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Abstract. We present a new method to extract multiple segmentations
of an object viewed by multiple cameras, given only the camera cal-
ibration. We introduce the n-tuple color model to express inter-view
consistency when inferring in each view the foreground and background
color models permitting the final segmentation. A color n-tuple is a set
of pixel colors associated to the n projections of a 3D point. The first
goal is set as finding the MAP estimate of background/foreground color
models based on an arbitrary sample set of such n-tuples, such that sam-
ples are consistently classified, in a soft way, as ”empty” if they project
in the background of at least one view, or ”occupied” if they project to
foreground pixels in all views. An Expectation Maximization framework
is then used to alternate between color models and soft classifications.
In a final step, all views are segmented based on their attached color
models. The approach is significantly simpler and faster than previous
multi-view segmentation methods, while providing results of equivalent
or better quality.

1 Introduction

Segmenting foreground objects in images is an important topic in computer vi-
sion with numerous applications in scene analysis and reconstruction. The prob-
lem has been extensively addressed in the monocular case, and in the multi-
ocular case with controlled environments. Multi-view segmentation with general
environments is however still a largely unsolved problem, despite the growing
interest for multi-view systems and the potential of using multi-ocular cues in
the segmentation process. In the monocular case, the segmentation is inherently
ambiguous and requires a priori information, usually on the color model of the
background or the foreground. Such information can come, for instance, from
user inputs [1] or previous frames in a temporal sequence [2]. Intuitively, adding
viewpoints should alleviate the need for prior knowledge, while still allowing im-
provement over monocular segmentation. This potential is still largely untapped,
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Fig. 1. Multi-view segmentation of foreground object with proposed method, using
only minimal inter-view consistency assumptions and without resorting to 3D recon-
struction.

in fact most multiple camera applications still rely on per-view segmentation,
e.g. background subtraction, or on strong prior knowledge on the foreground,
e.g. shape models.

Without prior information, the weakest inter-view assumption is the fact that
consistent 2D foreground regions should define a single 3D region. Foreground
is then defined as the spatially consistent region that has a color different from
background and that appears entirely in all the views. A key difficulty in de-
signing a multi-view segmentation algorithm is in how to enforce this inter-view
consistency without sacrificing the simplicity of the approach. Indeed, we argue
that the simplicity and efficiency is essential to the relevance and usability of
the approach, as it is intended to be a pre-processing step to other algorithms
further down in the analysis chain. While a small number of approaches exist
specifically addressing the multi-view segmentation problem [3, 4], they usually
involve quite complex pipelines. A number of methods [5–8] address multi-view
silhouette extraction jointly with 3D reconstruction, relying on costly estimation
of dense 3D representations, which we show to be unnecessary.

In this paper, we formalize the problem of inferring foreground/background
color models, from which segmentation in each view is then readily obtained
with classic tools, as a single, statistically sound model. By reasoning on the
color n-tuple of an arbitrary 3D scene point, regardless of its actual position,
we are able to formulate a simple generative model, which encodes the essential
behavior of multi-view formation relevant to our segmentation goal. Contrary
to existing approaches, we do not reason on dense 3D reconstructions, or voxel
positions, but directly on an arbitrary sample set of such color n-tuples, induc-
ing a drastic simplification with respect to previous models. The segmentation
consequently translates into a simple EM algorithm, estimating per-view fore-
ground/background color distributions and sample soft classifications consistent
with our model.
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2 Previous Work

Monocular Segmentation. Many approaches exist to monocular foreground /
background segmentation. Low level background subtraction techniques reason
at a per-pixel level, assuming a fixed or constant-color background has been ob-
served with little corruption by foreground objects [9]. A number of such tech-
niques also account for temporal changes of the background [10, 2]. The main
advantage of these methods is computational efficiency, however the associated
assumptions about background are often too strong to deal with general environ-
ments. More recent monocular techniques partially address this issue by formu-
lating foreground extraction based on initial [11], or iteratively re-estimated [1]
appearances of background and foreground, enforce spatial smoothness of the
segmentations, using e.g. graph cuts. A drawback is in the semi-automatic nature
of these algorithms, relying on manual input to distinguish foreground objects
from the background.

Joint 2D and 3D Segmentation. A number of approaches treat multi-view sil-
houette extraction and 3D reconstruction simultaneously. We distinguish two
sub-categories of methods here. The first category addresses primarily the 3D
segmentation problem, treating silhouettes as noisy inputs from which to ex-
tract the best representation. A common feature we identify in this category
is that they do not update and optimize per-view color models for foreground
and background appearance. Solutions are found with well established conver-
gence properties, e.g, using graph cuts [12], probabilistic frameworks [13], or
convex minimization [5]. It is argued that consistent silhouettes are obtained as
a by-product, generally by reprojecting the 3D reconstructions.

A second sub-category treats the joint 2D-3D problem include updates of
color models for foreground and background [6–8]. This usually translates in
a costly 3-stage pipeline, iteratively alternating between color models, image
segmentations, and dense 3D visual hull representation. All resort to a form of
conservative and costly binary decision of visual hull occupancy or 2D segmenta-
tion, e.g., using graph cuts in the volume [6], which we show to be unnecessary.
Furthermore convergence properties of these pipelines are difficult to establish.
In this paper, we demonstrate that multi-view silhouette segmentation can be
obtained without a dense 3D reconstruction and therefore with the benefit of
drastically reducing the complexity. Also, we show that our model is able to
include color model updates while still keeping good convergence properties of
EM, and using an automatic initialization. We compare our method with one of
the most recent and successful Joint 2D/3D approaches [5].

Multi-view segmentation. The problem of multi-view foreground segmentation
has only recently been addressed as a stand-alone topic, and few approaches
exist. An initial work by Zeng et al. [3] identified the problem as finding a
set of image segmentations consistent with a visual hull, and proposes an al-
gorithm based on geometric elimination of superpixel regions, initialized to an
over-segmentation of the silhouette. This deterministic solution proves of limited
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robustness to inconsistently classified regions and still relies on an explicit 3D
model.

Some more recent approaches try to address the problem primarily in 2D
using more robust, implicit visual hull representations, e.g., Lee et al. [4] give
a probabilistic model of silhouette contributions to other images of pixels over
their viewing lines, and alternatively update all views. A similar stance is taken
by Sarim et al. [14], which infers segmentation as tri-maps by propagating in-
formation along epipolar bands. The proposed pipelines are still quite complex
and fall just short of solving the 3D reconstruction itself. Convergence properties
of these methods are hard to establish. [4] appears to be biased toward avoid-
ing any under-segmentations to avoid irrevocably losing silhouette information,
using conservative parameters / thresholds leading to slower convergence. We
exhibit a new approach avoiding these defects using a 2D / 3D compromise,
avoiding complete dense representations, while encoding the exact specificities
of the multi-view segmentation problem.

3 Principle

Our purpose is to perform the foreground/background segmentation of a scene
from n views obtained from a calibrated and synchronized camera setup. The
regions that do not appear in the common field of view of all the cameras are
considered background. Among the remaining parts of the scene, we define as
foreground the regions of 3D space whose observed color distributions in the
views differ from their background counterparts. The per-view color distributions
of foreground and background are estimated following an approach similar to
state-of-art single-view bilayer segmentation methods [1, 15]. We add an extra
mechanism to foster the inter-view consistency of the segmentation. In contrast
to most existing methods, we do not rely for this on an explicit dense geometry
estimation of the 3D foreground regions. Instead, sparse 3D samples are used to
accumulate and propagate foreground and background labels between views.

The key idea we propose to implement inter-image coherence is to consider
color tuples (I1, · · · , In) of the image set, taken at the respective image pro-
jections of a 3D sample point (see Fig. 2(a)). The intuition of the associated
generative model is as follows. If a sample is from the foreground object, then
all corresponding tuple colors should simultaneously be predicted from the fore-
ground color model in their respective image. Conversely, if the sample is not
from the foreground object, then there exists an image where the corresponding
color of the sample should be predicted from the background color model in
that image, all other colors of the sample being indifferent in that case. We thus
assign each sample a classification variable ks, with values in the state space
K = {f,b1, · · · ,bn}, where f is the foreground state, and bi are the background
states.

Importantly, once colors are assigned to 3D samples, all the reasoning is on
the color tuples themselves. This is reassuringly analogous to many monocular
segmentation algorithms, which classify pixels primarily according to their color.



N-tuple Color Segmentation for Multi-View Silhouette Extraction 5

(a) N-tuple sampling

Input 
images

E Step
samples

classification

Final
segmentation

M Step
color models

update

Iterate until convergence

(b) Main Steps

Fig. 2. Method overview: (a) Samples are represented as spheres in 3D for viewing
purposes. The blue sample is labeled as foreground, projecting in all foreground regions
in the images. The red sample is labeled background because two cameras classify this
sample as background. (b) Algorithm outline. The approach iterates between sample
classification and color models update. A final foreground/background segmentation
in the images is performed to transfer sparse sample classifications to dense pixels.

Furthermore, the 3D sample population is only supposed to well represent the
variety of color co-occurences in 3D, not to densely sample the geometry in this
space. This again differs from traditional approaches where unnecessary and
complex geometric estimation interfere with color distribution estimation. The
generative model and its iterative estimation are detailed in the following.

4 Modeling

4.1 Generative Model

Let S be the selected 3D sample set. The color n-tuple associated to the sample
s ∈ S is (I1s , · · · , Ins ) and ks ∈ K is its classification label. We introduce a set of
mixing coefficients πk, representing the proportion of samples explained by each
hypothesis in K, to be learned by the model. We note Θci the parameters of the
color distributions (background and foreground) associated with image i. The
generative model is shown in Fig. 3, where each sample’s color tuple is predicted
according to its classification label ks with priors πk, and the global color models
Θci . Interestingly, the model can be viewed as treating the multi-view n-tuple
segmentation problem as a mixture of foreground-background models.

4.2 Color Models

A number of color models can be used for Θci ’s, such as Gaussian Mixture Mod-
els [10]. We denote by Ri the region of interest in image i that is assumed to
contain all foreground parts. Ri can be computed automatically from the com-
mon field of views of the cameras, but could also be initialized more tightly on the
foreground from user inputs. Drawing from recent monocular methods [15], we
choose to represent distributions with histograms, to express the complementary
nature of foreground and background distributions in the image. We use a sim-
pler variant of the original idea, by noting that the number of occurrences in each
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Fig. 3. Generative model : Iis, the color
of the projection in the image i of the
sample s, relates color models Θc

i ac-
cording to its labeling ks. πk is the mix-
ture coefficient.

Fig. 4. The various color histograms,
given an automatically selected region
Ri that includes all foreground pixels in
image i : HExt

i for known background
region (Rc

i ), Hi for background pixels
inside Ri and Hi for foreground pixels.

bin of the background histograms (noted Hi) and foreground histograms (noted
Hi) of the region Ri sum to the number of bin occurrences of the whole region’s
histogram (noted HInt

i ). This enables to express bins of Hi as the difference
between bins in HInt

i and Hi (see Fig. 4). Both the foreground and background
color models are thus fully parametrized by Hi, i.e., Θc = {Hi}i∈{1,··· ,n} , since
HInt
i is given and fixed. Also, the complementary of region Ri in the image is

initially identified as background, yielding a per-image histogram HExt
i . Such re-

gions can be obtained automatically, typically by considering the projections in
each image of the common visibility domain of all cameras, under the previously
stated assumption that foreground objects are in this domain. To constrain Hi

during initialization and convergence, we express that pixels of the outer region
Rci , should also be well explained by Hi, leading to a prior term over Hi.

4.3 Joint Probability Distribution

Given the model, our goal is to find the parameters that maximize the a posteriori
density given the observations. Noting K = {ks}s∈S , I = {Isi }s∈S,i∈{1,··· ,n},
Θc = {Θci }i∈{1,··· ,n} and π = {πk}k∈K, the joint probability factorizes over
samples s:

p(Θc, I, π,K) = p(Θc)p(π)
∏
s∈S

p(ks, I
1
s , ..., I

n
s |Θc, π), (1)

where p(π) is uniform and will be ignored in the following steps. From Fig. 3,
for a given sample s we have

p(ks, I
1
s , ..., I

n
s |Θc, π) =

[ n∏
i

p(Iis|Θci , ks)
]
p(ks|π). (2)

If a sample is classified as foreground, then all colors from the corresponding
tuple should be drawn from the foreground color model. But if a sample is
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classified as background for the view i (label bi) then the i-th color of the tuple
should be predicted from the background color model in image i, and all other
colors are indifferent, which we model as simply being drawn from the full image
distribution:

p(Iis|Θci , ks) =


Hi(I

i
s) if ks = bi,

Hi(I
i
s) if ks = f,

HInt
i (Iis) otherwise(ks = bjwithj 6= i).

(3)

This is really where the per view samples classification is performed. A sample
satisfying background color model for a particular view i doesn’t need to be
checked against other color models in other views. It just needs to be likely
under image histogram HInt.

The term p(ks|πks) represents the mixture proportion prior

p(ks|πks) = πks . (4)

4.4 Prior From Known Background Pixels

We wish to enforce similarity between the distribution of background pixels and
colors in the outer background region Rci . We model this by defining the prior
over Θc as follows:

p(Θc) =
∏
i

∏
p∈Rc

i

Hi(I
i
p). (5)

A set of given histogram parameters Hi is thus more likely if it explains known
background pixels.

5 Estimation Algorithm

As the problem translates to a MAP estimation with latent variables, we use
an Expectation Maximization algorithm. EM is an iterative process, which al-
ternates between the posterior over classification variables given the current
parameter estimate Φg (E-step), and estimating the new set of parameters Φ
maximizing the expected log-posterior under the previously evaluated probabil-
ities (M-step). In our case Φ = {Θc, π}. We build the E- and M-steps using
the generically defined EM Q-functional, with established convergence proper-
ties [16]:

Q(Φ,Φg) =
∑
K

log(p(I,K, Φ))p(K|I, Φg) (6)

Q(Φ,Φg) =
∑
K

log(
∏
s
p(ks, I

1
s , ..., I

n
s |Φ))

∏
s′
p(ks′|I1s′, ..., Ins′, Φg) +

∑
i

∑
p∈Rc

i

log(Hi(I
i
p)).

(7)
Simplifying this equation gives

Q(Φ,Φg) =
∑
s

∑
k∈K

log

(
p(ks = k, I1s , ..., I

n
s |Φ)

)
p(ks = k|I1s , ..., Ins , Φg)

+
∑
i

∑
p∈Rc

i

log(Hi(I
i
p)).

(8)

And the new set of parameters are Φ = arg maxΦQ(Φ,Φg).
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5.1 Expectation Step

In the Expectation step, we compute for each sample s the probability of its
classification hypothesis ks:

∀k ∈ K, p(ks = k|I1s , ..., Ins , Φg) =

πgk

[
n∏
i

p(Iis|Θ
g,c
i , ks = k)

]
∑
z
πgz

[
n∏
i

p(Iis|Θ
g,c
i , ks = z)

] . (noted pks)

(9)

5.2 Maximization Step

In this step, we find the new set of parameters Φ that maximizes the Q-function.
We can write this function as the sum of independent terms:

Q(Φ,Φg) =
∑
s,k

pks log πk +
∑
i

[∑
s,k

pks log(p(Iis|Θci , ks = k)) +
∑
p∈Rc

i

log(Hi(I
i
p))

]
.

(10)
Each term can be maximized independently. For πk:

πk =
1

N

∑
s

pks ( N number of samples) (11)

Maximizing the view related terms is equivalent to maximizing

Ai(Hi) =
∑
s

[
pbi
s log(Hi(I

i
s)) + pfs log(Hi(I

i
s))

]
+
∑
p∈Rc

i

log(Hi(I
i
p)). (12)

where we ignore the bj labels (j 6= i) because they are related to the constant
model HInt

i . Let b be a particular bin in the color space. We note by Hb the
number of occurrences in b for the histogram H. We can then write Ai(Hi) as a
sum of independent terms, each one related to a different bin of the color space:

Ai(Hi) =
∑
b

[ ∑
s∈S
Iis∈b

[
pbi
s log(

Hi,b

|Hi|L1
) + pfs log(

HInt
i,b−Hi,b

|HInt
i −Hi|L1

)
]

+
∑

Iip∈R
c
i

Iip∈b

log(
HExt

i,b

|HExt
i |L1

)

]
,

(13)
It can be shown that optimizing this quantity is equivalent to updating bin

values as follows:

Hi,b =

∑
s∈S,Iis∈b

pbi
s +HExt

i,b∑
s∈S,Iis∈b

(pbi
s + pfs) +HExt

i,b

HInt
i,b . (14)
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6 Final segmentation

The EM scheme described in the previous section, will converge to an estimate
of the color models for each view and a classification probability table for each
sample. The samples would only yield a sparse image segmentation if their classi-
fications were crudely reprojected. This is why we use the obtained estimates to
build a final dense 2D segmentation, combining results of sample classifications
and color models. Note that this is only required after convergence in our ap-
proach, as opposed to being mandatory in the iteration with existing approaches.
Segmentation amounts then to find for each pixel p of the ith view, the correct
labeling lip (foreground or background) according to the models (figure 6).

While various strategies could be used, we propose to finalize segmentation
using a simple graph cut scheme similar to [11], minimizing a discrete energy:

E =
∑
p

Ed(l
i
p|Θs, Θci , xp, Iip) +

∑
{p,q}∈Ni

λEs(I
i
p, I

i
q). (15)

The data related term, Ed, at pixel p depends first, on how likely its color
is under color models obtained for image i. It also depends on how its spatial
position xp relates to projections in the image of the set of softly classified 3D
samples (Θs stands for the 3D samples’ positions and associated probabilities
{pks}s,k):

Ed(l
i
p|Θs, Θci , xp, Iip) = − log(p(xp|Θs, lip)p(Iip|Θci , lip)), (16)

– p(xp|Θs, lip) is proportional to a Gaussian around projections in the images of
samples labeled foreground with a high probability. This allows to smoothly
project inferred foreground information.

– p(Iip|Θci , lip) is based on foreground or background histograms previously ob-
tained:

p(Iip|Θci , lip) =

{
Hi(I

i
p) if lip = background,

Hi(I
i
p) if lip = foreground.

(17)

Es is the smoothness term over the set of neighbor pixels (N i). It can be any
energy that favors consistent labeling in homogeneous regions. In our implemen-
tation we use a simple inverse distance between neighbor pixels.

7 Experimental Results

In this section we present the experimental results we obtained using our ap-
proach in different situations. Experiments were done on synthetic and real cal-
ibrated multi-view datasets. We used 3D HSV color histograms, with 64 x 64 x
16 bins. In the initialization step, we are not making any assumption regarding
the foreground/background proportion in image histograms. This means that
background proportion in each bin of the image histogram is set to 0.5. To ini-
tialize the region of interest Ri, we use the common field of view but the method
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Fig. 5. Evolution of foreground samples
on real datasets: red dots indicate the
projection of the 3D samples from set S
that have a high probability to belong
to the foreground (pfs > 0.8)

Fig. 6. Relation between variables in the
final segmentation problem.

Fig. 7. Results with random sampling:
original samples position, foreground
samples and naive pixel classification af-
ter convergence.

is also entirely compatible with user inputs as it is shown in our experiments.
Experiments were performed on a 2.0 Ghz dual core PC with 2GB RAM, with
a sequential C++ implementation. Computation time is typically few seconds
per iteration, and convergence was reached in less than 10 iterations for all the
tests.

7.1 Space Sampling

Samples can be drawn from any relevant 3D point in space. In practice we
draw samples from the common visibility domain of all cameras. This defines
a bounding volume which is used to define regions Ri in each image i and find
a first set of background pixels. For our initial experiments, we used a regular
3D sampling, and obtained very fast convergence for a small number of samples
(503). More elaborate sampling schemes could be explored in future work, such as
coarse-to-fine or adaptive samplings, which would further accelerate convergence.
Fig. 5 illustrates the evolution of foreground sample classification probabilities
during iterations on two datasets.

To emphasize that our approach doesn’t need a regular sampling, we show
results on TUM dataset1 (Fig. 7) where we use a sparse random sampling (less
than 10 000 samples). This sampling was enough to converge to a correct estima-
tion of color models. In contrast, [5] on the same dataset and with the objective
of joint estimation of silhouettes and geometry were using voxel grids with 2003

or more voxels.

1 http://cvpr.in.tum.de/data/datasets/3dreconstruction
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7.2 Comparative Results

GrabCut We compare our segmentation results to a standard GrabCut segmen-
tation to show the advantage of using multiview approach. The different results
(Fig. 10 and Fig. 11) show typical GrabCut failure. In a monocular approach, it
is hard to eliminate background colors that were not present outside the bound-
ing box. In contrast, our approach benefits from the information of the other
views and provides a correct segmentation.

Multiview based approaches We compared our approach with others multiview
based methods like [4] and [5]. We used the publicly available kung-fu girl
dataset2 that was considered as challenging for [4]. The dataset consists of 25
calibrated views of a synthetic scene. We randomly selected 8 views for our ex-
periments. Our algorithm converges quickly to the correct estimation of the fore-
ground and produces near perfect segmentation after only 3 iterations (Fig. 8).
The efficiency of our approach on this dataset, can be explained by the usage
of 3D samples that allow to fuse all the information from the different views,
but also by our compact parametrization of background and complementary
foreground histograms.

Fig. 8. Convergence after three iterations on
the kung fu girl dataset.

Fig. 9. Results on TUM dataset: red stroke
indicates background region and green dots
are foreground samples. Last column is the
final segmentation.

Fig. 10. Segmentation on the
bust dataset: first row are input
images, second row are results
with grabCut and third row is
the final segmentation with our
method.

2 http://www.mpi-inf.mpg.de/departments/irg3/kungfu/
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We also tested our approach on the Bust multi view data set3 and the arts
martiaux datasets4. We selected the first dataset to give more comparison ele-
ments with Lee et al. [4] approach. The second dataset proves the ability of our
approach to handle multiple foreground objects.

One of the advantages of the proposed estimation algorithm, is the fact that
no hard decision is taken at any time. This means that samples once labeled as
background with high probability, can be relabeled foreground during conver-
gence if this is consistent in all the views, illustrating the increased stability with
respect to existing approaches. An example of this can be observed on most of
our experimental results (Fig. 11).

We also compare our approach with the approach proposed in [5]. In their
approach, the main goal is the 3D reconstruction of the object. They use a
bounding box around the object and user interaction in the form of two or three
strokes in a given view, to have an initialization for foreground and background
color models. Although our method proposes an automatic initialization we can
also incorporate this type of prior. Typically with our method, one stroke in a
single view is sufficient to propagate information to other views. For this dataset
only two iterations were needed to convergence toward results identical to [5].
We obtain successful results using 403 samples (Fig. 9) and as low as 10 000
samples (Fig. 7).

Input images Iteration 1 iteration 2 final segmentation grabCut

Fig. 11. Segmentation on Art martiaux dataset.

7.3 Results On Outdoor Datasets

We also tested our approach on challenging outdoor datasets5 consisting in 4
views of a person in an urban environment. The method shows encouraging

3 http://www.cs.ust.hk/ quan/WebPami/pami.html
4 http://4drepository.inrialpes.fr/
5 http://www.tnt.uni-hannover.de/papers/data/901/hb.tar.gz
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results (Fig. 13), despite ambiguities in the color models of the foreground and
background objects. Note again the model’s ability to include the upper body
after an initial background over-segmentation.

7.4 Convergence Rate

We illustrate the substantial convergence improvement by comparing to a state
of the art method, Lee et al. [4] method (Fig. 12). Convergence is reached in a
few seconds and fewer iterations, where [4] is mentioned to take several minutes.
Although [4] does not indicate more specific times, the updates in their method
(per-view per-pixel per epipolar line pixels in every other view) are more complex
than ours, dominated by the E-step update of complexity O(|S|n2)).

Regarding other comparable methods, [5] uses a fully optimized GPU im-
plementation yielding per-iteration runtimes similar to our unoptimized CPU
implementation. Note that our method could very easily be GPU optimized
(embarrassingly parallel E- and M-steps) to achieve much higher speeds.

Fig. 12. Comparative convergence
results with Lee et al. [4] approach
on Bust and kungfu girl datasets.

Fig. 13. Results on outdoor multi view
dataset: convergence of samples labeling
and image segmentation as final step.

8 Discussion and Future Directions

In this paper we have proposed a new simple and efficient approach to the multi-
view segmentation problem. Experimental results suggest that our probabilistic
formulation offers important convergence advantages over state of the art meth-
ods, and first experiments on outdoor sequences show promising results. Failure
cases have been observed with configurations where the background and fore-
ground color distributions are similar, a limitation common to methods charac-
terizing regions using only color distributions. More discriminative models could
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be used to improve the model in the future. Our method is successful using
simple schemes for n-tuple sampling (regular grid, or random location in the
region of common visibility), although thin objects (e.g. the subject’s arms) can
be missed if sampling is inadequate. More advanced sampling schemes could be
proposed to yield more efficient and precise sampling.

Still, the method is largely successful, confirming previous findings and intu-
itions that useful segmentation can be obtained using only geometric, inter-view
cues. This challenges the usual perception that only strong object priors can lead
to perfect segmentations. While this may be true in the monocular domain, our
work hints toward the possibility that multi-view cues, combined with a minimal
number of additional weak cues, may prove sufficient to eliminate segmentation
ambiguity for multi-camera setups.
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