Series 2 experiments. A strong flexible plastic
sheet (but not deformable under the model condi-
tions) was used as a detachment surface between
the rigid footwall and the hanging-wall sand pack.
This sheet was attached to the fixed end walls of
the apparatus, maintaining constant length during
the experiments. The weight of the hanging-wall
sand forced the plastic sheet to conform to the
underlying footwall fault block (Fig. 2). This exper-
imental configuration allowed sliding of the plastic
sheet without any length changes above the foot-
wall surface during extension and inversion (i.e.
Yamada &McClay 2003a, b, 2004). The coefficient
of sliding friction between the plastic detachment
and the sand pack was mb ¼ 0.37 (Huiqi et al.
1992). The main limitation of this experimental
set-up using a rigid footwall is that it does not
allow footwall deformation during inversion, such
as occurs in natural analogues (e.g. McClay 1989,
1995; Buchanan & McClay 1991; Bonini et al.
2012). Keeping the above limitations in mind, five
different footwall fault geometries were used in
the experimental programme presented in this
paper (Table 1):

(1) concave-upwards simple listric fault;
(2) ramp-flat listric fault;
(3) simple planar fault dipping 208;
(4) simple planar fault dipping 608;
(5) kinked planar fault with an upper 608 dipping

panel and a lower panel that dips 208 onto the
flat basal detachment.

The hanging-wall sand pack consisted of layered
moderately well-rounded and well-sorted coloured
and uncoloured dry quartz sand, with an average
grain size of 0.25 mm, that was used to simulate

Table 1. Experimental models described in this paper

Fault geometry Series 1 baseline isotropic
models without polymer

Series 2 anisotropic models
with polymer

Simple listric Exp. 1.1 Exp. 2.1
Ramp-flat listric Exp. 1.2 Exp. 2.2
Simple planar (208) Exp. 1.3 Exp. 2.3
Simple planar (608) Exp. 1.4 Exp. 2.4
Kinked planar (608 and 208) Exp. 1.5 Exp. 2.5
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brittle sedimentary rocks in the upper crust. The
sand was washed and dyed using blue, red, black
or yellow pigments, and then oven-dried for 12 h
at 1008C. In order to ensure that the mechanical
behaviour of the uncoloured sand was similar to
that of the dyed coloured sand, uncoloured sand
was washed to remove the fine fraction (,20 mm)
and then also oven-dried at 1008C for 12 h.

The layered sand pack was constructed by pour-
ing alternating layers of sand into the deformation
apparatus and then levelled using a mechanical
scraper (e.g. Krantz 1991; Lohrmann et al. 2003).
Figure 2a shows the pre-kinematic hanging-wall
strata formed by alternating 2.5 mm layers of blue,
black and white sand, with a total thickness of
10 cm. In Series 2 experiments (Fig. 2a), a uniform
12 mm-thick polymer layer was extended across
the whole model and onto the footwall block.
The polymer is a long-chain polydimethylsiloxane
(PDMS) that deforms by viscous flow and is widely
used as analogue for the natural deformation of
salt at geological strain rates (Weijermars 1986).
Finally, the polymer layer was overlaid with pre-
extensional strata formed by alternating 2.5 mm
layers of blue, white and black sand up to a thickness
of 1.5 cm (Fig. 2a).

The mechanical properties of the poured sand
were measured using a ring shear tester at the Fault
Dynamics Research Group laboratory. The poured

dry quartz sand used in these experiments has an
angle of internal friction of 34.68, a bulk density
of 1500 kg m23, a coefficient of internal friction
of 0.69 and a low apparent cohesive strength of
55 Pa. It deforms according to Navier–Coulomb
failure at moderate and high values of normal stress
(i.e. Horsfield 1977; McClay 1990). The PDMS
used in the experimental programme (Rhodia Rho-
dosil Gum FB) is a near-perfect Newtonian fluid
with a density of 0.972 g cm23 at room temperature
and a viscosity of 1.6 × 104 Pa s when deformed
at a laboratory strain rate of 1.83 × 1024 cm s21

(Dell’Ertole & Schellart 2013). The main properties
of the analogue materials and their scaling param-
eters used in the experimental programme are sum-
marized in Table 2, and Figure 3 shows the general
strength profiles for the analogue models described
in this paper.

Experimental procedure

All models underwent 3 cm of total extension
during which syn-extensional layers of red, white
and black sand were added episodically after every
5 mm of extension (Fig. 2b). The regional level
for each syn-kinematic layer was increased by
1 mm for every 5 mm of extension in order to
preserve structures formed by polymer inflation.
After the extension, models were then shortened

Fig. 2.
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Experimental set-up and sedimentary infill for each deformational episode: (a) pre-deformation geometry;
(b) configuration of the experiment at the end of the extension; and (c) experimental configuration at the end of
the inversion.
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5 cm (Fig. 2c). The amount of shortening was higher
than the applied extension to force the polymer to
act as a contractional detachment, transferring part
of the deformation into the footwall of the rigid
fault block. No syn-contractional strata were depos-
ited during the inversion (Fig. 2c). At the end of
each experiment, the models were preserved and
sliced in closely spaced vertical serial sections
(3 mm thick) in order to analyse the internal fault
geometries. A 5 cm-wide section along each side-
wall of the models was discarded in order to elim-
inate edge effects produced by friction between the
sand pack and the glass sidewalls.

Analysis of the analogue models

High-resolution time-lapse photographs of the
upper part of the models and the sidewalls were

taken every 2 min by computer-controlled digital
cameras in order to record the kinematic evolution
of the experiments.

The pictures of the vertical cross-sections
through the physical models were studied using
image-processing software in order to produce 3D
voxel models for analysing cross-sections and depth
slices.

Analogue model results

In this section, the results of the Series 1 and Series 2
experiments (Table 1) are described. In each case,
the results of sandbox models with and without a
pre-kinematic polymer layer are compared first for
extension and then for inversion. All models were
subjected to dip-slip extension, followed by dip-slip
inversion. There was no strike-slip deformation and

Table 2. Scaling parameters used in the experimental programme

Quantity Experiment Nature Model ratio

Thickness
Overburden 21–45 mm 2–4 km 1.05 × 1025–1.125 × 1025

Salt/polymer 12 mm 1000 m 1.2 × 1025

Density
Overburden 1500 kg m23 2700 kg m23 0.55
Salt/polymer 972 kg m23 2200 kg m23 0.44

Density contrast 528 500 1.05
Ductile layer viscosity 1.6 × 1024 Pa s 10218–10219 Pa s 1.6 × 10214–1.6 × 10215 Pa s
Overburden coefficient friction 0.7 0.8 0.87
Gravity acceleration 9.81 m s22 9.81 m s22 1

Fig. 3.
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Hanging-wall sand pack configurations and schematic strength profiles for the experimental programme.
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only minor oblique slip on some small faults due
to 3D space issues associated with local complex
inversion geometries.

Extension above listric fault systems

Simple listric and ramp-flat listric faults without
a pre-kinematic polymer layer. The geometrical
hanging-wall evolution of models with an isotropic
sand pack above a simple listric fault and a ramp-flat

listric fault (Series 1 – baseline models) are shown
in Figure 4a, b. These are similar to previously
published models in McClay & Ellis (1987a, b),
Ellis & McClay (1988), McClay (1989), Buchanan
&McClay (1991), McClay & Scott (1991), McClay
et al. (1991), Soto et al. (2007) and Ferrer et al.
(2014).

Whereas a simple hanging-wall rollover devel-
oped in the simple 458 listric model (Fig. 4a),
the deformation above a 608 ramp-flat listric fault

Fig. 4.
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Model cross-sections illustrating the structural style after 3 cm of extension for the Series 1 baseline
isotropic experiments without a pre-kinematic polymer layer: (a) simple 458 listric fault; (b) ramp-flat 608 listric
fault; (c) simple planar fault dipping 208; (d) simple planar fault dipping 608; and (e) kinked planar fault with two
panels dipping 608 and 208. Yellow sand layers are in an equivalent position to the polymer layers in Figure 5.
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produced a rollover anticline associated with the
upper 608 listric fault segment, an adjacent ramp
syncline formed above the convex upwards ramp
section and a lower rollover associated with the
lower listric fault segment (Fig. 4b). In the simple
458 listric fault model, only minor antithetic faulting
developed due to the large radius of curvature of the
listric part of the fault surface (Fig. 4a). Only minor
antithetic faults developed in the hanging wall of
the 608 ramp-flat listric fault (Fig. 4b). Similarly,
the small amount of extensional displacement in
both the listric and the ramp-flat listric faults did not
develop sufficient internal strains to form crestal-
collapse graben in the rollover anticlines (Fig. 4a,
b). In these Series 1 listric fault models, the minor
antithetic faults and the main basin-bounding fault
propagated across the entire sand pack. Hanging-
wall growth strata in the simple 458 listric fault
formed a simple fanning wedge (Fig. 4a): in the
608 ramp-flat listric fault, however, the upper roll-
over formed a fanning growth wedge, but the
ramp syncline and lower rollover combined to
form a gentle synclinal wedge (Fig. 4b).

Simple listric and ramp-flat listric faults with a
pre-kinematic polymer layer. The listric fault
models with a pre-kinematic polymer layer formed
supra-salt hanging-wall synclinal basins that were
coupled from the underlying faulted, sub-salt strata
(Fig. 5a, b). The evolution of the strata below the
pre-kinematic polymer layer was similar to that
described above (e.g. Fig. 4a, b). In the simple 458
listric model, however, decoupling by the poly-
mer layer, together with polymer flow, produced
a broad hanging-wall monocline in the sand pack
above the polymer above the fault breakaway
(Fig. 5a). A gentle extensional fault-propagation
fold developed as the extension progressed, with
syn-kinematic layers enlarging the resultant syncli-
nal basin. The subsidence of the basin depocentre,
combined with the hanging-wall extension, induced
polymer migration towards the rollover hinge as
well as above the rigid footwall to form a gentle
broad polymer-cored anticline (Fig. 5a). No faulting
occurred in the supra-salt section.

In the 608 ramp-flat listric model, the supra-
polymer decoupling was more pronounced, with a
main synclinal depocentre formed by the upper roll-
over, together with a polymer-cored anticline over
the ramp section of the basin-bounding fault and
secondary depocentre formed by the lower rollover
(Fig. 5b). Polymer migration is clearly evident
from the thickened section in the immediate hang-
ing wall of the upper 608 listric fault segment, as
well as in the ramp syncline. As in the simple 458 lis-
tric fault model described previously (Fig. 5a), in the
608 ramp-flat model no primary welds were formed
nor was there any development of new faults in

the supra-salt sand pack owing to the small amount
(3 cm) of extension (Fig. 5b).

In addition to the main synclinal basins, narrow
distal footwall supra-polymer graben developed
near footwall extremities of the polymer layer in
both listric fault models (Fig. 5a, b). These were
probably produced by a boundary effect at the edge
of the polymer detachment (cf. Vendeville &
Jackson 1992; Jackson & Vendeville 1994). These
graben were infilled by syn-kinematic sand layers
as extension progressed, and this suppressed the for-
mation of polymer walls and diapirs at this location
(e.g. Vendeville & Jackson 1992).

Extension above planar fault systems

Simple planar and kinked planar faults without a
pre-kinematic polymer layer. The sandboxmodels
with planar footwall detachment faults are charac-
terized by planar or gently kinked rollover anticlines
(Fig. 4c–e). The hanging-wall architectures are
similar to those in models published by McClay &
Ellis (1987a, b), Ellis & McClay (1988), McClay
et al. (1991), Withjack et al. (1995), Dooley et al.
(2005), Withjack & Schlische (2006) and Ferrer
et al. (2014). The hanging-wall rollover geometries
were controlled by the amount of extension (3 cm),
by the dips of the bounding faults (Fig. 4c, d) and by
the kink-band bend in the fault surface for Series 1
Model 1.5 (Fig. 4e). In the models described in
this paper, the hanging-wall faults are dominantly
antithetic (Fig. 4c–e). The 208 planar fault model
formed a broad planar rollover with localized, small
antithetic faults near the detachment breakaway
(Fig. 4c). The 608 dipping planar bounding fault
model produced a narrow rollover with closely
spaced antithetic faults that bound a deep, flat half-
graben basin (Fig. 4d). The 608–208 kinked planar
fault model formed a broad, gently kinked, hanging-
wall fault-bend fold (Fig. 4e). Similar to the listric
fault models described above, these planar fault
models showed no internal decoupling, with the
antithetic faults cutting from the syn-kinematic
into the pre-kinematic sand layers (Fig. 4c–e).

Simple planar and kinked planar faults with a
pre-kinematic polymer layer. In contrast to the
experimental results discussed above, the models of
planar faults containing a pre-kinematic polymer
layer formed hanging-wall structures where the
supra-salt deformation was decoupled from the
underlying sub-salt deformation (Fig. 5c–e). The
resultant hanging-wall basins are synclinal depo-
centres infilled with syn-kinematic growth stratal
wedges. The dip of the basin-bounding fault con-
trolled the form of the synclines, whereby the 208
planar fault model formed a broad synclinal basin
(Fig. 5c), and the more steeply dipping 608 planar
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fault models formed deeper and narrow synclines
(Fig. 5d, e). The sub-polymer deformation was char-
acterized by antithetic faults that could not link
upwards through the polymer layer into the supra-
salt section.

The progressive evolution of Series 2 Model 2.4,
a 608 dipping planar fault, is shown in detail in
Figure 6. After 1 cm of extension, the sub-salt sec-
tion had formed a narrow, flat hanging-wall graben
bounded by a narrow rollover with very steep,

planar antithetic faults (Fig. 6b). Above the polymer
layer, a broad syncline had formed. At this stage of
the extension, faulting underneath the polymer layer
created accommodation space that triggered poly-
mer flow into the depocentre from the footwalls of
the basin-bounding faults (Fig. 6b). As extension
progressed, the deformation was decoupled by the
polymer layer, with brittle extensional faults in
the sub-polymer units and a broad growth syncline
in the supra-polymer strata (Fig. 6c, d). In this 608

Fig. 5.
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Model cross-sections illustrating the structural style after 3 cm of extension for the Series 2 anisotropic
experiments with a pre-kinematic polymer layer: (a) simple 458 listric fault; (b) ramp-flat 608 listric fault; (c) simple
planar fault dipping 208; (d) simple planar fault dipping 608; and (e) kinked planar fault with two panels dipping 608
and 208. The polymer layers are in an equivalent position to the yellow sand layers in Figure 4.
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planar fault model, primary weld formed over the
footwall of the main rollover antithetic fault (Fig.
5c, d). A few small displacement extensional faults
developed in the strata above the polymer layer
(Fig. 5c, d).

In addition to the main synclinal basins, narrow
distal footwall supra-polymer graben developed
near footwall extremities of the polymer layer in
models with planar faults (Figs 5c–e & 6). As
described in the subsection on ‘Extension above lis-
tric fault systems’, these narrow graben are related
to the edge effects where the polymer layer ends.

Inversion

In terms of classification of inverted basins by
Bally (1984), the analogue models described in
this paper were at the early stages of net compres-
sional tectonics, where the 5 cm of contractional
reactivation was greater than the 3 cm of previous
extension (Figs 7–9). All of the models show the
reactivation of the major basin-bounding fault
during inversion. Inversion of Series 1 models with-
out a ductile polymer layer produced reactivation

and basin uplift, with the formation of harpoon
structures (e.g. Fig. 7). Inversion of Series 2 models
with a pre-extension ductile polymer layer pro-
duced mainly decoupling between the layers
above the polymer and the layers below (e.g.
Fig. 8). In these models, the inversion arched and
uplifted the synclinal basins, and reduced the
thickness of the ductile layer, which eventually
hindered the flow of the polymer. In some models,
where the polymer layer was totally depleted,
the formation of primary welds dramatically con-
trolled the final inversion geometry. The welds
inhibited detachment on the polymer layer and
allowed uplift of the underlying pre-kinematic
units (Fig. 8).

Inversion of listric extensional fault systems

Inversion of listric faults without a pre-extension
polymer layer. The inversion geometries of the
Series 1 baseline listric fault models were similar
to those described in the papers of Buchanan &
McClay (1991), McClay&Buchanan (1992), Keller
& McClay (1995) or McClay (1995) (Fig. 7a, b).

Fig. 6.

Colour

online/

mono

hardcopy

Extensional evolution of the 608 planar fault model: (a) initial set-up – 0 cm of extension; (b) after 1 cm of
extension; (c) after 2 cm of extension; and (d) at the end of 3 cm of extension.
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Inversion of the 458 simple listric fault reactivated
the major detachment fault, producing reverse slip
together with uplift and back-rotation of the

hanging wall (Fig. 7a). Owing to the low dip of
the listric fault, the amount of back-rotation is low
and a simple harpoon structure was formed with a

Fig. 7.
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Model cross-sections illustrating the structural style after 5 cm of inversion for the Series 1 baseline
isotropic experiments without a pre-kinematic polymer layer: (a) simple 458 listric fault; (b) ramp-flat 608 listric
fault; (c) simple planar fault dipping 208; (d) simple planar fault dipping 608; and (e) kinked planar fault with two
panels dipping 608 and 208.
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low-angle footwall shortcut thrust into the footwall
stratigraphy (Fig. 7a). The low-amplitude asymmet-
rical inversion anticline has a front-limb dip of

approximately 288 and very gentle back-limb dip
of 48. The model is in net contraction, with the syn-
kinematic layers uplifted above regional.

Fig. 8.
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Model cross-sections illustrating the structural style after 5 cm of inversion for the Series 2 anisotropic
experiments with a pre-kinematic polymer layer: (a) simple 458 listric fault; (b) ramp-flat 608 listric fault; (c) simple
planar fault dipping 208; (d) simple planar fault dipping 608; and (e) kinked planar fault with two panels dipping 608
and 208.
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Inversion of the 608 ramp-flat listric fault model
reactivated the main detachment and uplifted the
hanging-wall basin onto the footwall strata (Fig.
7b). A frontal asymmetric anticline formed above
the breakaway of the main detachment fault, with
a front-limb dip of 358 and a gentle back-limb dip
of 6–78 (Fig. 7b). A footwall shortcut thrust devel-
oped in the footwall strata in front of the inver-
ted basin. A footwall-vergent, hanging-wall bypass
thrust formed along the trajectory of the ramp
section of the main detachment and propagated
upwards, thrusting the extensional ramp syncline
over the inverted rollover anticline (Fig. 7b). In
both Series 1 listric models, inversion of the main
detachment fault produced uplift and the arching
of the synclinal syn-extensional basins.

Inversion of listric faults with a pre-extension
polymer layer. The inversion of Series 2 listric
fault models that contain a pre-extensional polymer

layer produced almost completely decoupled defor-
mation (Fig. 8a, b).

In the simple 458 listric fault model with the pre-
extensional polymer layer, the 5 cm of contraction
reactivated the main detachment and fully inverted
the sub-polymer pre-extension strata, producing a
broad uplift of the supra-polymer and syn-extension
hanging-wall basin (Fig. 8a). A primary polymer
weld formed at the crest of the very gentle inver-
sion anticline where the polymer thinned by flow
towards both the footwall and hanging wall. The
small ‘end effect’ graben on the footwall block at
the extremities of the polymer layer was inverted
and uplifted by small bi-vergent thrust faults
(Fig. 8a). In this model, the asymmetrical inversion
anticline is only very small due partly to the low
angle of the reactivated detachment and due also
to the decoupling of the polymer, which transfers
the shortening into broad folding and uplift of the
syn-extensional strata above their regional, as well

Fig. 9.

Colour

online/

mono

hardcopy

Evolution of the 608-dipping planar fault model during the inversion: (a) cross-section at the end of 3 cm
of extension – 0 cm of inversion; (b) after 1.5 cm of shortening; (c) after 3 cm of shortening – total inversion; and
(d) at the end of 5 cm of inversion – net contraction.
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as thrusting at the footwall extremities of the poly-
mer layer (Fig. 8a).

Inversion of the 608 ramp-flat listric fault pro-
duced a similar overall decoupled architecture to
the simple listric fault described above but with a
larger asymmetric frontal inversion anticline, and
a greater and broader uplift of the syn-extensional
strata above their regional level (Fig. 8b). The poly-
mer layer underwent significant internal flow with
thinning and weld formation at the crest of the fron-
tal inversion anticline, as well as thickening and
inflation in the hanging wall and at the distal extrem-
ity of the footwall (Fig. 8b). The upper sub-polymer
pre-extension strata in the hanging-wall ramp was
strongly back-rotated as it was inverted up the upper
608 listric sector of the main detachment. This
deformation produced significant thickness changes
in the polymer above this back-rotated panel such
that, together with the uplift of the ramp section,
only a very gently tilted broad uplift formed in the
syn-rift strata together with unfolding of the original
syn-extension ramp syncline (Fig. 8b).

In a manner similar to that observed in the
inverted 458 simple listric fault in Figure 8a, inver-
sion deformation in the 608 ramp-flat fault system
was significantly displaced or offset into the foot-
wall by detachment in the polymer layer, and the
development of inverted graben and thrusting at
the footwall extremity (Fig. 8b).

The inversion of the listric fault systems with
pre-extension polymer layers produced very differ-
ent structures (Fig. 8a, b) to those formed by inver-
sion of listric fault systems with no polymer layers
(e.g. Fig. 7a, b). In particular, models with poly-
mer layers were decoupled with inverted faults
and new faults formed in the sub-polymer units,
decoupling and thickness changes of the polymer
layer, and folding of the supra-polymer stratigraphy.
These models do not develop shortcut faults in the
immediate footwall of the main detachment but,
rather, part of the inversion deformation is trans-
lated/offset to the extremities of the footwall partic-
ularly where the polymer layer ends (Fig. 8a, b).
Models with a polymer layer also show that the
formation of primary polymer welds control the
fold geometry of the inverted hanging-wall units
(Fig. 8b).

Inversion of planar faults

Inversion of planar faults without a pre-extension
polymer layer. The inversion geometries of planar
fault models without a polymer layer in the pre-
extension sand pack (Fig. 7c–e) are similar to
those described by Buchanan & McClay (1991,
1992). Inversion of the 208 planar fault reactivated
the main detachment, gently uplifting the hanging
wall and producing a small frontal inversion

anticline with a frontal-limb dip of approximately
158, together with a broad zone of uplift of the syn-
extensional strata above their regional and a very
gentle back-limb dip of 58 (Fig. 7c). A shortcut
thrust formed in the footwall of themain detachment
and locally overturned the hanging-wall strata.

In contrast to the inversion of the 208 low-angle
planar fault, inversion of the 608 planar and 608–208
kinked planar faults produced well-developed
asymmetric hanging-wall inversion anticlines with
moderately dipping frontal limbs (388 and 358,
respectively) and gently dipping back limbs (208
and 188, respectively) (Fig. 7d, e). Footwall shortcut
faults developed within the sand pack in front of
the inversion anticline. In both models, buttressing
against the 608 dipping footwall produced new
hanging-wall back-thrusts as inversion progresses.
The syn-extension hanging-wall basin was progres-
sively uplifted and small crestal-collapse graben
developed on the outer arc of the asymmetrical
inversion anticlines (Fig. 7d, e). The 608 ramp-flat
kinked planar fault system has a shorter 608 dipping
panel on the detachment surface (Fig. 7e), and this
produced less hanging-wall uplift and a slightly
smaller inversion anticline than the longer 608
panel in the simple 608 planar fault (Fig. 7d).

Inversion on planar faults with a pre-extension
polymer layer. As for the listric faults, the inver-
sion models of planar fault systems that had a pre-
extension ductile polymer layer are characterized
by decoupling of the sub-polymer and supra-poly-
mer structures (Fig. 8c–e). In all of these Series 2
inverted planar fault models, the main detachment
was reactivated and produced broad hanging-wall
uplifts, together with changes in the polymer thick-
ness, but the fault itself did not propagate though the
polymer into the supra-polymer layers (Fig. 8c–e).

Inversion of the low-angle 208 planar fault
model produced a very wide zone of hanging-wall
uplift with the syn-extension strata uplifted above
their regional. A low-relief asymmetrical frontal
inversion anticline was only developed in the sub-
polymer strata (Fig. 8c). In the very flat hanging
wall of the inversion uplift, slight polymer thinning
occurred together with polymer thickening into
the distal hanging wall and into the footwall. The
extensional graben structure near the end of the
polymer layer in the footwall and the nearby strata
are strongly deformed by thrusts detaching into
the top of the polymer layer above the rigid foot-
wall block (Fig. 8c). These thrusts, together with
the thickened polymer section, indicate significant
transfer of shortening from the reactivated 208 dip-
ping planar fault into the footwall polymer layer
and out to the left-hand edge of the model.

Inversion of the simple 608 planar fault model
produced a broad zone of uplift above the main

EXTENSION AND INVERSION OF SYNCLINAL BASINS

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754



basin-bounding fault system under the polymer
layer, with syn-extensional strata strongly uplifted
and folded into a broad anticline tilted towards the
footwall (Fig. 8d). Significant thickness changes
occurred in the salt layer, with a well-developed
primary weld in the hanging wall of the inverted
sub-polymer graben next to the 608 fault. In the
inverted hanging wall, a back-thrust developed
above the polymer layer and carried the supra-
polymer layers (including the syn-extensional strata)
out of the original hanging-wall half-graben and
over the footwall the main antithetic fault of the
syn-extensional crestal-collapse graben (Fig. 8d).
New hanging-wall-vergent back-thrusts formed as
the result of buttressing against the steep footwall
of the 608 planar fault. As in the inversion of the
208 planar fault described earlier, significant thick-
ness changes occurred in the polymer layer with
the weld where the polymer was totally thinned
with polymer migration into the half-graben axis
and distal hanging wall, as well as into the footwall
(Fig. 8d). Here, above the rigid footwall, silicone
inflation occurred in addition to contraction of the
graben near the end of the footwall polymer layer
(Fig. 8d). These features indicate significant dis-
placement and strain transfer from the hanging-
wall inversion into the footwall units. As in all of
the Series 2 inversion models with a pre-extension
ductile layer, the main inverted basin-bounding
fault did not penetrate upwards into the supra-
polymer section (Fig. 8).

Inversion of the 608–208 kinked planar fault
system produced a broad, more symmetrical anti-
cline above the inverted sub-polymer half-graben
(Fig. 8e). A crestal-collapse graben formed on the
apex of the broad inversion uplift. Several small,
back-thrusts formed as a result of buttressing against
the steep 608-dipping part of the main detachment
surface (Fig. 8e). As for all of the other models
described above, transfer of displacement and strain
from the hanging wall into the distal footwall
resulted in thickening of the polymer layer in the
hanging wall and also in the footwall. The small
half-graben that formed near the end of the polymer
detachment during extension was strongly short-
ened by the inversion (Fig. 8e).

Figure 9 shows the progressive evolution of
the 608 planar fault model with a pre-extension
polymer layer. At the end of extension, the structure
was a broad hanging-wall syncline of syn-extension
strata decoupled from the faulted half-graben
below the salt layer (Fig. 9a). The progressive inver-
sion is tracked in Figure 9 from the uplift and partial
unfolding of the syn-extensional strata (Fig. 9b),
and the development of the back-thrust overlying
the polymer layer (Fig. 9c), to the eventual forma-
tion of the polymer primary weld (Fig. 9d). Concor-
dant with the structural decoupling–folding and

detachment thrusting above the polymer layer, and
the reactivation of the extensional faults and new
back-thrusts beneath the polymer layer, the polymer
showsmigration from the corner regions of the main
sub-polymer faults into both the footwall in front
of the inverted half-graben and the hanging wall
(Fig. 9c, d).

Discussion

In this section, the results of the analogue models
are analysed and compared to natural examples of
inverted extensional basin that contain salt or evap-
orite layers. The structural styles of the Series 1
sandbox models that did not contain viscous layers
in the hanging-wall stratigraphy are compared to
Series 2 models that had viscous layers (Table 1).

Role of a viscous layer during

model extension

The kinematic evolution and fault/fold styles of the
analogue models during the extension were mainly
controlled by the geometry of the main basin-
bounding fault geometry, as well as by the presence
or absence of a weak, ductile viscous layer within in
the pre-kinematic sequence (Figs 4–9).

Series 1 models without a viscous layer

The results of the Series 1 extension baseline models
with a rigid footwall block and an isotropic sand
pack (Fig. 4) are comparable to sandbox models
described in the literature (e.g. McClay & Ellis
1987a, b; Ellis & McClay 1988; McClay 1990;
McClay et al. 1991) (Fig. 1). As in previous exper-
iments, the hanging-wall geometries above the main
basin-bounding fault are controlled by the dip and
shape of the fault surface (Fig. 4), as well as by
the amount of extension. Models where the fault
surface was kinked or had a ramp-flat geometry pro-
duced both hanging-wall rollover anticlines and
synclinal geometries (e.g. Fig. 4b, e). In the Series
1 models presented in this paper, planar antithetic
faults were mainly developed where the main basin-
bounding fault dipped bymore than 458 at the break-
away (Fig. 4b, d, e) (cf. McClay 1990). The Series 1
isotropic models are coupled in the sense that the
extensional faults affect both the pre-kinematic
and syn-kinematic units.

Series 2 models with a viscous layer

The deformation of Series 2models typically formed
decoupled architectures, with the supra-polymer
strata folded into hanging-wall growth synclines
above the basin-bounding faults (Figs 5 & 6). The
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units below the polymer layer formed half-graben.
Where the initial breakaway dip of the principal
fault was greater than 458, strains in the half-graben
were accommodated by steep antithetic faults (Figs
5b, d, e & 6). Similar decoupled hanging-wall defor-
mation in analogue models with polymer layers was
described by Soto et al. (2007) and Ferrer et al.
(2008b, 2014).

Extension was accommodated by differential
viscous flow of the polymer across the footwall
of the basin-bounding fault, thickening into the
hanging wall and thinning across the edge of the
footwall. In most of the models, the polymer layer
remained continuous (Fig. 5a–c, e), whereas, in
the 608 planar fault model, polymer flow into the
half-graben across the footwall of the antithetic
fault at the rollover hinge produced a primary poly-
mer weld (Figs 5d & 6d). At this stage, this section
of the model became coupled and a small exten-
sional fault formed in the supra-polymer strata just
to the right of the weld (Fig. 6d).

In these models, the hanging-wall basins above
the polymer were all synclinal in form, with the
width and depth reflecting the changes in thickness
of the polymer layer (Fig. 5). The simple 458 listric
fault model (Fig. 5a) and the gently-dipping 208
planar fault model (Fig. 5c) formed wide, gentle
supra-polymer basins with only subtle changes in
the thickness of the polymer, whereas models with
steeper fault dips on the basin-bounding faults (Fig.
5b, d, e) developed deeper synclinal basins under-
lain by significant changes in the thickness of the
polymer. In thesemodels, therewas significant poly-
mer flow into the hanging-wall graben particularly
for the 608 planar fault model (Figs 5d & 6).

In the Series 1 models, deformation above the
footwall block produced narrow extensional gra-
ben towards the end of the polymer layer (Fig. 5).
Footwall extensional strains were transmitted
along the polymer detachment, localizing faulting
near the end of the polymer unit (cf. also Vendeville
& Jackson 1992; Jackson & Vendeville 1994).
Complex narrow graben developed as extension
progressed (Fig. 6). The addition of syn-kinematic
sand layers during continued extension inhibited
the formation of reactive polymer diapirs within
these graben.

Role of a viscous layer during inversion of

the models

Inversion of analogue models with rigid footwall
blocks was investigated by McClay (1989, 1995),
Buchanan & McClay (1991, 1992), Keller &
McClay (1995), and Yamada & McClay (2003a,
b) (Fig. 1b, d). These experiments did not have
any very weak layers in the hanging-wall strata.
These models formed classic harpoon structures

with reactivation and upwards propagation of the
basin-bounding fault, and uplift and back-rotation
of the syn-extension strata with part remaining in
net extension (Fig. 1b, d). In the Series 1 models dis-
cussed in this paper, contraction (5 cm) exceeded
extension (3 cm) such that most of the syn-extension
strata were uplifted above regional during the inver-
sion (Fig. 7). The depth slices and sections of
Figure 10 show that there were only a few footwall
shortcut thrusts formed in the lower part of the tilted
front limb of the inversion anticline. The inverted
faults were approximately linear, as were the back-
thrusts, and there was no deformation in the main
part of the footwall strata (Fig. 10b, d).

The models of the Series 2 experiments with a
polymer layer show strong decoupling between the
sub- and supra polymer layers (Figs 8 & 11).
Broad gentle folding developed above the polymer
layer, with the polymer thickened beneath the anti-
clines and depleted under the synclines (Figs 8, 9
& 11a, c). The depth slices clearly show the folded
hanging-wall strata (Fig. 11b, d), in strong contrast
to the dominance of linear hanging-wall fault arrays
and the absence of footwall deformation in the
Series 1 baseline models (Fig. 10b, d).

The inherited polymer configuration at the end
of extension and, particularly, the positions of pri-
mary welds was critical during inversion because
these disrupted the polymer within the model. Sim-
ilarly, where welds formed during inversion (e.g.
Figs 8a, b, d, e & 9d) strongly controlled the inver-
sion architectures in the last stage of net contrac-
tion. In the region of the welds, shortening in the
sub-polymer strata was transferred into the supra-
polymer strata enhancing uplift, forward tilting and
folding of the syn-extensional stratigraphy (e.g.
Figs 8d, e & 9). The resultant outer-arc stretching
in these uplifted zones produced inversion-related
crestal-collapse graben within the syn-extensional
units (Figs 8e & 11a).

Natural examples of extension and

inverted basins with salt layers

The results of the analogue models of inverted
extensional basins with an internal ductile detach-
ment layer are compared with natural examples of
inverted basins from the Parentis Basin in the Bay
of Biscay, from the Central and Southern North
Sea basins, and from the Cameros Basin in the
Iberian Range, central Spain.

Parentis Basin, Bay of Biscay

The Parentis Basin in the eastern Bay of Biscay is
a partly inverted extensional basin with salt units
in the pre-rift section (Roca et al. 2011; Ferrer
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Fig. 10.
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Interpreted section and depth slices through reconstructed volumes of baseline isotropic experiments:
(a) & (b) with a simple planar fault dipping 608; and (c) & (d) with a 608–208 kinked-planar fault. White dashed
lines indicate the location of each depth slice on the cross-sections and vice versa.
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et al. 2012; Rowan 2014). This Late Jurassic–
Lower Cretaceous basin is part of a series of
east–west-trending rift basins developed between
Iberia and Europe during the opening of the Bay
of Biscay and the North Atlantic (Srivastava et al.
1990). Whereas most of the Pyrenean basins were
subsequently strongly inverted during the Late

Cretaceous–Cenozoic Pyrenean Orogeny (e.g.
Berástegui et al. 1990; Muñoz 1992; Bond &
McClay 1995; Garcı́a-Senz 2002; Mencos 2011;
Roca et al. 2011), the Parentis Basin was only
slightly inverted because of buttressing produced by
a major basement high located to the south (Ferrer
et al. 2008a). The present-day structure of the

Fig. 11.
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Interpreted section and depth slices through reconstructed volumes of anisotropic experiments:
(a) & (b) with a simple planar fault dipping 608; and (c) & (d) with a 608–208 kinked-planar fault. White dashed
lines indicate the location of each depth slice on the cross-sections and vice versa.
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Parentis Basin was controlled by two east–west-
trending, north-dipping low-angle crustal exten-
sional faults and by the presence of Upper Triassic
evaporites. This Triassic salt unit is considered pre-
rift in relation to the main Late Jurassic–Lower
Cretaceous rifting and the opening of the Bay of
Biscay (Rowan 2014).

The structure of the Parentis Basin is charac-
terized by a growth syncline controlled by thick-
skinned extension that triggered salt migration

(Ferrer et al. 2012) (Fig. 12a). During the extension,
the salt partially decoupled the major sub-salt fault
from the supra-salt cover units (Ferrer et al. 2012).
The experimental model in Figure 5e has a base-
ment structure of a kinked planar detachment fault
that is inferred to represent the extensional archi-
tecture of the Parentis Basin, which has been
derived from seismic sections and cross-section
restorations. In the Parentis Basin, the Barremian–
Lower Aptian syn-rift strata in the hanging-wall

Fig. 12.
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Natural examples of inverted basins containing pre-kinematic salt units and with different degrees of
shortening–inversion. (a) Geoseismic section of part of the Parentis Basin (eastern Bay of Biscay) (modified from
Ferrer et al. 2012). (b) Line drawing of a seismic section of the central Broad Fourteens Basin (southern North Sea)
(modified from Nalpas et al. 1995). (c) Simplified geoseismic section from the southern Feda Graben (North Sea)
(modified from Gowers et al. 1993). (d) Cross-section of the Cameros Basin, Iberian chain, Spain (modified from
Soto et al. 2007). TWT, two-way time.
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syncline onlap towards the south (Fig. 12a) in a
fashion similar to that displayed in the analogue
model (Fig. 5e). The Pyrenean Late Cretaceous–
Cenozoic inversion of the basin-bounding fault
produced uplift of the depocentre, as shown by the
different regional levels for the lower syn-inversion
top Paleocene and Eocene strata both in the hang-
ing wall and in the footwall. A similar feature is
seen in the experimental models (Fig. 8e). The
Parentis Basin also shows diapirs and salt walls
developed above the footwall of the major fault
(Fig. 12a). However, similar structures were not
developed in the sandbox models presented in this
paper, most probably related to the lesser exten-
sion in the models and, perhaps, to greater initial
salt thicknesses in the Parentis Basin. In the Parentis
Basin section (Fig. 12a), the presence of base-
ment faults below the salt walls could also be an
important factor, with salt preferentially absorbing
the contractional deformation, squeezing the salt
diapirs and forming secondary welds (Ferrer et al.
2012). In contrast, in the analogue models, the con-
tractional deformation resulted in graben inversion
or the development of new thrusts verging in
the same direction as the major graben-bounding
fault (Fig. 8).

Broad Fourteen Basin, Dutch sector,

Southern North Sea Basin

The Broad Fourteens Basin in the Dutch sector
of Southern North Sea shows very spectacular
examples of positive inversion, with thrusts
faults at the basin margins related to the Zechstein
(Upper Permian) salt that acted as a major detach-
ment during inversion (e.g. Nalpas et al. 1995)
(Fig. 12b). The geological history of this basin
was controlled by halokinesis and minor extension
until the Mid-Jurassic followed by Mid to Late
Jurassic NE–SW extension and Cretaceous post-rift
subsidence (Van Wijhe 1987). In the Late Creta-
ceous (Senonian), the collision between the African
Plate and the European Plate (Alpine Orogeny)
produced far-field hinterland contraction to the
north and inversion of the Broad Fourteens
Basin (Ziegler 1975, 1982; Van Wijhe 1987). This
resulted in folding, uplift and erosion (Nalpas
et al. 1995). The southern sector of the basin con-
tains no salt, no decoupling and the inverted base-
ment faults have propagated through the overlying
sedimentary section (Nalpas et al. 1995). In con-
trast, the northern sector of the basin contains Zech-
stein salt with the inversion structures controlled by
the salt thickness (Fig. 12b). On the SW margin of
the basin, broad detachment folds formed above
the Zechstein salt: on the NE margin, however, a
low-angle thrust fault detached on top of the salt
has carried the supra-salt section onto the footwall

of the extensional basin (Fig. 12b). The experiments
of Ferrer et al. (2014) indicate that at the end of the
extension these structures may have initiated on salt
inflations or salt-ridges with the basinward-dipping
inversion faults detached on top of the salt. The
sandbox models presented in this paper have less
inversion compared to that in the Broad Fourteens
Basin: however, it is possible to envisage how the
hanging wall of the basin-margin fault above the
salt was transported over the footwall during inver-
sion (e.g. Fig. 11).

Feda Graben, Danish North Sea

The inverted Feda Graben (Fig. 12c) at the Norwe-
gian–Danish boundary of the North Sea Central
Graben Basin exhibits similar inversion structures
to those formed above an inverted planar fault sys-
tem with salt layers (Figs 8d & 9). The geo-history
of this part of the North Sea includes pre-rift Late
Permian Zechstein salt, Mid–Late Jurassic rifting
and a later Cretaceous–Early Tertiary inversion
(Gowers & Sæbøe 1985; Gowers et al. 1993; Taylor
1998; Tanveer &Korstgård 2009). The Feda Graben
is bounded by two NNW-trending basement faults
(Gowers & Sæbøe 1985) – the Skrubbe Fault that
separates the basin from the Grensen Nöse in the
SW and the Gert Fault that separates the basin
from the Piggvar Terrace in the NE (Fig. 12c).
This simplified sketch section can be compared
to Figure 8d, where the axial syncline of the pre-
extensional strata was controlled by polymer mig-
ration during extension, and the antiformal shape
(Lindesnes Ridge: Skjerven et al. 1983) of the Cre-
taceous–Cenozoic units in the central part of the
Feda Graben is clearly related to the inversion of
the main Skrubbe Fault (Fig. 12c). Figures 8d and
9 show similar features with buttressing against
the main bounding fault transferring deformation
into the centre of the graben system, as seen in the
Feda Graben in Figure 12c. During extension in
the sandbox model, a normal fault detached on the
polymer developed above the rollover hinge (Fig.
6). Inversion produced asymmetric uplift of the
synclinal basin as a result of buttressing against
the basin-bounding fault. Part of the contractional
deformation was transmitted by the weak polymer
to the distal edge of the basin where the small graben
systemwas inverted with a new intra-graben reverse
fault (Fig. 9).

Cameros Basin, Iberian Range, Spain

The Cameros Basin in the NW Iberian range in
Spain (Guimerà & Álvaro 1990; Casas & Salas
1992; Salas & Casas 1993; Guimerà et al. 1995;
Casas et al. 2009; Mas et al. 2011; Omodeo Salé
et al. 2014) is one of the NW–SE-striking intraplate
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Mesozoic rift basins related to the opening of West-
ern Tethys and the North Atlantic Ocean (Álvaro
et al. 1979). From the Late Jurassic to the Early
Albian, the Cameros Basin underwent major subsi-
dence, with the deposition of more than 6 km of syn-
rift strata overlying the pre-rift section of Upper
Triassic evaporites and Jurassic limestones (Mas
et al. 2011). Various models have been proposed
to explain the geometry of this basin (e.g. the review
by Omodeo Salé et al. 2014). The analogue model
results presented in this paper (Figs 5a & 8a) sup-
port a hanging-wall synclinal model, as proposed by
Casas & Salas (1992), Casas et al. (2000, 2009) and
Soto et al. (2007). This suggests that the hanging-
wall synclinal basin with syn-kinematic extensional
growth strata resulted from extension of a major
south-dipping listric fault with an Upper Triassic
evaporite detachment (Fig. 12d) in a manner similar
to that shown in the sandbox model (Fig. 5a). In
the Eocene–Early Miocene, the Cameros Basin
was totally inverted as a result of the Alpine Oro-
geny (Guimerà & Álvaro 1990; Salas & Casas
1993; Guimerà et al. 1995). During the inversion,
the Upper Triassic evaporites acted as a detachment
(Guimerà & Álvaro 1990), thrusting the extensio-
nal hanging-wall synclinal basin over the Cenozoic
Ebro foreland basin with a maximum displacement
of around 30 km (Casas-Sainz & Simón-Gómez
1992) (Fig. 12d). The resulting inverted basin is
very analogous to the inverted listric fault model
shown in Figure 8a.

Conclusions

The results of the analogue modelling programme
presented in this paper provide both geometrical
and kinematic templates that may be applied to the
analysis of the structural evolution of normal faults
involving pre-extensional evaporites (particularly
salt layers) and then subsequently inverted. The
shapes of the basement-bounding faults controlled
the geometries of the supra-‘salt’ synclinal basins
formed during the extensional deformation, and
the location of fault-propagation folds and supra-
‘salt’ decoupling during inversion. Wide, gentle
and shallow synclinal supra-‘salt’ basins developed
in the models during extension in the hanging wall
of a simple listric or gently dipping simple planar
fault (Fig. 5a, c). In contrast, narrow and deep syn-
clinal extensional basins developed above steeply
dipping planar faults (Figs 5d & 6) or the ramps of
a ramp-flat listric faults (Fig. 5b) in the models.
The development of the hanging-wall synclinal
basins was also controlled by polymer migration
towards the edges of the basin below where salt-
inflated areas developed at the end of the extension
(Fig. 5b, d, e).

The inherited extensional architectures both in
the analogue models and in the natural examples
exert a fundamental role during later inversion.
In the models, shortening preferentially inverted
the major basement basin-bounding faults and the
polymer layer acted as a contractional detachment
transferring the deformation above the footwall.
Independently of the basement fault geometry, the
hanging-wall synclinal basins were arched and up-
lifted during the inversion, and partially translated
over the rigid footwall. The uplift of the synclinal
basins was accelerated when primary welds devel-
oped under the main synclinal basins depocentres
during the late stages of inversion.

The experimental results also show the develop-
ment of extensional graben at the extremities of the
footwall strata and these were later inverted.

The presence of pre-rift evaporites controls the
structural style of the supra- and sub-salt units.
Whereas strata below the polymer can be strongly
faulted, continuous deformation characterized by
folded synclinal basins formed above the polymer
or salt layer. In this sense, the presence of a polymer
layer (or salt in nature) acts as an effective decou-
pling unit inhibiting the upwards propagation of
the faults from the sub-salt to the supra-salt layers
during both extension and inversion.

The main limitation of analogue models that
used a rigid block to control the geometry of the
basin-bounding fault systems is that it limited
the footwall deformation to the ductile layer and
the overlying footwall strata. Despite this, the
sandbox models produce many strikingly similar
deformation features to those found in natural exam-
ples of inverted basins with salt strata, as described
in this paper.
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González, A. 2000.EDQ1 Intra-plate deformation and
basin formation during Tertiary at the Northern Iberian
Plate: origin and evolution of the Almazán Basin.
Tectonics, 19, 762–786.

Corti, G. 2012. Evolution and characteristics of continen-
tal rifting: analog modeling-inspired view and compar-
ison with examples from the East African Rift System.
Tectonophysics, 522–523, 1–33.

Coward, M. & Stewart, S. 1995. Salt-influenced struc-
tures in the Mesozoic-Tertiary cover of the Southern
North Sea, U.K. In: Jackson, M.P.A., Roberts, D.G.

& Snelson, S. (eds) Salt Tectonics: A Global Perspec-
tive. American Association of Petroleum Geologists,
Memoirs, 65, 229–250.

Dell’Ertole, D. & Schellart, W.P. 2013. The develop-
ment of sheath folds in viscously stratified materials
in simple shear conditions: an analogue approach.
Journal of Structural Geology, 56, 129–141.

Del Ventisette, C.,Montanari, D., Sani, F. & Bonini,
M. 2006. Basin inversion and fault reactivation in lab-
oratory experiments. Journal of Structural Geology,
28, 2067–2083.

Dooley, T., McClay, K.R., Hempton, M. & Smit, D.
2005. Salt tectonics above complex basement exten-
sional fault systems: results from analogue model-
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la Chaı̂ne côtière catalane (Espagne). Bulletin de la
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