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ON TOPOLOGICAL DERIVATIVE FOR CONTACT PROBLEM IN
ELASTICITY

S.M. GIUSTI∗, J. SOKO LOWSKI† , AND J. STEBEL‡

Abstract. In the paper the general method for shape-topology sensitivity analysis of contact
problems is proposed. The method uses the domain decomposition method combined with the specific
properties of minimizers for the energy functional. The method is applied to the static problem of
an elastic body in frictionless contact with an rigid foundation. The contact model allows a finite
interpenetration of the bodies on the contact region. This interpenetration is modeled by means of
a scalar function that depends on the normal component of the displacement field on the potential
contact zone. We present the asymptotic behavior of the energy shape functional when a spheroidal
void is introduced in an arbitrary point of the elastic body. For the asymptotic analysis, we use the
domain decomposition technique and the associated Steklov-Poincaré pseudodifferential operator.
The differentiability of the energy with respect to the non-smooth perturbation is established. A
closed form for the topological derivative is also presented.

Key words. Topological derivative, static frictionless contact problem, asymptotic analysis,
domain decomposition, Steklov-Poincaré operator

AMS subject classifications. 41A60, 49J52, 49Q10, 35J50, 35Q93

1. Introduction. Topological asymptotic analysis allows us to obtain an asymp-
totic expansion of a given shape functional when a geometrical domain is singularly
perturbed by the insertion of holes, inclusions, source-terms or even cracks. The
main concept arising from this analysis is the topological derivative. This derivative
can be seen as a first order correction of the unperturbed shape functional to ap-
proximate the perturbed shape functional. The topological derivative was rigorously
introduced by Soko lowski & Żochowski 1999 [24]. Since then, this concept has proved
to be extremely useful in the treatment of a wide range of problems, see for instance,
[3, 12, 11, 9, 10, 23, 17]. Concerning the theoretical development of the topological
asymptotic analysis, the reader may refer e.g. to the papers [19, 25, 5, 14, 7].

Classically, contact problems are modeled by means of a non-penetration con-
dition between an elastic body and a rigid obstacle or foundation. This is known
as unilateral contact condition and is modeled by using variational inequalities. A
less restrictive boundary condition on the contact region is obtained by considering
the normal compliance model. In this kind of models, some small interpenetration
between the contacting bodies is allowed, and the boundary forces are given as a
function of the interpenetration. However, such models allow an arbitrary large inter-
penetration of the bodies in contact, which is physically not very realistic. Recently, a
new class of model has been presented in [6], by using a still less restrictive boundary
condition that allows a finite interpenetration of the bodies. In such a model, the
finite interpenetration is modeled by means of a function that depends on the normal
component of the displacement field to the boundary on the potential contact region.
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Clearly, this is a nonlinear boundary condition for the contact problem, leading to a
new class of variational inequalities.

The shape and topological asymptotic analysis for contact problems has been
studied in [26, 8, 15, 4]. In these works, the differentiability of the energy functional
with respect to a singular perturbation has been developed for the usual boundary
conditions in contact problems. Due to the nonlinear condition over the contact zone,
the boundary value problem becomes nonsmooth. Therefore, nonsmooth analysis
is necessary since the shape differentiability of solutions to contact problems is ob-
tained only in the framework of Hadamard differentiability of metric projections onto
polyhedric sets in the appropriate Sobolev spaces.

In this work we present the asymptotic behavior of the energy shape functional
when a spheroidal void is introduced in an arbitrary point of the elastic body. We
consider the energy shape functional associated to the frictionless contact problem
allowing a finite interpenetration between an elastic body and a rigid foundation,
developed in [6]. For the asymptotic analysis, we use the domain decomposition
technique and the associated Steklov-Poincaré pseudodifferential operator. The dif-
ferentiability of the energy of this new class of variational problem, with respect to the
non-smooth perturbation, is established. A closed form for the topological derivative
in the three-dimensional space is also presented.

The paper is organized as follows. The problem formulation associated with
contact problem, without friction and finite interpenetration, is presented in Section
2. The topological asymptotic analysis with respect to the nucleation of spherical
holes (voids) in 3D is developed with all details in Section 3. Here, a closed form of
the topological derivatives associated with the energy shape functional is presented.
The paper ends with some concluding remarks in Section 4.

2. Static contact model for finite interpenetration. We consider the prob-
lem of an elastic body having contact with a rigid foundation. The domain of the
body, denoted by Ω ⊂ R3, is assumed to be bounded and have Lipschitz boundary
∂Ω consisting of three mutually disjoint parts with positive measures ΓD, ΓN and
ΓC , where different boundary conditions are prescribed. On the boundary ΓD we
prescribe Dirichlet boundary conditions (displacement), on ΓN Neumann boundary
conditions (traction) and, finally, on ΓC the contact condition with the rigid founda-
tion that admits an interpenetration, see Figure 1. For the contact model on ΓC , we
consider only a normal compliance law of the type

σn(u) = −p(un − g) , (2.1)

where un := u · n denotes the normal component of the displacement field u, n is the
unit outward normal vector to the boundary ∂Ω and g the gap on the potential contact
zone. Moreover, in (2.1), σn(u) represents the normal component to the boundary
of the stress tensor σ(u), i.e. σn(u) = σ(u)n · n. The Cauchy stress tensor σ(u) is
defined as:

σ(u) := Cε(u) , (2.2)

where ε(u) is the symmetric part of the gradient of the displacement field u, i.e.

ε(u) :=
1

2
(∇u+ (∇u)>) , (2.3)
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and C denotes the four-order elastic tensor. For an isotropic elastic body, this tensor
is given by:

C = 2µI + λ(I⊗ I), (2.4)

with µ and λ denoting the Lame’s coefficients. In the above expression, we use I
and I to denote, respectively, the identities of fourth and second order. In terms
of the engineering constant E (Young’s modulus) and υ (Poisson’s ratio) the above
constitutive response can be written as:

C =
E

1− υ2
[(1− υ)I + υ(I⊗ I)] . (2.5)

The function p : R→ R+ = [0,+∞] in (2.1) is used to model the interpenetration
condition between the body and the foundation. This function p is monotone with
the following properties:

p(y) = 0 for y ≤ α, with α constant
lim
y→β−

p(y) = +∞ for y > α, with β constant and β > α

p(y) = +∞ for y ≥ β
. (2.6)

The parameter α indicates the initial contact and the value of β describes a limit
such that no further interpenetration is possible.

The strong form of the equilibrium equation under this contact condition is given
by: find the displacement field u : Ω→ R3 such that

−div σ(u) = 0 in Ω
u = u on ΓD

σ(u)n = t on ΓN
σn(u) = −p(un − g) on ΓC
στ (u) = 0 on ΓC

. (2.7)

The last condition in (2.7) indicates that the contact is without friction, where
στ (u) = σ(u)n− σn(u)n denotes the tangential component of the stress tensor σ(u).

We assume that the stress operator σ is bounded and positive definite, i.e. there
exist two constants σ, σ > 0 such that:

|σ| ≤ σ, ∀φ ∈ R3×3 : σ(φ) · φ ≥ σ|φ|2, (2.8)

and the data satisfy:

g ∈ H1/2(ΓC), u ∈ H1(Ω;R3), un|ΓC = g and t ∈ (H1/2(ΓN ;R3))∗. (2.9)

The weak formulation of the problem stated in (2.7) is given by the following varia-
tional equation: find u ∈ U with (un − g) ∈ dom(p), such that:

〈σ(u), ε(v)− ε(u)〉Ω + 〈p(un − g), vn − un〉ΓC = 〈t̄, v − u〉ΓN ∀v ∈ U , (2.10)

where the set of admissible functions U is given by:

U := {ϕ ∈ H1(Ω;R3) : ϕ = u on ΓD}, (2.11)
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Fig. 1. Contact problem.

Fig. 2. Perturbed contact problem.

and the domain of definition of the function p, namely dom(p), is:

dom(p) :=

{
ϕ ∈ L1(ΓC) : p(ϕ) ∈ L1(ΓC),∃C > 0 :

∫
ΓC

p(ϕ)v ≤ C‖v‖H1/2(ΓC)

}
.

(2.12)

For a complete and detailed description of this model, we refer the reader to [6],
where it was proved that, under the above assumptions, problem (2.10) admits a
unique solution.

3. Topological asymptotic analysis. In this section we obtain an asymptotic
expansion for the energy shape functional when a small spheroidal cavity of radius ρ
is introduced in an arbitrary point x̂ of the domain Ω, far enough from the potential
contact region ΓC , see Figure 2. The main term of this expansion is the topological
derivative and represents a first order asymptotic correction term of a given shape
functional with respect to a singular domain perturbation [24].

Let us consider a shape functional defined on the domain Ω and depending on the
solution u, denoted by JΩ(u). Then, after the introduction of a singular perturbation
at x̂, we have a new domain denoted by Ωρ := Ω \ Bρ, where Bρ is a ball of radius ρ
centered at x̂, that is Bρ :=

{
x ∈ R3 : |x− x̂| < ρ

}
, see Figure 2.

Therefore, an asymptotic expansion of the energy shape functional defined on the
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perturbed domain Ωρ, i.e. JΩρ , can be written as:

JΩρ(uρ) = JΩ(u) + f(ρ)TΩ(x̂) + o(f(ρ)), (3.1)

where f(ρ) is a positive function that decreases monotonically, such that f(ρ) → 0
when ρ → 0+, TΩ(x̂) is defined as the topological derivative of JΩ at x̂, and uρ
is the solution of the contact problem in the perturbed domain given by: find the
displacement field uρ : Ωρ → R3 such that

−div σ(uρ) = 0 in Ωρ
uρ = u on ΓD

σ(uρ)n = t on ΓN
σn(uρ) = −p(uρn − g) on ΓC
στ (uρ) = 0 on ΓC
σ(uρ)n = 0 on ∂Bρ

, (3.2)

where uρn := uρ · n is used to denote the normal component of the displacement field
uρ on the boundary ΓC . Note that there is no traction applied on the boundary of the
hole, i.e. homogeneous Neumman boundary condition has been considered on ∂Bρ
for this problem.

From (3.1) we have that the classical definition of the topological derivative is
given by [24]:

TΩ(x̂) := lim
ρ→0+

JΩρ(uρ)− JΩ(u)

f(ρ)
. (3.3)

In order to perform the asymptotic expansion and the evaluation of the topological
derivative of problem (3.2), in this work we apply the domain decomposition method
and the associated Steklov-Poincaré pseudodifferential operator.

3.1. Domain decomposition. We start by decomposing the domain Ωρ in
two parts: (i) a ball BR of radius R > ρ > 0 centered at x̂ ∈ Ω, that is BR :={
x ∈ R3 : |x− x̂| < R

}
, and (ii) the domain ΩR := Ω \ BR. Clearly, the domain BR

contains the small cavity Bρ and, for this perturbed configuration, we can define the
domain as C(R, ρ) := BR\Bρ, see Figure 3. We use ΓR to denote the exterior boundary
∂BR of the domain C(R, ρ). First we consider the following linear elasticity system
in C(R, ρ): given v ∈ H1/2(ΓR;R3), find the displacement field ωρ : C(R, ρ) → R3

such that  −div σ(ωρ) = 0 in C(R, ρ)
ωρ = v on ΓR

σ(ωρ)n = 0 on ∂Bρ
. (3.4)

Using (3.4) we define the Steklov-Poincaré boundary operator Sρ on ΓR as:

Sρ : v ∈ H1/2(ΓR;R3)→ σ(ωρ)ν ∈ H−1/2(ΓR;R3), (3.5)

where ν denotes the unit normal vector to the boundary ΓR pointing outside the ball
BR. Next, we consider the following contact problem in ΩR: find the displacement
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(a) Domain ΩR and BR.

(b) Domain C(R, ρ).

Fig. 3. Decomposition of the domain Ω.

field uRρ : ΩR → R3, such that:

−div σ(uRρ ) = 0 in ΩR
uRρ = u on ΓD

σ(uRρ )n = t on ΓN
σn(uRρ ) = −p(uRρn − g) on ΓC
στ (uRρ ) = 0 on ΓC
σ(uRρ )ν = Sρ(uRρ ) on ΓR

. (3.6)

Its variational formulation can be written as: find the displacement field uRρ ∈ UR
with p(uRρn − g) ∈ dom(p), such that:

〈σ(uRρ ), ε(v)− ε(uRρ )〉ΩR + 〈p(uRρn − g), vn − uRρn〉ΓC
+ 〈Sρ(uRρ ), v − uRρ 〉ΓR = 〈t̄, v − uRρ 〉ΓN ∀v ∈ UR , (3.7)

where the set of admissible functions UR is given by:

UR := {ϕ ∈ H1(ΩR;R3) : ϕ = u on ΓD}. (3.8)

From (3.4) and (3.5) it follows that the solution uρ of (3.2) satisfies σ(uρ)ν = Sρ(uρ)
on ΓR. Consequently, the restriction of uρ to the truncated domain ΩR coinsides with
the solution uRρ of (3.6) and similarly uρ|C(R,ρ) = ωρ, where ωρ is the solution to (3.4)
with v = uρ|ΓR .

We also observe that, by the definition of the Steklov-Poincaré boundary operator
in the domain C(R, ρ), the solution ωρ of (3.4) satisfies∫

C(R,ρ)

σ(ωρ) · ε(v) = 〈Sρ(ωρ), v〉ΓR ∀v ∈ UC , (3.9)
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where the set of admissible function UC is given by:

UC := {ϕ ∈ H1(C(R, ρ);R3) : ϕ = v on ΓR}. (3.10)

For the unperturbed case (ρ = 0) we define the Steklov-Poincaré operator S :=
S0 : v ∈ H1/2(ΓR;R3)→ σ(ω)ν ∈ H−1/2(ΓR;R3) associated with the problem{

−div σ(ω) = 0 in BR
ω = v on ΓR

. (3.11)

Applying the domain decomposition technique to the problem (2.7) on Ω, we can
rewrite (2.10) as follows:

〈σ(u), ε(v)−ε(u)〉ΩR+〈p(un−g), vn−un〉ΓC +〈S(u), v−u〉ΓR = 〈t̄, v−u〉ΓN ∀v ∈ UR.
(3.12)

It is well known that Sρ is a positive definite operator for any ρ ≥ 0, and that the
following asymptotic expansion holds:

Sρ = S + ρ3S ′ + o(ρ3) , ρ→ 0+ , (3.13)

with a bounded linear operator S ′ [26].

3.2. Topological derivative. For the contact model studied in this work, the
energy shape functional associated to the domain Ω is given by [6]:

JΩ(u) :=
1

2
〈σ(u), ε(u)〉Ω − 〈t̄, u〉ΓN +

∫
ΓC

P (un − g), (3.14)

where u denotes the solution of the problem in the unperturbed domain, see (2.7),
and the function P (y) is given by:

P (y) :=

∫ y

−∞
p(z). (3.15)

Considering the singular perturbation Bρ, the energy shape functional associated
to the perturbed domain Ωρ is given by:

JΩρ(uρ) :=
1

2
〈σ(uρ), ε(uρ)〉Ωρ − 〈t̄, uρ〉ΓN +

∫
ΓC

P (uρn − g), (3.16)

where uρ is the solution of the problem in the domain Ωρ, see (3.2).
Now, by taking into account the domain decomposition and the Steklov-Poincaré

boundary operator presented above, we can define the following functional associated
to the truncated domain ΩR:

IΩR(uRρ ) :=
1

2
〈σ(uRρ ), ε(uRρ )〉ΩR − 〈t̄, uRρ 〉ΓN +

∫
ΓC

P (uRρn − g) +
1

2
〈Sρ(uRρ ), uRρ 〉ΓR .

(3.17)
In view of the above functional, the contact problem in the truncated domain

ΩR, given by eq.(3.6), can be written as the following optimization problem: the
displacement field uRρ is the unique minimizer such that

IΩR(uRρ ) = inf
v∈dom(IΩR

)
{IΩR(v)} , (3.18)
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where the domain of the functional IΩR is given by:

dom(IΩR) :=
{
v ∈ UR : P (vn − g) ∈ L1(ΓC)

}
. (3.19)

For the optimization problem (3.18), we can establish the following equivalence

IΩR(uRρ ) ≡ JΩρ(uρ), (3.20)

since the minimizer in (3.18) coincides with the restriction to ΩR of the minimizer uρ
of the corresponding quadratic functional defined in the whole singularly perturbed
domain Ωρ.

Proposition 1. Let u and uρ be the solutions to (2.10) and (3.7), respectively.
Then

uρ → u strongly in H1(ΩR,R
3), as ρ→ 0+. (3.21)

Proof. First we show that the sequence {uρ}, ρ→ 0+, is bounded in H1(ΩR;R3).
Using v := 2uρ − u as a test function in (3.7) we obtain:

〈σ(uρ), ε(uρ)〉ΩR + 〈p(uρn − g), uρn − g〉ΓC + 〈Sρ(uρ), uρ〉
= 〈σ(uρ), ε(u)〉ΩR + 〈p(uρn − g), un − g〉ΓC + 〈Sρ(uρ), u〉ΓR + 〈t̄, uρ − u〉ΓN . (3.22)

The terms on the right hand side can be estimated using the boundedness of σ, the
expression (3.9) and the properties of the data u and t̄ as follows:

〈σ(uρ), ε(u)〉ΩR + 〈Sρ(uρ), u〉ΓR = 〈σ(uρ), ε(u)〉Ωρ
≤ σ‖ε(uρ)‖L2(Ωρ,R3)‖ε(u)‖L2(Ωρ,R3), (3.23)

〈p(uρn − g), un − g〉ΓC = 0, (3.24)

〈t̄, uρ − u〉ΓN ≤ ‖t̄‖(H1/2(ΓN ;R3))∗
(
‖uρ‖H1/2(ΓN ;R3)

+ ‖u‖H1/2(ΓN ;R3)

)
. (3.25)

Using positive definiteness of σ, the expression (3.9) and the monotonicity of p
we get the lower bound for the left hand side of (3.22):

〈σ(uρ), ε(uρ)〉ΩR + 〈p(uρn − g), uρn − g〉ΓC + 〈Sρ(uρ), uρ〉ΓR ≥ σ‖ε(uρ)‖2L2(Ωρ;R3) .

(3.26)
Combining the above estimates with (3.22) we find that there is a constant C1 > 0
depending only on σ, σ, ‖u‖H1(Ω;R3) and ‖t̄‖(H1/2(ΓN ;R3))∗ such that

‖ε(uρ)‖2L2(Ωρ;R3) ≤ C1(‖ε(uρ)‖L2(Ωρ;R3) + ‖uρ‖H1/2(ΓN ;R3) + ‖u‖H1/2(ΓN ;R3)). (3.27)

Now we use the embedding H1(ΩR;R3) ↪→ H1/2(ΓN ;R3), Young’s inequality and
Korn’s inequality in H1(ΩR;R3) which yields:

‖uρ‖H1(ΩR;R3) ≤ CK‖ε(uρ)‖L2(ΩR;R3) ≤ CK‖ε(uρ)‖L2(Ωρ,R3) ≤ C2, (3.28)

where CK > 0 is the constant of the Korn inequality and C2 > 0 depends on the same
quantities as C1.
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To show strong convergence, we test (3.7) by v := u and (3.12) by v := uρ.
Adding the resulting equations and multiplying by −1 we obtain:

〈σ(uρ)− σ(u), ε(uρ)− ε(u)〉ΩR + 〈p(uρn − g)− p(u− g), uρn − un〉ΓC
+ 〈Sρ(uρ)− S(u), uρ − u〉ΓR = 0. (3.29)

Since Sρ is a positive definite operator which admits the asymptotic expansion (3.13)
and the sequence {uρ} is bounded in H1(ΩR;R3), the last term in (3.29) satisfies:

〈Sρ(uρ)− S(u), uρ − u〉ΓR = 〈Sρ(uρ)− Sρ(u), uρ − u〉ΓR + 〈Sρ(u)− S(u), uρ − u〉ΓR
≥ 〈ρ3S ′(u), uρ − u〉ΓR + o(ρ3)→ 0 as ρ→ 0+. (3.30)

Using this, together with the Korn inequality and the facts that σ is positive definite
and p is non-decreasing, we deduce from (3.29) that

lim
ρ→0+

‖uρ − u‖2H1(ΩR;R3) ≤ 0, (3.31)

which completes the proof.

Proposition 2. The functional form IΩR defined in (3.17) is differentiable at
ρ = 0+, for any fixed R > ρ with ρ ≥ 0, and the derivative is

I ′Ω =
1

2

∫
ΓR

S ′(uR)uR =
1

2
〈S ′(uR), uR〉ΓR , (3.32)

where S ′ is the main term of the asymptotic expansion of the Steklov-Poincaré bound-
ary operator Sρ in the space of the Steklov-Poincaré operators, given by:

Sρ = S + ρ3S ′ + o(ρ3). (3.33)

Proof. The derivative of the functional form IΩR at ρ = 0+ can be written as:

I ′Ω := lim
ρ→0+

IΩR(uRρ )− IΩ(uR)

ρ3
. (3.34)

Let us consider the following inequalities

IΩR(uRρ )− IΩ(uRρ )

ρ3
≤ I ′Ω ≤

IΩR(uR)− IΩ(uR)

ρ3
. (3.35)
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Now, for the left-hand side of (3.35) we have that

IΩR(uRρ )− IΩ(uRρ )

ρ3
=

1

ρ3

{
1

2
〈σ(uRρ ), ε(uRρ )〉ΩR − 〈t̄, uRρ 〉ΓN +

∫
ΓC

P (uRρn − g)

+
1

2
〈Sρ(uRρ ), uRρ 〉ΓR −

1

2
〈σ(uRρ ), ε(uRρ )〉Ω + 〈t̄, uRρ 〉ΓN

−
∫

ΓC

P (uRρn − g)

}
=

1

ρ3

{
1

2
〈σ(uRρ ), ε(uRρ )〉ΩR − 〈t̄, uRρ 〉ΓN +

∫
ΓC

P (uRρn − g)

+
1

2
〈Sρ(uRρ ), uRρ 〉ΓR −

1

2
〈σ(uRρ ), ε(uRρ )〉ΩR + 〈t̄, uRρ 〉ΓN

−
∫

ΓC

P (uRρn − g)− 1

2
〈S(uRρ ), uRρ 〉ΓR

}
=

1

2ρ3
〈Sρ(uRρ )− S(uRρ ), uRρ 〉ΓR (3.36)

Considering the asymptotic expansion of the Steklov-Poincaré operator, we have:

IΩR(uRρ )− IΩ(uRρ )

ρ3
=

1

2ρ3
〈S(uRρ ) + ρ3S ′(uRρ ) + o(ρ3)− S(uRρ ), uRρ 〉ΓR

=
1

2
〈S ′(uRρ ), uRρ 〉ΓR +

1

2
〈o(ρ

3)

ρ3
, uRρ 〉ΓR . (3.37)

Using the strong convergence of uRρ to uR and the linearity of S ′ we obtain:

lim
ρ→0+

IΩR(uRρ )− IΩ(uRρ )

ρ3
=

1

2
〈S ′(uR), uR〉ΓR . (3.38)

Now, the right-hand side of (3.35) can be written as:

IΩR(uR)− IΩ(uR)

ρ3
=

1

ρ3

{
1

2
〈σ(uR), ε(uR)〉ΩR − 〈t̄, uR〉ΓN +

∫
ΓC

P (uRn − g)

+
1

2
〈Sρ(uR), uR〉ΓR −

1

2
〈σ(uR), ε(uR)〉Ω + 〈t̄, uR〉ΓN

−
∫

ΓC

P (uRn − g)

}
=

1

ρ3

{
1

2
〈σ(uR), ε(uR)〉ΩR − 〈t̄, uR〉ΓN +

∫
ΓC

P (uRn − g)

+
1

2
〈Sρ(uR), uR〉ΓR −

1

2
〈σ(uR), ε(uR)〉ΩR + 〈t̄, uR〉ΓN

−
∫

ΓC

P (uRn − g)− 1

2
〈S(uR), uR〉ΓR

}
=

1

2ρ3
〈Sρ(uR)− S(uR), uR〉ΓR . (3.39)
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Considering the asymptotic expansion of the Steklov-Poincaré operator, we have:

IΩR(uR)− IΩ(uR)

ρ3
=

1

2ρ3
〈S(uR) + ρ3S ′(uR) + o(ρ3)− S(uR), uR〉ΓR

=
1

2
〈S ′(uR), uR〉ΓR +

1

2
〈o(ρ

3)

ρ3
, uR〉ΓR (3.40)

By taking the limit of the above expression when ρ→ 0+, we obtain:

lim
ρ→0+

IΩR(uR)− IΩ(uR)

ρ3
=

1

2
〈S ′(uR), uR〉ΓR . (3.41)

Finally, from expressions (3.38) and (3.41), it follows (3.32).

Using Proposition 2, the asymptotic expansion of the functional IΩR can be writ-
ten as:

IΩR = IΩ +
ρ3

2
〈S ′(uR), uR〉ΓR + o(ρ3); (3.42)

and, in view of the asymptotic expansion (3.1), we finally have that the topological
derivative satisfies the following identity:

TΩ(x̂) =
1

2
〈S ′(uR), uR〉ΓR . (3.43)

Proposition 2 establishes the differentiability property of the energy shape func-
tional for this contact model with respect to the non-smooth perturbation denoted
by Bρ. This is an abstract results, whose closed form for the topological derivative
TΩ(x̂) is presented in the next section.

3.3. Topological derivative evaluation. As a main result from the previous
section, we have that the energy shape functional admits an asymptotic expansion
for ρ→ 0+, see eqs.(3.1) and (3.43). This means that the asymptotic behavior of the
energy in C(R, ρ) holds in the whole domain Ω. Then, we only need to compute the
topological derivative for the energy shape functional in C(R, ρ), with its associated
elastic problem (3.4). In order to evaluate the topological derivative, we can use the
techniques available in the literature, see for instance [2, 21, 18, 24]. Finally, for an
explicit and analytical formula for the topological derivative TΩ(x̂), we introduce the
following result:

Theorem 3. The energy shape functional of an elastic solid, characterized by
the constitutive equation (2.5), with a spherical cavity of radius ρ with homogeneous
Neumann boundary condition and centered at point x̂ ∈ Ω, admits for ρ → 0+ the
following asymptotic expansion:

JΩρ(uρ) = JΩ(u) + ρ3πHσ(u(x̂)) · ε(u(x̂)) + o(ρ3) ∀x̂ ∈ Ω, (3.44)

where u(x̂) is the solution of the problem (2.7) evaluated at x̂ and H is the fourth-order
tensor defined as:

H :=
1− υ
7− 5υ

(
10I− 1− 5υ

1− 2υ
I⊗ I

)
, (3.45)
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where υ is the Poisson’s ratio of the elastic medium, I and I are the identities tensors
of second- and fourth-order, respectively.

Proof. The reader interested in the proof of this result may refer to [22, 13, 16].
Remark 4. The fourth-order tensor H in (3.44), can be interpreted as the po-

larization tensor associated to this problem. This is a important concept, since the
topological derivative formula can be written explicitly in terms of this tensor. The
reader interested in this topic may refer to the works [1, 5, 20].

4. Final remarks. An analytical expression for the topological derivative of the
energy shape functional associated to a frictionless contact model that allows a finite
interpenetration between an elastic body and a rigid foundation, has been derived.
We develop the asymptotic analysis for the case when a spherical void is introduced
at an arbitrary point of the domain. By using the domain decomposition technique
and the associated Steklov-Poincaré pseudodifferential operator, the differentiability
of the energy was successfully established. The final formula is a general simple ana-
lytical expression in terms of the solution of the state equation and the constitutive
parameters evaluated in each point of the unperturbed domain. From the asymptotic
analysis, it was proved that the finite interpenetration condition on the potential con-
tact zone does not contribute explicitly to the first order topological derivative. This
means that the formula for the topological derivative is the same that for the classi-
cal elasticity problem for an isotropic and homogeneous medium. The contribution
of the contact model in the topological derivative is through the displacement field,
solution of the contact problem with the non-linear boundary condition (finite inter-
penetration). Finally, we remark that this information can be potentially used in the
topological design of mechanical components, under contact conditions, to achieve a
specified behavior.
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