
HAL Id: hal-00734668
https://hal.inria.fr/hal-00734668

Submitted on 24 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XML Query-Update Independence Analysis Revisited
Muhammad Junedi, Pierre Genevès, Nabil Layaïda

To cite this version:
Muhammad Junedi, Pierre Genevès, Nabil Layaïda. XML Query-Update Independence Analysis
Revisited. DocEng 2012, Sep 2012, Paris, France. �10.1145/2361354.2361375�. �hal-00734668�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49863169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00734668
https://hal.archives-ouvertes.fr

XML Query-Update Independence Analysis Revisited

Muhammad Junedi
Inria/LIG

655 avenue de l’Europe,
38334 Saint Ismier, France

muhammad.junedi@inria.fr

Pierre Genevès
CNRS and Inria/LIG

655 avenue de l’Europe,
38334 Saint Ismier, France
pierre.geneves@inria.fr

Nabil Layaïda
Inria/LIG

655 avenue de l’Europe,
38334 Saint Ismier, France
nabil.layaida@inria.fr

ABSTRACT
XML transformations can be resource-costly in particular
when applied to very large XML documents and document
sets. Those transformations usually involve lots of XPath
queries and may not need to be entirely re-executed follow-
ing an update of the input document. In this context, a
given query is said to be independent of a given update if,
for any XML document, the results of the query are not
affected by the update. We revisit Benedikt and Cheney’s
framework for query-update independence analysis and show
that performance can be drastically enhanced, contradicting
their initial claims. The essence of our approach and results
resides in the use of an appropriate logic, to which queries
and updates are both succinctly translated. Compared to
previous approaches, ours is more expressive from a theo-
retical point of view, equally accurate, and more efficient in
practice. We illustrate this through practical experiments
and comparative figures.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages

Keywords
XML, Query, Update, Independence

1. INTRODUCTION
XQuery is becoming increasingly popular as a transforma-

tion and query language for XML documents. XML Update
Language extends the syntax and semantics of XQuery to
provide update features, i.e. side effects on documents (for
example insertion and deletion of nodes).

XML query-update independence analysis consists in stat-
ically checking whether the results of a given query are af-
fected by an update. Determining independence has many
important applications which makes it an important line
of research: avoiding view re-materialization, concurrency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

control and transaction management optimization, access
policy enforcement, query engine optimization, web page
consistency and others. The fact that independence detec-
tion is undecidable in general for XQuery and XML Update
Language raises the challenge of finding a compromise be-
tween the accuracy and efficiency of static analysis and try-
ing to support the largest fragments of query and update
languages.

The static detection of query-update independence usu-
ally follows a two-step approach. As a first step, a common
representation of queries and updates should be established
in order to analyze them jointly. This operation usually re-
lies on the extraction of path expressions that model both
queries and updates. As a second step, once the common
representation is obtained, independence can be checked us-
ing some intersection testing techniques on these paths. Two
aspects are key for the accuracy and efficiency of the whole
process:

• the adopted common representation, as its expressive-
ness (e.g. being able to capture schemas) has a direct
effect on the accuracy, and its succinctness has a direct
impact on efficiency;

• the chosen intersection testing technique, as its the-
oretical complexity and algorithmic effectiveness di-
rectly affect the performance of the analyzer.

In [2], Benedikt and Cheney provide a generic frame-
work for independence analysis based on destabilizers and
compare different approaches for intersection analysis. The
clear separation of concerns in [2] between the representa-
tion problem and the problem of intersection analysis pro-
vides a good environment for comparison between different
independence analysis approaches in addition to the generic-
ity of the framework that can handle any update and query
language.

Contribution
In this paper, we revisit query-update independence analysis
as proposed by Benedikt and Cheney [2] under the light
of the latest developments in intersection testing through
a satisfiability checker for an expressive logic, namely the
µ-calculus.

We provide evidence that our approach is more expressive
in theory, equally accurate, and provides better performance
compared to the various alternatives suggested in [2]. We
provide experimental results that back our claims and in-
validates Benedikt and Cheney’s claims that using such an
approach is not competitive.

2. XML QUERY-UPDATE ANALYSIS
In this section we recall the XML query-update framework

introduced by Benedikt and Cheney [2] that we have reim-
plemented as a prerequisite for developing our approach.

The framework of [2] relies on a common representation
called selection queries for both updates and queries. Specif-
ically, the query is represented as the set of updates that can
change the result of that query, which is called the query
destabilizer (i.e. the set of nodes that can destabilize the
query if they are a target of some update).

Updates are represented by a description of the target
nodes that are modified. Then, different intersection analy-
sis techniques can be applied in order to check that none of
the target nodes are in the query’s destabilizer.

The XML query language supported by [2] is an XQuery
subset called XQ and the supported update language is a
part of snapshot semantics-based XQuery Update Facility
[5]. XML documents are considered as tree structures. The
reader is referred to [2] for full details on the syntax and
semantics of XQ and XML Updates.

To illustrate destabilizers, we consider as an example the
XPath query Q1 = $doc/C, $doc refers to the document
root. The result of Q1 can be affected in different manners:

• the subtree value of the result of Q1 is destabilized if
update operations (i.e. insert, delete, replace and re-
name operations) have a target node in {$doc, $doc/C,
$doc/C/descendant-or-self::*}. This set is called the
value destabilizer of $doc/C query, which is abbrevi-
ated as ∆v

∗($doc/C);

• the boolean result of Q1 can be changed from nonempty
to empty if update operations have a target node in
{$doc, $doc/C}. This set is called the negative boolean
destabilizer and is abbreviated as ∆b−

∗ ($doc/C);

• the boolean result of Q1 can be changed from empty
to nonempty if update operations have a target node
in {$doc, $doc/child::*}. This set is called the positive
boolean destabilizer and is abbreviated as ∆b+

∗ ($doc/C);

• the node structure of the result of Q1 is destabilized if
update operations have a target node in {$doc, $doc/
child::*}. This set is called a node destabilizer and is
abbreviated as ∆n

∗ ($doc/C).

The previous example explains the four types of generic
destabilizers. To improve accuracy, an update sensitive ver-
sion of destabilizers is proposed which takes only the update
in question into consideration. For example no insert oper-
ation can change the results of a query from nonempty to
empty. Similarly, no delete operation can change the results
of a query from empty to nonempty. Moreover, only a re-
naming operation on $doc/child::* can destabilize the node
structure of Q1, which is an example of a rename sensi-
tive node destabilizer: ∆n

rename($doc/C) = {$doc/child::*}
which is more accurate than including $doc also in node
destabilizer set.

These four types of generic and operation sensitive desta-
bilizers are used in the query rewriting algorithm (from an
XQ query to a destabilizer) as four mutually recursive func-
tions on the structure of the query. The resulting query
belongs to a subset of XQ called SelXQ (Selection Query)
that excludes from XQ the rule for output generation. The

rewriting algorithm for generic and operation sensitive desta-
bilizers can be found in [2].

While queries are transformed into destabilizers, updates
are transformed into the selection query which represents the
targets of update operation. The transformation function
Targ is defined in [2].

After representing the queries as destabilizers and updates
as target queries, a function can translate this unified in-
termediate representation into a target logical language de-
pending on the chosen intersection testing technique.

3. INTERSECTION TESTING
Intersection testing uses different static analysis techniques

to find the intersection between two structured representa-
tions that correspond to a query and an update.

The simplest form of intersection testing for XPath sets
is by using heuristics: suffix incompatibility, displacement
tests and prefix incompatibility for downward paths [2]. These
techniques have a polynomial time complexity but they work
only for a very restricted fragment of downward XPaths.

For downward XPath fragments with child, descendant
and wildcard fragments, intersection can be solved in poly-
nomial time by building an automaton for XPath expres-
sions and finding the intersection using product automata
and emptiness check [14]. This solution is accurate but ob-
viously of very limited expressiveness.

To handle more expressive fragments, [2] proposes to use
the Satisfiability Modulo Theory (SMT) approach for in-
tersection analysis using the theory of linear order (N,<).
This is done by first transforming selection queries to posi-
tive existential first order logic (over trees) formulas. Then
these formulas are translated using interval encoding [6] and
passed to an SMT solver such as Yices [7] to check for inde-
pendence.

To handle all the fragments of SelXQ queries:

• Selection queries can be transformed into first-order
formulas over trees for child, descendant and sibling
relations [3] and intersection analysis reduces to satis-
fiability which has a non-elementary lower bound for
time complexity [17]. These formulas can be checked
for disjointness by monadic second order (MSO) satis-
fiability solvers, like MONA [15, 10];

• Selection queries can be transformed into a set of XPath
expressions which in turn are translated into µ-calculus
formulas. The conjunction of these formulas can be
checked for satisfiability using a µ-calculus satisfiabil-
ity solver [12, 11].

4. COMPARATIVE STUDY
We now compare the three mentioned approaches (SMT

Solver, MSO Solver and µ-Solver) first from a theoretical
perspective, and then from a practical point of view.

Theoretical aspects
Figure 1 illustrates the whole approach and each alternative
for performing the intersection test. Vertical arrows corre-
spond to translations which turn a given expression from
a source language into an equivalent expression in another
target language. The figure also summarizes the theoreti-
cal characteristics of each alternative regarding expressivity,
accuracy, and complexity.

Complexity NonElem. 2n EXPTIME

Expressiveness MSO MSO EFO+

Accuracy Exact Exact Approx.

Solver Mona µ-Solver Yices

Tree Logic MSO µ-calculus EFO+

Selection Query

XML Query XML Update

Targ∆

FO(Tree) XPaths EFO+(Trees)

MSO XPath → µ-Form. Interval Encoding

Figure 1: Independence Analysis Framework

The theoretical complexity of satisfiability on monadic
second order formulas is known to be non-elementary whereas
it is exponential for simplex based linear arithmetic satis-
fiability. The complexity of satisfiability on µ-formulas is
simple exponential 2n.

Reduction to Satisfiability modulo order theory requires
positive existential first order formulas to be translated into
constraints; which is not sufficient to represent negation in
qualifiers for example. Mondaic second order logic is equal
in expressiveness to µ-logic [9].

Practical aspects
We have implemented the destabilizer approach, in Java, to
evaluate intersection analysis using the µ-solver. We com-
pared our results with those obtained in [2]. The input to
the analysis method consists in an XQuery expression and
an XQuery Update Facility update.

The analyzer first transforms the update expression into
its corresponding target selection query using Targ method.
Then, it transforms queries into query destabilizers using
the function ∆v

∗ which is called on the query expression in
the case of a generic destabilizer (or ∪op(∆v

op) in the case
of an operation sensitive destabilizer where op is the set of
update operations detected in the input update expression).

Then all XPath expressions are extracted from the query
destabilizer and the update target query. Finally, they are
passed to the µ-solver that checks the satisfiability of the for-
mula QueryXPaths∧UpdateXPaths, where QueryXPaths
is the disjunction of the members of the set of XPaths ex-
tracted from query destabilizer and UpdateXPaths is the
disjunction of the members of the set of XPaths extracted
from the update target query.

For example, the following query Q and update U:

Q = for $x in $doc/C return <A>$x/D
U = delete $doc/A/B

are independent because none of the extracted path
expressions of value destabilizer of Q intersects with the
target XPath expressions of U. The following steps denote
the whole execution process:

1. The target query is executed on the update U: Targ∗
(delete $doc/A/B) = ($doc/A/B);

2. The Destabilizers rules are applied on the query Q:

∆v
∗(for $x in $doc/C return <A>$x/D)=

($doc, $doc/child::*), for $x in $doc/C

return ($x/desc-or-self::*, $x/child::*/desc-or-self::*)

3. XPath expressions are extracted from the target query and
the result is the set {/child::A/child::B}

4. XPath expressions are extracted from destabilizers and the
result is { /self::*, /child::*, /child::C, /child::C/desc-or-
self::*, /child::C/child::*/desc-or-self::* }

5. The two sets are passed to the µ-solver that indicates the
unsatisfiability.

On the opposite, Q and U’= delete $doc/C/D/E are not
independent because the XPath expression /C/D/E will in-
tersect with /C/D/descendant-or-self::*.

We used the exact same set of 20 Query examples of
XMark benchmark [16] used by Benedikt and Cheney in
their experiments, with the same necessary modifications
to fit in the supported query fragments. We automatically
generated 4 kinds of updates (rename, insert into, insert be-
fore, delete)1 on the 16 XPath queries (A1-A8, B1-B8) of
XPathMark [8].

We applied this analysis on all the combinations of queries
and updates and we compared the mean execution time of
the µ-solver with the results found in [2] for the Yices SMT
solver.

We used the version of the µ-solver implemented in Java
(using JavaBDDs) and shared with Benedikt and Cheney.
Experiments are carried out on a laptop with an Intel Pro-
cessor (3.0 GHz), with 2GB of memory.

Figure 2 compares the running times of the µ-Solver and
the SMT-solver. The running times of the SMT-solver (Yices)
are taken from [2]. The running times of the µ-solver care-
fully followed the method for calculating running times found
in [2]. Specifically, each update is tested for independence
using the generic analysis with the twenty queries of the
XMark benchmark and then the mean time is taken and the
results are grouped by the update.

Efficiency. Figures 2 and 3 show comparisons between
the execution times obtained with the µ-solver with those
obtained with the MONA solver and the Yices solver. [2]
finds that Yices is the most efficient in practice, MONA
follows and they do not give measurements for the µ-solver
whose performance was judged not attractive. Our measure-
ments prove that the µ-solver approach is far more efficient
in practice compared to Yices (and obviously to MONA).

An interesting finding was revealed when looking care-
fully at the time decomposition of the resolution process.
This process involves various aspects such as constructing
destabilizers, parsing formulas, initializing the BDD library,
and the actual resolution time within the solver. It turned
out that if we concentrate on the µ-solver time (see Fig-
ure 4), leaving aside the other costs, we observe that time
spent in the resolution procedure is negligible compared to
the overall figures presented in [2]. This gives a clear evi-
dence (somehow counter-intuitive compared to the conclu-
sions of [2]) that the dominant cost do not necessarily reside
in the resolution procedure. We believe that times spent in
the resolution procedure better reflect the intrinsic difficulty
of each problem instance.

1these four updates are sufficient to cover different destabi-
lizer rules

U
A

1

U
A

2

U
A

3

U
A

4

U
A

5

U
A

6

U
A

7

U
A

8

U
B

1

U
B

2

U
B

3

U
B

4

U
B

5

U
B

6

U
B

7

U
B

8

A
V

G

500

1,000
m

il
li
se

co
n
d
s

µ-Solver SMT-Solver

Figure 2: µ-solver vs. SMT-solver running times.

U
A

1

U
A

2

U
A

3

U
A

4

U
A

5

U
A

6

U
A

7

U
A

8

U
B

1

U
B

2

U
B

3

U
B

4

U
B

5

U
B

6

U
B

7

U
B

8

A
V

G

103

104

m
il
li
se

co
n
d
s

µ-Solver MONA

Figure 3: µ-solver vs. MONA running times [loga-
rithmic scale].

Accuracy. Both MONA and the µ-solver approaches can
determine exactly whether two selection queries overlap (be-
cause they both have the expressivity of MSO, notably en-
compassing First-Order logic, FO) whereas Positive Exis-
tential First-Order logic (EFO+) can return false negatives
(since EFO+ is strictly less expressive than FO and thus
obviously strictly less expressive than MSO).

Providing MSO expressivity is an unquestionable advan-
tage as this allows capturing regular tree languages (XML
schema languages) for which FO expressivity is insufficient.

5. RELATED WORK
The notion of destabilizers introduced by Benedikt and

Cheney [2] was partly inspired by previous works on XML
projection [4], where the goal is to identify nodes that can
be deleted without modifying the result of a query (this cor-
responds to independence problems involving deletion only).
As noticed in [2], prior techniques either required a schema
[1, 4] or apply only to downward fragments of XPath. [13]
proposes a conservative analysis for an XML update lan-
guage and a theorem that can be used to identify commuting
expressions. However a different update language proposal
is considered and independence is not addressed.

6. CONCLUSION
We have revisited the XML query-update independence

analysis problem by exploring in depth the approach based
on the µ-solver. For that purpose, we have reimplemented a
destabilizer’s framework for evaluating the relevance of this
approach which was neglected in previous studies. We show
that performance can be drastically enhanced using the µ-
solver based approach. Surprisingly, our results show that
the best performing approach in practice does not require
any loss of precision. This questions systematic search for
trade-offs between expressivity and precision.

U
A

1

U
A

2

U
A

3

U
A

4

U
A

5

U
A

6

U
A

7

U
A

8

U
B

1

U
B

2

U
B

3

U
B

4

U
B

5

U
B

6

U
B

7

U
B

8

A
V

G

0

200

400

600

m
il
li
se

co
n
d
s

µ-Solver

Figure 4: Actual resolution times for the µ-Solver.

7. REFERENCES
[1] Michael Benedikt and James Cheney. Schema-based

independence analysis for XML updates. Proc. VLDB
Endow., 2(1):61–72, August 2009.

[2] Michael Benedikt and James Cheney. Destabilizers
and independence of XML updates. Proc. VLDB
Endow., 3(1-2):906–917, September 2010.

[3] Michael Benedikt and Christoph Koch. From XQuery
to relational logics. TODS, 34(4):25:1–25:48, 2009.

[4] Véronique Benzaken, Giuseppe Castagna, Dario
Colazzo, and Kim Nguyên. Type-based XML
projection. In VLDB’06, pages 271–282, 2006.

[5] Don Chamberlin, Daniela Florescu, and Jonathan
Robie. XQuery Update Facility. W3C WD, 2006.

[6] David Dehaan, David Toman, Mariano P. Consens,
and M. Tamer Özsu. A comprehensive XQuery to SQL
translation using dynamic interval encoding, 2003.

[7] Bruno Dutertre and Leonardo De Moura. The Yices
SMT solver. Technical report, 2006.

[8] Massimo Franceschet. XPathMark: an XPath
benchmark for the XMark generated data. In
XSym’05.

[9] Pierre Genevès. Logics for XML. PhD thesis, Institut
National Polytechnique de Grenoble, December 2006.

[10] Pierre Genevès and Nabil Layäıda. Deciding XPath
containment with MSO. Data Knowl. Eng.,
63(1):108–136, October 2007.

[11] Pierre Genevès and Nabil Layäıda. XML reasoning
solver user manual. R. Report 6726, INRIA, 2008.

[12] Pierre Genevès, Nabil Layäıda, and Alan Schmitt.
Efficient static analysis of XML paths and types. In
PLDI ’07, pages 342–351, 2007.

[13] Giorgio Ghelli, Kristoffer Rose, and Jérôme Siméon.
Commutativity analysis for XML updates. ACM
TODS, 33(4):29:1–29:47, December 2008.

[14] Beda Christoph Hammerschmidt, Martin Kempa, and
Volker Linnemann. On the intersection of XPath
expressions. In IDEAS’05, pages 49–57, 2005.

[15] Nils Klarlund and Anders Møller. MONA Version 1.4
User Manual. BRICS, January 2001.

[16] Albrecht Schmidt, Florian Waas, Martin Kersten,
Michael J. Carey, Ioana Manolescu, and Ralph Busse.
XMark: a benchmark for XML data management. In
VLDB’02, pages 974–985, 2002.

[17] Sergei G. Vorobyov. An improved lower bound for the
elementary theories of trees. In CADE, pages 275–287,
1996.

	Introduction
	XML Query-Update Analysis
	Intersection Testing
	Comparative Study
	Related Work
	Conclusion
	References

