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OSAMOAL: OPTIMIZED SIMULATIONS BY ADAPTED MODELS USING

ASYMPTOTIC LIMITS ∗

Anne-Céline Boulanger1, Clément Cancès2, Hélène Mathis3, Khaled Saleh4

and Nicolas Seguin5

Dedicated to “La côte de bœuf”, 35 Cours Honoré d’Estienne d’Orves, Marseille.

Abstract. We propose in this work to address the problem of model adaptation, dedicated to hyper-
bolic models with relaxation and to their parabolic limit. The goal is to replace a hyperbolic system of
balance laws (the so-called fine model) by its parabolic limit (the so-called coarse model), in delimited
parts of the computational domain. Our method is based on the construction of asymptotic preserving
schemes and on interfacial coupling methods between hyperbolic and parabolic models. We study in
parallel the cases of the Goldstein-Taylor model and of the p-system with friction.

Résumé. Nous proposons dans ce travail de traiter le problème d’adaptation de modèle, appliqué aux
système hyperboliques de relaxation et à leur limite parabolique. Le but est de remplacer dans des zones
délimités du domaine de calcul un système hyperbolique avec terme source (le modèle fin) par le modèle
parabolique limite associé (le modèle grossier). Notre méthode repose sur des schémas préservant cette
asymptotique et le couplage interfacial entre des modèles hyperbolique et parabolique. On étudie
les cas du modèle de Goldstein-Taylor et du p-système avec friction avec leurs limites paraboliques
respectives.
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Introduction

In simulation of complex flows for industrial purposes, it is natural to replace an accurate model by a simpler
one in the regions of the computational domain where the flow is supposed to be almost at rest for the sake of
reducing the computational cost. Let us give an example. Assume that the flow under consideration is a two-
phase flow, composed by air and water. In the highly heterogeneous regions, a complex model which accounts
for phenomena with very small time and space scales has to be used such as the Baer-Nunziato model [2] where
each phase is described by its own density, velocity and pressure and global relaxation terms represent the effects
of the differences of velocity and pressure. In some smoother regimes, drift-flux models can be used [18], where
the pressures are equal and the relative velocity between the phases is a given function of the characteristic
variable describing the flow (densities of each phases, mean velocity and mean pressure).

These regions where the simpler (or coarser) model can be used can be determined empirically or by the
use of preliminary computations. In this work, we continue the program initiated in [21] and [5] about model
adaptation. This techniques rely on automatically selecting the “good” model among a hierarchy of models,
compatible by asymptotic arguments. The notion of “good” model means that we want to maximize the local
use of coarse models without deteriorating the accuracy of the numerical results. Here, we focus on parabolic
limits of hyperbolic models, while hyperbolic limits were studied in [21] and [5]. We restrict ourselves to standard
systems and we do not investigate the dynamic part of the adaptation: we focus on the construction of numerical
schemes which preserve the parabolic asymptotic limit and on the interfacial coupling between the hyperbolic
system and its parabolic limit.

In the first section, we present the two models we are dealing with: the Goldstein-Taylor model and the
p-system with friction. We also provide their asymptotic limit, which turns out to be a parabolic equation. In
the second section, we derive and analyze numerical schemes which are able to reproduce the parabolic limits
at the discrete level, namely asymptotic preserving schemes. Up to our knowledge, the results on the p-system
are new. Note that we try to provide accurate stability estimates in order to fully understand the robustness of
the CFL condition when ε→ 0. The next part is devoted to the coupling between the hyperbolic model and its
parabolic limit through a fixed thin interface. It has to be done carefully because classical methods of coupling
fails to give accurate results. In order to illustrate our developments, preliminary numerical illustrations are
also provided.

1. Models and asymptotic limits

1.1. The Goldstein-Taylor model

Let us consider the following fine model, called the Telegraph equation, the Goldstein-Taylor system or the
p-system with friction for a Chaplygin gas:







ε∂tv + ∂xu = 0,

ε∂tu+ a2∂xv =
−σ
ε
u,

(MGT
f )

where σ is a positive friction coefficient and a the sound speed.
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An asymptotic analysis when ε → 0, using the Chapman-Enskog expansion for instance, leads to a coarse
model, which is nothing but the heat equation:







∂tv −
a2

σ
∂xxv = 0,

u = 0.
(MGT

c )

1.2. The p-system

Let us now consider the p-system with a friction term







ε∂tτ − ∂xu = 0,

ε∂tu+ ∂xP (τ) =
−σ
ε
u,

(Mp−sys
f )

where τ is the specific volume, u the velocity and σ is a positive friction coefficient. The function P denotes the
pressure law and satisfies classical assumptions: the function P is decreasing, convex, and tends to 0 as τ → ∞.
Denoting P a primitive form of P , the homogeneous p-system

{

ε∂tτ − ∂xu = 0,

ε∂tu+ ∂xP (τ) = 0
(1)

admits an entropy η defined by η(τ, u) = u2

2 − P(τ).

Remark 1.1. For τ⋆ fixed in (0,+∞), the strictly convex function

ητ⋆(u, τ) =
u2

2
− (P(τ)− P(τ⋆)) + P (τ⋆)(τ − τ⋆) (2)

is also an entropy for the system (1) (one could also use the term of relative entropy) and satisfies

ητ⋆(u, τ) ≥ 0, and ητ⋆(0, τ
⋆) = 0.

The associated limit model, once again obtained by a Chapman-Enskog expansion, is







∂tτ +
1

σ
∂xxP (τ) = 0,

u = 0.
(Mp−sys

c )

Since the pressure law P is a decreasing function, the first equation is a nonlinear parabolic equation.

2. Asymptotic preserving schemes

The aim of this part is to present the design of numerical schemes which are compatible with the asymptotic
limits of the previous section, which commonly are called asymptotic preserving schemes [9, 14, 15, 19, 20].

Definition 2.1. A numerical scheme for system (MGT
f ) (respectively (Mp−sys

f )) is said to be asymptotic

preserving if it is stable and consistent with the solutions of the hyperbolic model (MGT
f ) (resp. (Mp−sys

f )) for
all ε > 0 and if, at the limit ε→ 0, it converges to a stable and consistent numerical scheme with the solutions
of the limit parabolic model (MGT

c ) (resp. (Mp−sys
c )).
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One of the important points is that the CFL condition for the approximation of the fine model becomes a
CFL condition for the approximation of the coarse model. In our case, since we only are dealing with explicit
schemes, this means that this condition for ε > 0 is of the form ∆t ≤ C∆x while at the limit ε→ 0, it is of the
form ∆t ≤ C∆x2.

In both cases, we construct first a well-balanced scheme, following [16] and [13]. We see that the CFL
condition induced by a classical stability analysis is too restrictive to be valid for all ε > 0. Therefore, we
propose an implicit version of this scheme in order to make it asymptotic preserving. Note that this new scheme
is explicit in practice (the matrix to invert actually is diagonal). We then recover the pioneer work of Gosse and
Toscani [14, 15] in the case of the Goldstein-Taylor and combining their method with a HLL (or equivalently
relaxation) scheme, we easily extend it to the nonlinear case of the p-system. In both cases, we provide energy or
entropy estimates together with CFL conditions and we carefully examine the behavior of these CFL conditions
as ε→ 0.

2.1. The Goldstein-Taylor model

We first present the well-balanced scheme for the Goldstein-Taylor model and show that it is not asymptotic
preserving. We then propose an implicit modification to correct it, recovering the Gosse–Toscani scheme [14,15].

2.1.1. The well-balanced scheme

The scheme of [6] and the scheme of [3] are both based on the construction of well-balanced scheme, following
[16] and [13]. As a consequence, applied to system (MGT

f ), these schemes are identical and the authors of these
works claim that this scheme is asymptotic preserving. Their analysis is based on arguments of consistency
and on numerical tests, because the models they investigate are nonlinear systems and a complete analysis of
stability seems to be out of reach.

Actually, this scheme has been initially introduced in [14] in the context of system (MGT
f ). Since this system

is linear, a complete analysis of the scheme can be carried out and the conclusion is that this scheme is not
asymptotic preserving in the sense of definition 2.1.

In the sequel, ∆x,∆t denote some positive parameters corresponding respectively to the space and time
steps. Let u0, v0 ∈ L2(R) be initial data, then we discretize them as

u0i =
1

∆x

∫ (i+1/2)∆x

(i−1/2)∆x

u0(x)dx, v0i =
1

∆x

∫ (i+1/2)∆x

(i−1/2)∆x

v0(x)dx, ∀i ∈ Z. (3)

Thanks to Jensen’s inequality,
(

u0i
)

i
and

(

v0i
)

i
belong to ℓ2(Z) and

∥

∥

(

u0i
)

i

∥

∥

ℓ2(Z)
≤ ‖u0‖L2(R),

∥

∥

(

v0i
)

i

∥

∥

ℓ2(Z)
≤ ‖v0‖L2(R).

For i ∈ Z and n ∈ N∗, we denote by Wn
i = (uni , v

n
i )

T
the discrete unknowns of the well-balanced finite

volume scheme. The derivation of such a scheme, which is described in the works cited above, is based on the
introduction of the function χ(t, x) = x. System (MGT

f ) is replaced by the fully first-order system















ε∂tv + ∂xu = 0,

ε∂tu+ a2∂xv +
σ

ε
u∂xχ = 0,

∂tχ = 0,

and the associated Riemann problem can be solved, with χr − χl = ∆x in order to mimic the jump of χ at
each interface of the mesh. The eigenvalues of this system are 0 and ±a/ε and the two intermediate states are
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(v̄−, ū/Kε, χl) for −a/ε < x/t < 0 and (v̄+, ū/Kε, χr) for 0 < x/t < a/ε, where Kε = 1 + σ∆x
2aε and

ū(Wl,Wr) =
ul + ur

2
− a

2
(vr − vl),

v̄−(Wl,Wr) = vl −
1

a
(ū(Wl,Wr)/Kε − ul),

v̄+(Wl,Wr) = vr +
1

a
(ū(Wl,Wr)/Kε − ur).

As a result, the well-balanced finite volume scheme writes

vn+1
i = vni − ∆t

εKε∆x

[

ū(Wn
i ,W

n
i+1)− ū(Wn

i−1,W
n
i )
]

, (4)

un+1
i = uni − a2∆t

ε∆x

[

v̄−(Wn
i ,W

n
i+1)− v̄+(Wn

i−1,W
n
i )
]

. (5)

Equation (5) can also be written as

un+1
i = uni − a2∆t

εKε∆x

[

v̄(Wn
i ,W

n
i+1)− v̄(Wn

i−1,W
n
i )
]

− σ∆t

ε2Kε
uni , (6)

where

v̄(Wl,Wr) =
vl + vr

2
− 1

2a
(ur − ul). (7)

Besides, the scheme (4) for the discretization of v writes

vn+1
i = vni − ∆t

εKε∆x

[

uni+1 − uni−1

2
+
a

2
(2vni − vni+1 − vni−1)

]

. (8)

Proposition 2.1. Under the CFL condition

1

ε+ σ∆x
2a

(

a∆t

∆x
+

σ∆t

2ε
(

ε+ σ∆x
2a

)

)

≤ 1, (9)

the scheme (6)–(8) is L2-diminishing, i.e. for all n ∈ N,

∑

i∈Z

∆x
(

(un+1
i )2 + (vn+1

i )2
)

≤
∑

i∈Z

∆x
(

(uni )
2 + (vni )

2
)

. (10)

Proof. In order to prove stability of our scheme under a given CFL condition, we adopt the Von Neumann
analysis. Assuming the solution is L2, we can introduce its Fourier modes in the following manner:

un(x) =
∑

k∈Z

ûn(k)ei2πkx.

Hence,
un(x+∆x) = un(x)ei2πk∆x,

and the application of the Fourier transform on (6)–(8) leads to:





ûn+1(k)

v̂n+1(k)



 = Aexp(k)





ûn(k)

v̂n(k)



 ,
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where, denoting by

λ :=
a∆t

εKε∆x
, µ :=

σ∆t

ε2Kε
, αk := kπ∆x,

the amplification matrix Aexp(k) can be written

Aexp(k) :=





1− 2λ sin2(αk)− µ −iλa sin(2αk)

−iλ
a
sin(2αk) 1− 2λ sin2(αk)



 .

Define

δ′ :=
µ2

4
− λ2 sin2(2αk),

then the eigenvalues ν± ∈ C of Aexp(k) are given by

ν± := 1− 2λ sin2(αk)−
µ

2
±
√
δ′.

Assume first that δ′ ≥ 0 (this is the case for ε large enough). In this case, one has |δ′| ≤ µ
2 then ν+ ≤ 1, while

ν− ≥ 1− 2λ− µ.

One obtains thus that under the CFL condition (9), one has ν− ≥ −1, ensuring the L2 stability of the scheme.
Assume now that δ′ < 0, so that

|ν+|2 = |ν−|2 =
(

1− 2λ sin2(αk)−
µ

2

)2

+ λ2 sin2(2αk)−
µ2

4

≤ 1 + 4λ sin2(αk)
(

λ+
µ

2
− 1
)

.

Hence, the scheme is L2-diminishing under the CFL condition (9). �

It particularly follows from (9) that ∆t has to fulfill the ε-dependent estimate

∆t ≤ 2ε
(

ε+ σ∆x
2a

)

σ
.

Hence, for a fixed space step ∆x, letting ε tend to 0 requires the time step ∆t to tend also to 0. This can also
be remarked by taking constant initial data. Using the form (8)-(6), one can directly see that this numerical
scheme becomes a modified explicit Euler method for the equation ε∂tu = −(σ/ε)u. It is well-known that such
a method can only be stable under a restrictive condition on the time step ∆t, which makes it tend to 0 when
ε→ 0.

2.1.2. Implicit modification of the well-balanced scheme

As mentioned above, the time step ∆t tends to zero when ε tends to 0. The simple, but crucial, idea is
then to take an implicit discretization of the source term, as done in [14] (see also [15]). This leads to the new
numerical scheme

un+1
i = uni − ∆t

εKε∆x

[

a2
vni+1 − vni−1

2
+
a

2
(2uni − uni+1 − uni−1)

]

− σ∆t

ε2Kε
un+1
i , (11)

vn+1
i = vni − ∆t

εKε∆x

[

uni+1 − uni−1

2
+
a

2
(2vni − vni+1 − vni−1)

]

. (12)

The purpose of the following proposition is to show that the new scheme (11)-(12) is L2-diminishing for a choice
of ∆t depending on ∆x but not on ε.
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Proposition 2.2. Under the CFL condition

1

ε+ σ∆x
2a

a∆t

∆x
≤ 1, (13)

the scheme (11), (12) is L2-diminishing in the sense of (10). The inequality (13) holds for all ε > 0 if ∆t
satisfies the usual parabolic stability condition

∆t ≤ σ

2a2
∆x2, (14)

which does not depend on ε.

Proof. The scheme (11)-(12) can be obtained by splitting the convection and the source term, i.e.

• step 1: compute the convective contribution, i.e.

u
n+1/2
i = uni − ∆t

εKε∆x

[

a2
vni+1 − vni−1

2
+
a

2
(2uni − uni+1 − uni−1)

]

, (15)

v
n+1/2
i = vni − ∆t

εKε∆x

[

uni+1 − uni−1

2
+
a

2
(2vni − vni+1 − vni−1)

]

; (16)

• step 2: take the reaction term into account, i.e.

un+1
i

(

1 +
σ∆t

ε2Kε

)

= u
n+1/2
i , vn+1

i = v
n+1/2
i . (17)

Clearly, the step 1 is L2-diminishing under the CFL condition (13). Indeed, the scheme (15), (16) corresponds
to the former scheme (6)–(8) in the particular case where σ = 0. Therefore, its stability follows from Proposi-

tion 2.1. The step 2 is obviously L2-diminishing since for all i,
(

un+1
i

)2 ≤
(

u
n+1/2
i

)2

. �

We establish now that the scheme (11)-(12) is asymptotic preserving, in the sense that, for fixed ∆x and

for a convenient choice of ∆t, then, letting ε tend to 0, the solution W ε,n+1
i =

(

uε,n+1
i , vε,n+1

i

)T

of (11)-

(12) tends towards W 0,n+1
i which is the solution of a finite volume scheme which is consistent with the limit

problem (MGT
c ).

Proposition 2.3. Let
(

W ε,n+1
i

)

i∈Z,n∈N

be the solution of (11)-(12) corresponding to data
(

u0i
)

i∈Z
and

(

v0i
)

i∈Z

belonging to ℓ2(Z). Assume that (14) holds, then, for all i ∈ Z, uε,n+1
i tends to 0 as ε → 0 and vε,n+1

i tends

towards the solution v0,n+1
i of the consistent discretization of (MGT

c ) given by

v0,n+1
i = vni − a2∆t

σ∆x2
[

2vni − vni−1 − vni+1

]

, if n ≥ 1, (18)

v0,1i = v0i −
a2∆t

σ∆x2
[

2v0i − v0i−1 − v0i+1

]

− a∆t

σ∆x2
[u0i+1 − u0i−1]. (19)

As a consequence, the numerical scheme (11)-(12) under the CFL condition (13) is asymptotic preserving in
the sense of definition 2.1.

Proof. Assume that (14) holds, so that it follows from the proof of Proposition 2.2 that for all ε belonging to
an unlabeled sequence of R∗

+ tending to 0,

∑

i∈Z

∆x

(

(

u
ε,n+1/2
i

)2

+
(

vε,n+1
i

)2
)

≤
∑

i∈Z

∆x
(

(

u0i
)2

+
(

v0i
)2
)

< +∞,
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where u
ε,n+1/2
i is given by (15). Since ∆x is fixed, we know that there exists C ≥ 0 not depending on ε such

that

∀i ∈ Z,
∣

∣

∣u
ε,n+1/2
i

∣

∣

∣ ,
∣

∣

∣v
ε,n+1
i

∣

∣

∣ ≤ C. (20)

Therefore, since σ > 0 and since ε2Kε → 0 as ε → 0, it follows from (17) that uε,n+1
i → 0 as ε → 0.

Thanks to (20), there exists an unlabeled subsequence of
(

vε,n+1
i

)

ε
converging towards some v0,n+1

i with
(

v0,n+1
i

)

i
∈ ℓ2(Z). Using the fact that εKε → σ∆x

2a , we obtain that (18) and (19) are fulfilled at the limit

ε→ 0. �

Remark 2.1. As it appears in the first iteration of the limit scheme (19), an additional quantity

r0i :=
a∆t

σ∆x2
[

u0i−1 − u0i+1

]

has to be taken in consideration. It is easy to check that for u0 ∈ L2(R), thanks to (14), the quantity r0i tends
to 0 in ℓ2(Z) as ∆x,∆t → 0. More precisely, if u0 ∈ H1(R), there exists C depending neither on ∆x nor on
∆t such that

∥

∥

(

r0i
)∥

∥

ℓ2(Z)
≤ C∆x. Denote by

A :







ℓ2(Z) → ℓ2(Z)

wi 7→ wi − a2∆t
σ∆x2 [2wi − wi−1 − wi+1] ,

and assume that there exists ζ ∈ (0, 1) such that the following more restrictive CFL condition holds: 4a2∆t
σ∆x2 ≤ ζ.

Then the mapping A is invertible and
∥

∥A−1
∥

∥ ≤ 1
1−ζ . Therefore, there exists a unique

(

ṽ0i
)

∈ ℓ2(Z), such

that Aṽ0i = r0i . Moreover,
(

ṽ0i
)

tends to 0 in ℓ2(Z) as ∆t,∆x → 0 since
(

r0i
)

does. The solution (vni )i,n of

the scheme (18)-(19) is then the solution of the usual approximation of the heat equation (18) for the slightly
modified initial data v0i + ṽ0i , the correction

(

ṽ0i
)

i∈Z
tending to zero with the discretization parameters ∆x,∆t.

Thanks to the continuity of the solution v to the heat equation with respect to the initial data v0, this allows to
claim that the discrete solution provided by the scheme (18)-(19) converges in L2(R) towards the unique solution
v of the heat equation

∂tv −
a2

σ
∂xxv = 0, v|t=0

= v0.

2.2. The p-system

Let us now consider the case of the p-system.

2.2.1. The well-balanced scheme

Once again, the schemes proposed in [6] and in [3] follow the construction of well-balanced schemes and lead
to the same numerical scheme. It is based on the HLL scheme [17] and can also be derived by the mean of a
relaxation procedure (see e.g. [4, 6, 7]). It writes, for all i ∈ Z and n ∈ N,

τn+1
i = τni − ∆t

ε∆x

[

uni−1/2 − uni+1/2

]

,

un+1
i = uni − ∆t

ε∆x

[

Πn,−
i+1/2 −Πn,−

i−1/2

]

,

(21)
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where uni+1/2,Π
n,±
i+1/2 and τn,±i+1/2 are given by

uni+1/2 =
1

1 + σ∆x
2εa

[

uni + uni+1

2
+
P (τni )− P (τni+1)

2a

]

, , (22)

Πn,−
i+1/2 =P (τni )− a(uni+1/2 − uni ), (23)

Πn,+
i+1/2 =P (τni+1)− a(uni+1 − uni+1/2). (24)

In the above system, a > 0 is a parameter to be fixed later (cf. Proposition 2.4). By taking (22)-(24) in
consideration in (21) and introducing Lε = 1 + σ∆x

2εa , this scheme can be reformulated as

τn+1
i = τni − ∆t

εLε∆x

[

uni−1 − uni+1

2
+

1

2a

(

−2P (τni ) + P (τni+1) + P (τni−1)
)

]

, (25)

un+1
i = uni − ∆t

εLε∆x

[

P (τni+1)− P (τni−1)

2
+
a

2

(

2uni − uni−1 − uni+1

)

]

− σ∆t

ε2Lε
uni . (26)

We fail to obtain a complete analysis of stability for the scheme (25), (26). Nonetheless, a simple case can be
used to check that this numerical scheme also suffer from a too restrictive stability condition of the same type
as (9). Assume that

∀i ∈ Z τni = τ̄ , uni = ū,

where τ̄ and ū are two positive constant. Then, the scheme (25)-(26) writes

∀i ∈ Z, τn+1
i = τ̄ , un+1

i =

(

1− σ∆t

ε2Lε

)

ū.

This formula corresponds to an explicit discretization of the ordinary differential equation

{

τ ′(t) = 0,

u′(t) = −σ
ε
u.

As a consequence, a necessary condition of the stability (in L2 for instance) of the scheme is

σ∆t

2ε2Lε
≤ 1.

Here again, this condition implies that ∆t→ 0 when ε→ 0, which means that the scheme (21) is not asymptotic
preserving.

2.2.2. Implicit modification of the well-balanced scheme

Following the idea used for the Goldstein-Taylor system, we replace the explicit discretization of the source
term of (26) by an implicit one, which yields

τn+1
i = τni − ∆t

εLε∆x

[

uni−1 − uni+1

2
+

1

2a

(

−2P (τni ) + P (τni+1) + P (τni−1)
)

]

, (27)

un+1
i = uni − ∆t

εLε∆x

[

P (τni+1)− P (τni−1)

2
+
a

2

(

2uni − uni−1 − uni+1

)

]

− σ∆t

ε2Lε
un+1
i . (28)

While we have not been able to completely study the stability of the numerical scheme (21) (but we proved
that the associated CFL condition is too restrictive), we can prove that this new scheme is stable under an
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ε-independent CFL condition and therefore, it is asymptotic preserving. Note that the stability we invoke is
the decrease of the entropy.

Let τ⋆ ∈ (0,∞), let ητ⋆ be the entropy of (1) defined by (2), and let τ0, u0 be measurable functions such that

∫

R

ητ⋆(τ0, u0)dx < +∞, (29)

and such that (τ0 − τ⋆) ∈ L∞ ∩ L1(R). We moreover assume that τ0 is essentially bounded away from 0. The
initial data τ0, u0 are discretized by

τ0i =
1

∆x

∫ (i+1/2)∆x

(i−1/2)∆x

τ0(x)dx, u0i =
1

∆x

∫ (i+1/2)∆x

(i−1/2)∆x

u0(x)dx,

so that, thanks to Jensen inequality,

∑

i∈Z

ητ⋆(τ
0
i , u

0
i )∆x ≤

∫

R

ητ⋆(τ0, u0)dx < +∞.

In particular, there exists τ , τ > 0 such that 0 < τ ≤ τ⋆ ≤ τ <∞, and such that τ ≤ τ0 ≤ τ a.e. in R.

Proposition 2.4. Under the Whitham condition

a2 ≥ 2max
n∈N

max
i∈Z

(

−P ′(τni ),−P ′(τn,±i+1/2)
)

, (30)

where the quantities τn,±i+1/2 are defined by

τn,−i+1/2 = τni +
1

a

(

uni+1/2 − uni

)

, τn,+i+1/2 = τni+1 +
1

a

(

uni+1 − uni+1/2

)

,

and the CFL condition
2a∆t

∆x
(

ε+ σ∆x
2a

) ≤ 1, (31)

then the scheme is entropy dissipative, i.e. the solution
(

τn+1
i , un+1

i

)

i∈Z
of the scheme (27), (28) satisfies

∑

i∈Z

ητ⋆(τ
n+1
i , un+1

i )∆x ≤
∑

i∈Z

ητ⋆(τ
n
i , u

n
i )∆x. (32)

Proof. As previously in the proof of Proposition 2.2, making the source term implicit allows to write the
scheme (27), (28) as a splitting scheme.

• Step 1. We compute the convective contribution given by:

τ
n+1/2
i = τni − ∆t

εLε∆x

[

uni−1 − uni+1

2
+

1

2a

(

−2P (τni ) + P (τni+1) + P (τni−1)
)

]

,

u
n+1/2
i = uni − ∆t

εLε∆x

[

P (τni+1)− P (τni−1)

2
+
a

2

(

2uni − uni−1 − uni+1

)

]

.

This scheme is nothing but the usual HLL scheme to solve

∂tτ − ∂xu = 0, ∂tu+ ∂xP (τ) = 0

with a time step ∆t = ∆t
εLε

. Following [4], this scheme is entropy dissipative under the Whitham

condition (30) and under the CFL condition (31).
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• Step 2. The contribution of the source term is now computed with the implicit scheme

τn+1
i = τ

n+1/2
i , un+1

i =

(

1 +
σ∆t

ε2Lε

)−1

u
n+1/2
i . (33)

In view of the definition (2) of the entropy ητ⋆ , this step is also entropy dissipative, so that the rela-
tion (32) holds.

�

Remark 2.2. As it was noticed in Proposition 2.2 for the case of the Goldstein-Taylor model, the CFL condi-
tion (31) is fulfilled for all ε > 0 if one requires that

∆t ≤ σ∆x2

4a2
. (34)

As done previously on the Goldstein-Taylor model, we investigate the limit as ε tends to 0 for fixed dis-
cretization parameters of the discrete solution, denoted by (τε,ni , uε,ni )i,n, of the scheme (27)-(28).

Proposition 2.5. Under the Whitham condition (30), the CFL condition (34) and the finite entropy condi-
tion (29), then for all i ∈ Z, the limit of the scheme (27)-(28) when ε→ 0 writes

τ0,n+1
i = τ0,ni − ∆t

σ∆x2

[

−2P (τ0,ni ) + P (τ0,ni−1) + P (τ0,ni+1)
]

∀n ≥ 1, (35)

τ0,1i = τ0i − ∆t

σ∆x2
[

−2P (τ0i ) + P (τ0i−1) + P (τ0i+1) + a(u0i−1 − u0i+1)
]

. (36)

Proof. It follows from Proposition 2.4 and Remark 2.2 that under the Whitham condition (30), the CFL
condition (34) and the finite entropy condition (29) on the initial data, one has, for all n ≥ 1,

∑

i∈Z

∆x [η(τε,ni , uε,ni )] ≤
∫

R

η(τ0, u0)dx <∞. (37)

This ensures that there exists C ≥ 0 not depending on ε such that for all ε > 0, one has

∀i ∈ Z, ∀n ≥ 1, |uε,ni | ≤ C, −P(τε,ni ) ≤ C.

Hence, there exists
(

u0,ni

)

i,n
and

(

P0,n
i

)

i,n
such that up to an unlabeled subsequence,

∀i ∈ Z, uε,ni → u0i , P(τε,ni ) → P0,n
i as ε→ 0.

Since P is strictly increasing and continuous, then, denoting by τ0,ni = P−1
(

P0,n
i

)

, we obtain that

∀i ∈ Z, τε,ni → τ0,ni as ε→ 0.

Thanks to (33), we obtain that for all n ≥ 1 and for all i ∈ Z, u0,ni = 0. Since 2aεLε → σ∆x as ε → 0 (recall

that Lε = 1+ σ∆x
2εa ), considering the limit as ε→ 0 in (27) yields (35), while a contribution coming from u0 still

appears in the computation (36) at the first time step. Obviously, since (35)-(36) define
(

τ0,ni

)

i,n
in a unique

way, the whole unlabeled sequence
(

(τε,ni )i,n

)

ε
converges towards

(

τ0,ni

)

i,n
when ε→ 0. �
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We provide now the proof of convergence of the scheme (35), (36) towards the unique weak solution of the
problem

∂tτ +
1

σ
∂xxP (τ) = 0, τ|t=0

= τ0, lim
x→±∞

τ = τ⋆. (38)

Lemma 2.6. Assume that a2 > −P ′(τ ), then there exists ω ∈ (0, τ ) and ∆xω > 0 such that for all ∆x ≤ ∆xω,
one has

τ0,ni ∈ [τ − ω, τ + ω], ∀i ∈ Z, ∀n ≥ 1. (39)

Proof. Since a2 > −P ′(τ ), there exists ω > 0 such that a2 = −P ′(τ − ω). Denote by
(

τ̃0,1i

)

i
the quantities

defined by

τ̃0,1i = τ0i − ∆t

σ∆x2
[

−2P (τ0i ) + P (τ0i−1) + P (τ0i+1)
]

, ∀i ∈ Z.

Then it follows from classical monotonicity arguments that

τ ≤ τ̃0,1i ≤ τ, ∀i ∈ Z.

Now, since

τ0,1i = τ̃0,1i +
aσ∆t

∆x2
(u0i+1 − u0i−1),

we obtain, thanks to the CFL assumption (34) and from the regularity of u0 that for ∆x small enough,

τ0,1i ∈ [τ − ω, τ + ω], ∀i ∈ Z.

Hence, the condition a2 = −P ′(τ − ω) ensures that the scheme is still monotone on this new range of values of

τ0,ni . Therefore, from a usual discrete maximum principle, we obtain by a straightforward induction that (39)
holds. �

We now state a L1-stability result, whose proof relies on classical monotonicity arguments (see e.g. [8]).

Lemma 2.7. Let
(

τ0,ni

)

i,n
,
(

τ̌0,ni

)

i,n
be solutions of (35)-(36), corresponding to initial data

(

τ0i
)

i
,
(

τ̌0i
)

i
∈

[τ , τ ], then, for a2 > −P ′(τ ), under the CFL condition (34), and for ∆x small enough, one has, for all n ≥ 0,

∑

i∈Z

∆x
∣

∣

∣τ
0,n+1
i − τ̌0,n+1

i

∣

∣

∣ ≤
∑

i∈Z

∆x
∣

∣

∣τ
0,n
i − τ̌0,ni

∣

∣

∣ .

Denote by τ∆x the piecewise constant function defined almost everywhere by

τ∆x(x, t) = τ0,ni if (x, t) ∈ ((i− 1/2)∆x, (i+ 1/2)∆x)× [n∆t, (n+ 1)∆t).

From previous lemma, we deduce directly the following regularity result by choosing τ̌0i = τ0i−1:

Lemma 2.8. Assume that τ0 ∈ L∞(R; [τ , τ ]) with τ0 − τ⋆ ∈ L1(R), assume that a2 > −P ′(τ) and that (34)
holds, and assume that ∆x is small enough, then, for all n ≥ 1,

∑

i∈Z

|τ0,ni − τ0,ni−1|∆x ≤
∑

i∈Z

|τ0i − τ0i−1|∆x+
∑

i

aσ∆t

∆x2
∣

∣u0i+1 − u0i − (u0i−1 − u0i−2)
∣

∣ .

In particular, under the CFL assumption (34) and if τ0 ∈ BV (R) and u0 ∈ W 1,∞ ∩ L2(R), then there exists C
not depending on ∆x,∆t such that

TV (τ∆x(·, t)) ≤ TV (u0) + C <∞, ∀t ∈ R+. (40)
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Assume that the assumptions of Lemma 2.8 hold, then, thanks to the tools introduced in [10], we can claim
that, up to an unlabeled subsequence of (τ∆x)∆x, then there exists τ ∈ L∞ ∩BV (R) that satisfies

τ∆x → τ in L1
loc(R× R+) as ∆x,∆t → 0. (41)

It remains to check that τ satisfies (38), in particular that for all ψ ∈ D(R×R+), the following weak formulation
holds:

∫∫

R×R+

τ∂tψdxdt+

∫

R

τ0ψ(·, 0)dx−
∫∫

R×R+

P (τ)∂xxψdxdt = 0. (42)

The condition at x → ±∞ is fulfilled in the sense that, as a direct consequence of Lemma 2.7, one has
τ − τ⋆ ∈ L1(R).

Proposition 2.9. Assume that u0 ∈ W 1,∞(R), that τ0 ∈ BV (R) such that τ0 ∈ L∞(R; [τ , τ ]) and τ0 − τ⋆ ∈
L1(R), then, under the condition (34) with a2 > −P ′(τ ), the limit τ of τ∆x exhibited in (41) is a solution of (38)
in the sense that τ − τ⋆ ∈ L∞(R+;L

1(R)) and that the weak formulation (42) is satisfied. As a consequence,
the numerical scheme (27)-(28) is asymptotic preserving.

Proof. The convergence of τ∆x towards τ in the good functional space has been already justified from com-
pactness results. It remains to check that the weak formulation (42) is satisfied. Let ψ ∈ D(R × R+), then we
denote by

ψn
i =

1

∆x

∫ (i+1/2)∆x

(i−1/2)∆x

ψ(x, n∆t)dx, , ∀i ∈ Z, ∀n ≥ 0.

Multiplying the scheme (35) by −ψn+1
i ∆x, (36) by −ψ1

i∆x, then summing on i ∈ Z and n ∈ N yields, after
reorganization of the sums,

A+B + C +D = 0, (43)

where

A =
∑

i∈Z

∑

n≥0

τ0,ni

ψn+1
i − ψn

i

∆t
∆x∆t,

B =
∑

i∈Z

τ0i ψ
0
i∆x,

C =
∑

i∈Z

∑

n≥0

P (τni )

(

2ψn
i − ψn

i+1 − ψn
i−1

∆x2

)

∆x∆t,

D =
∑

i∈Z

a∆t

σ∆x2
(ui+1 − ui−1)ψ

1
i∆x.

It follows from the L1 convergence of τ∆x towards τ and Lemma 2.6 that

lim
∆t,∆x→0

A =

∫∫

R×R+

τ∂tψdxdt, (44)

lim
∆x→0

B =

∫

R

τ0ψ(·, 0)dx, (45)

lim
∆t,∆x→0

C = −
∫∫

R×R+

P (τ)∂xxψdxdt. (46)

Now, we deduce from the CFL condition (34) and from the regularity of u0 that

|D| ≤ C∆x. (47)
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Therefore, by considering the limit ∆x,∆t → 0 in (43), it follows from (44)–(47) that τ satisfies (42). �

3. Interface coupling between the fine model and the coarse model

In this section, we investigate the coupling through a thin interface between the hyperbolic model (MGT
f )

or (Mp−sys
f ) with the parabolic model corresponding to its large time asymptotic limit, namely (MGT

c )

or (Mp−sys
c ). As shown later in figure 2 for instance, a naive coupling by transmission of the information

by Dirichlet boundary conditions in the spirit of [11, 12] leads to inaccurate results. Therefore, we solve at the
thin interface a coupled system in order to connect the fluxes of both models.

3.1. The Goldstein-Taylor model

Let us first illustrate the construction of the coupling condition on the simplest example, that is the Goldstein-
Taylor model. Consider a fixed interface at xI+1/2 ∈ R. We aim at giving a numerical value for the fluxes at
the interface xI+1/2 for the variables u, v, where, on the left side of the interface, the fine model is solved:































ε∂tv + ∂xu = 0,

ε∂tu+ a2∂xv = −σ
εu,

u(x, 0) = uL,

v(x, 0) = vL,

for (x, t) in Df = (−∞, xI+1/2)× [0,∞), (48)

while, on the other side of the interface, the coarse model is considered:



















∂tv − a2

σ ∂xxv = 0,

u = 0,

v(x, 0) = vR,

for (x, t) in Dc = (xI+1/2,∞)× [0,∞). (49)

A first naive idea would be to solve the Riemann problem for the fine problem on both side of the interface,
with the initial data uR = 0 and use the solution to construct numerical fluxes for both sides. As illustrated on
Figure 2-right, this algorithm produces quite bad results. In this test case, the regime is such that the Goldstein-
Taylor model (MGT

f ) and its parabolic limit (Mp−sys
f ) provide similar results (actually, they are superposed

on Figure 2-right). Nevertheless the naive coupling provides a very different solution which is discontinuous at
xI+1/2.

Therefore, another strategy has to be developed in order to improve the behavior of the coupled numerical
solution and recover the continuity of v at xI+1/2. To do so, we introduce some auxiliary unknowns U∗ =

(u∗, v∗)T on the left-hand side of the interface and solve a partial Riemann problem, see Figure 1. The Rankine-
Hugoniot condition through the 1-wave of speed −a

ε yields

u∗ − uL = a(vL − v∗). (50)

By requiring the continuity of the flux of v through the interface xI+1/2, we impose that

u∗

ε
= −a

2

σ

vR − v∗

∆x
2

. (51)



ESAIM: PROCEEDINGS 15

parabolic part

t=0

t = ∆t

UL = (uL, vL)
T vR

U
∗

hyperbolic part

Figure 1. The interface states U∗ = (u∗, v∗) are linked to (uL, vL) by the 1-wave of speed
−a/ε, and to vR by imposing the continuity of the numerical flux of v.

This condition is very natural since it ensure the conservation of v. Combining (50) and (51), we obtain the
intermediate values

v∗(WL, vR) =

(

1

1 + 2εa
σ∆x

)(

vL +
2εa

σ∆x
vR +

uL
a

)

. (52)

u∗(WL, vR) =
1

Kε
(uL + a(vL − vR)) , (53)

It remains to plug these formulas in the numerical scheme (4) and (5) setting i = I and replacing the numer-
ical flux ū(Wn

I ,W
n
I+1)/Kε and v̄−(Wn

I ,W
n
I+1) by u∗(Wn

I , v
n
I+1) and v∗(Wn

I , v
n
I+1). Then, the source term is

once again treated in an implicit way in order to obtain an asymptotic preserving scheme which, after some
computations, leads to

vn+1
I = vnI − ∆t

εKε∆x

[

unI + a(vnI+1 − vnI )− ū(Wn
I−1,W

n
I )
]

, (54)

un+1
I = unI − a2∆t

εKε∆x

[

vnI+1 − v̄(Wn
I−1,W

n
I )
]

− σ∆t

ε2Kε
un+1
I , (55)

while the parabolic flux is the cell I +1 is given by (34) and (53). Note that the numerical flux at the interface
xI+1/2 in (54) satisfies

lim
ε→0

u∗

ε
((vnI , 0), v

n
I+1) =

2a2

σ

vL − vR
∆x

,

which is not a consistent approximation for the flux of the expected heat equation that v should satisfy.
Nevertheless, the resulting coupling method provides very good results.

We illustrate this new coupling method in a simple test case. The 1D space domain is split in two parts:
(−1, 0) and (0, 1). The model in the left part is the fine one (MGT

f ) and in the right part, the model is the coarse

one (MGT
c ). We compare the numerical coupling method described above with the basic one, which amounts to

set unI+1 in the hyperbolic scheme (4)-(5) to define the numerical coupling flux. We also plot the results obtain
with the full hyperbolic solution and the full parabolic solution. The initial condition is of Riemann type, with
vL = 1 and vR = uL = uR = 0. The values of the parameters are set to: σ = 2 and a = 1. Each part is
discretized with 30 cells. One can easily check that the basic coupling method introduces a jump at the coupling
interface. Moreover, for ε = 0.1 (right figure), though the full hyperbolic solution and the parabolic solution are
superposed, the basic coupling still provides a jump at the coupling interface. Actually, this test case was the
motivation of the construction of this new coupling method. We can check that in this latter case the results of
the new coupling method are very good. If we go back to the case ε = 0.2 (left figure), the hyperbolic solution
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Figure 2. Approximate v with ε = 0.2 (left) and with ε = 0.1 (right) at t = 0.05.

and the parabolic solution are very different. Nonetheless, the new coupling method is close to the hyperbolic
solution in the left part and close to the parabolic solution in the right part.

3.2. The p-system

We perform a similar coupling technique for the p-system. Here again the fine model (Mp−sys
f ) is solved on

the left side of the interface and the coarse model (Mp−sys
c ) is solved on the right side of xI . Because of the

nonlinearity of both models, the design of an exact coupling strategy with a partial Riemann problem would
lead to a nonlinear method. In order to avoid this, we make use of a relaxation method [4, 7] to linearize the
p-system and we study the associated coupled partial Riemann problem in order to define the numerical fluxes.
It takes the form



















ε∂tτ − ∂xu = 0,

ε∂tu+ ∂xπ(T, τ) =
−σ
ε u,

∂tT = λ(τ − T ),

(τ, u, T )(x, 0) = (τL, uL, τL),

for (x, t) in Df = (−∞, xI)× [0,∞), (56)

where π(τ, T ) = P (T ) + a2(T − τ) denotes the relaxed pressure and we assume that the Whitham condition
a2 > maxs |P ′(s)| is satisfied. The coarse model (Mp−sys

c ) to be solved on the right side of the interface reads











∂tτ +
1
σ∂xxP (τ) = 0,

u = 0,

τ(x, 0) = τR,

for (x, t) in Dc = (xI ,∞)× [0,∞). (57)

Following the same strategy as the one used for the Goldstein-Taylor model, we introduce an interfacial state
U∗ = (τ∗, u∗, π∗)T on the left hand side of the interface. The left state and the interfacial state U∗ are related
by the Rankine-Hugoniot condition through the 1−wave of speed −a

ε , i.e.

a(τ∗ − τL) = (u∗ − uL) (58)

−a(u∗ − uL) = (π∗ − P (τL)) (59)

since πL = P (τL). First, we assume that the pressure is continuous through the interface, that is to say that
there is only one pressure at the interface, namely π∗. In order to obtain a conservative method for τ , the
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associated flux has to be the same through the interface xI , which leads to the equality

−1

ε
u∗ =

1

σ

P (τR)− π∗

∆x
2

, (60)

which is nothing but the counterpart to (51). Combining equations (58), (59) and (60), we obtain

τ∗ = τL +
1

a
(u∗ − uL), (61)

u∗ =

(

1

1 + σ∆x
2εa

)

(

uL − 1

a
(P (τR)− P (τL))

)

, (62)

π∗ =

(

1

1 + 2εa
σ∆x

)(

P (τL) +
2aε

σ∆x
P (τR) + auL

)

. (63)

As in the case of the Goldstein-Taylor model, the values u∗ and π∗ are plugged in the well-balanced scheme (21)
for the cell i = I. Following the same computations which leads to the scheme (25)-(26) and after the implicit
modification of the source term, one obtains

τn+1
I = τnI − ∆t

εLε∆x

[

unI + a(P (τnI+1)− P (τnI ))− unI−1/2

]

, (64)

un+1
I = unI − ∆t

εLε∆x

[

P (τnI+1)−Π(Wn
I−1,W

n
I )
]

− σ∆t

ε2Lε
un+1
I , (65)

where unI−1/2 is given by (22) and

Π(WL,WR) =
1

2
(P (τL) + P (τR))−

a

2
(uR − uL).

Remark 3.1. Other coupling conditions could have been chosen, for instance the continuity of the specific
volume τ through the interface instead of the continuity of the pressure. However this condition requires to solve
a nonlinear problem in order to determine the interfacial state.

Let us now present the numerical results of two test cases. The pressure law is P (τ) = τ−2 and σ = 2.
The initial data corresponds to a Riemann problem with τL = 2, τR = 1 and uL = uR = 0. Once again, each
part of the computational domain is discretized in 30 cells. Two tests with different values of ε are provided in
Figure 3. In the right figure, ε is sufficiently small to obtain very close solutions for the fully hyperbolic case
and for the fully parabolic case. The solution of our coupling method is also very close to these two solutions, as
expected. In the contrary, the basic coupling method, which amounts to use the hyperbolic flux with uI+1 = 0,
introduces a jump at the coupling interface. In the left figure, the solutions of the fully hyperbolic case and of
the fully parabolic case are different since ε is greater than in the previous case. A jump of τ appears with the
basic coupling method which is larger than in the case of a smaller ε. Indeed, some complementary numerical
experiments let us think that the amplitude of this jump to tend to 0 when ε goes to 0. The result provided
by our coupling method is very satisfying. It follows the shape of the hyperbolic solution in the left part and
the shape of the parabolic solution in the right part. As in the Goldstein-Taylor case, the transmission through
the coupling interface with our new coupling method is however not fully perfect. Indeed, a small jump can be
detected for both values of ε which can be probably related to the lack of consistency of the coupling flux when
ε tends to 0.

4. Conclusion

During this project, we have proposed asymptotic preserving schemes for the parabolic limit of the Goldstein-
Taylor system and of the p-system. The core of these schemes and their analysis was already present in [14,15]



18 ESAIM: PROCEEDINGS

Figure 3. Approximate τ with ε = 0.4 (left) and with ε = 0.1 (right) at t = 0.2.

as far as the Goldstein-Taylor model is concerned. We also have provided an original coupling method between
a hyperbolic system (with source term) and its parabolic limit in order to remove the jumps that the classical
coupling method makes appear. The remaining work about the model adaptation concerns the dynamical part:
definition of error indicators and development of the fully dynamic adaptive algorithm, following [5, 21]. This
is under investigation, as well as the extension to more complex models.
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