
HAL Id: hal-00725878
https://hal.inria.fr/hal-00725878v2

Submitted on 27 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Refining cellular automata with routing constraints
Jean-Vivien Millo, Robert de Simone

To cite this version:
Jean-Vivien Millo, Robert de Simone. Refining cellular automata with routing constraints. [Research
Report] RR-8051, INRIA. 2012, pp.15. �hal-00725878v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49862133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00725878v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
80

51
--

FR
+E

N
G

RESEARCH
REPORT
N° 8051
August 2012

Project-Teams AOSTE

Refining cellular
automata with routing
constraints
Jean-Vivien Millo, Robert de Simone

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Refining cellular automata with routing
constraints

Jean-Vivien Millo, Robert de Simone

Project-Teams AOSTE

Research Report n° 8051 — August 2012 — 12 pages

Abstract: A cellular automaton (CA) is an infinite array of cells, each containing the same
automaton. The dynamics of a CA is distributed over the cells where each computes its next state
as a function of the previous states of its neighborhood. Thus, the transmission of such states
between neighbors is considered as feasible directly, in no time.
When considering the implementation of a cellular automaton on a many-cores System-on-Chip
(SoC), this state transmission is no longer abstract and instantaneous, but has to follow the
interconnection medium of the SoC. It is usually a grid or a mesh matching the underlying topology
of the CA but finite. In order to consider such constraints at a higher level, we propose a refinement
of the classical model of CA where the topology is considered as the communication medium.
If the state of a cell depends on its neighbors up to a certain distance, then a given state must be
broadcasted to all its neighbors at the same distance, as they all require it to compute their next
state. It means routing and duplicating the state in the topology. We study the routing patterns
needed to efficiently implement such state broadcasting algorithm. We provide a solution by which
each router can locally predict where to redirect the states to correctly and efficiently implement
this broadcasting algorithm.

Key-words: Cellular Automata, Synchronous, Refinement, Routing

Refining cellular automata with routing constraints
Résumé : Un automate cellulaire (AC) est un tableau infini de cellules, chacune contenant
le même automate. La dynamique d’un AC est distribuée entre les cellules, chacune calcule son
prochain état comme une fonction des états de ses voisins. Donc, la transmission d’un état entre
deux cellules est donc considérée comme faisable directement et instantanément.

Quand on s’intéresse à l’implémentation d’un AC sur un système sur puce à plusieurs cores,
on ne peut plus considérer la transmission d’un état comme une action abstraite et instantanée.
Cette transmission doit suivre le medium d’interconnexion du système sur puce. Ce dernier est
habituellement une grille ou un mesh (grille dans laquelle les extrémités opposées sont connectées)
correspondant à la topologie logique de l’AC mais finie. Afin de prendre en compte la notion de
medium d’interconnexion à un niveau d’abstraction supérieur, par rapport à l’implémentation,
nous proposons un raffinement du modèle classique des AC dans lequel la topologie est considérée
comme le medium d’interconnexion.

Si l’état d’une cellule dépend de son entourage jusqu’à une certaine distance, alors cet état
doit être diffusé à tous les voisins jusqu’à cette même distance puis ce que chacun d’eux en a
besoin pour calculer son nouvel état. Cela signifie router et diffuser l’état en question dans la
topologie. Nous étudions le schéma de routage nécessaire pour mettre en oeuvre efficacement
cet algorithme de diffusion d’état. Dans cette solution, chaque router peut localement prédire
où envoyer les états en transit afin de garantir la justesse de l’algorithme.

Mots-clés : Automate Cellulaire, Synchrone, Raffinement, Routage

Refining cellular automata with routing constraints 3

1 Introduction
A cellular automaton (CA) is a multidimensional infinite array of cells, each containing an iden-
tical automaton. The dynamics of a CA is based on the fact that each automaton synchronously
computes its next state depending on its current one as well as the current states of a selected
set of neighbors.

Communications (and communication feasibility) is not a real concern in the modeling frame-
work. One supposes that instantaneous pointwise communication is available between any two
cells in such neighborhood on demand. We shall challenge this assumption here and consider a
refinement where communications have to be routed according to an interconnection topology.
In the case of CA, a natural interconnection topology consists of the underlying topology of the
CA itself. As far as we know, there is no existing work in that direction.

The coupling of a model of computation with communication constraints is commonplace
in modern computer science. In the case of CA, it allows to consider efficient implementations
on multi-processors Systems-on-Chip (MP-SoC) equipped with aspecific mesh interconnection
structure such as a Network-on-Chip (NoC). We consider here CA that can be seen as the
infinite unfolding of a spatial periodic states structure. Such CA can be simulated/implemented
on a finite-size torus.

A given cell of the CA is thus subdivised into a router component and a computation cell that
contains the original automaton. While the computation cell is tightly linked to its local router
(by dedicated input/output links), the router is used to 1) inject a datum (which represent
the current state) from the computation cell into the network, 2) route the passing data, or
3) duplicate a datum from the network to the computation cell. For example, it pushes a datum
further north from a south port.

We shall here consider only the 2-dimensional case for sake of simplicity. We shall also consider
that the router has a multicasting capacity. For example, a datum from the computation cell
can be sent in many directions if it is relevant to several opposite locations.

Our present goal shall be to consider how static routing schemes can be defined and made up
for frequently encountered communication patterns in CA dynamics. We shall in particular use
the example of cells requiring all previous states from their Moore neighborhood of radius n or
less (||~d||∞ ≤ n where d is the offset vector of the neighbor). Many applications such as the game
of life [4], the class of stencil applications [3], or the Jacobi numerical method [7] match with
this neighborhood dependency scheme. One can then hope to discover regular patterns through
which global communication behavior can be exposed, while the various data flows combine
harmoniously into global traffic.

We will study the case where at some point in time, every cell sends synchronously its cur-
rent local state (as a datum) on the network. This case can be seen as the worst communication
case where the network is saturated. We propose the Neighborhood Broadcasting Algorithm
(NBA) to resolve the situation and we study its behavior. Our analysis focuses on two aspects:
1) Performance analysis: the timing estimation of the NBA execution and the size of the inter-
connection channels (between routers) required to ensure conservation of data. 2) the discovery
of regular routing patterns toward the goal of expressing the propagation rule (routing directives
in the routers) statically once for all the routers and once for all iterations.

2 Cellular automata model
The basic definitions related to CA are imported from Jarkko Kari survey [6]. For instance, we
consider synchronous CA and the underlying topology is an infinite rectangular grid of dimension
d. Each cell has the same finite set of state S. The configuration of the automaton is a mapping

RR n° 8051

4 Millo & de Simone

c : Zd → S where each cell is identified by d coordinates. The evolution of a CA occurs
synchronously on discrete time steps. All cells are updated simultaneously.

Let ca and cb be two cells of the CA identified by their vector of coordinates respectively ~ca and
~cb (in the sequel, when it is clear from context, ~c will be used instead of c). Let ~x = (x1, x2, ..., xd)
be the difference between ~ca and ~cb (~x = ~ca − ~cb).

The distance relative to the ith dimension (or coordinate) is |xi| which is the value of the
vector ~x at the index i.

The Manhattan distance (or norm) between ~ca and ~cb is denoted ||~x||1 and is equals to

||~x||1 = |x1|+ |x2|+ · · ·+ |xd|

The Moore distance (or norm) between ~ca and ~cb is denoted ||~x||∞ and is equals to

||~x||∞ = max(|x1|, |x2|, · · · , |xd|)

We define the neighborhood of a cell based on the Moore distance. Nn(c) is the neighborhood
of the cell c up to a radius n (c is in its own neighborhood).

Nn(c) = {ca such that ||~c− ~ca||∞ ≤ n}

2.1 Cellular automata with routing management
We shall now consider that the transmission of a datum between cells is not instantaneous
anymore. When a cell sends a datum (that represents its current state) to one of its neighbors,
the datum has to travel through the underlying topology and is subject to travel durations,
channel capacity limitations, and routing decisions.

In the classical model of CA, when the global clock ticks, 1) every cell sends simultaneously
a datum on the network, and so every cell receives data from its neighborhood. 2) every cell
computes its new state according to the update rule. Step 1 is not instantaneous, it requires
many micro-steps into which every datum is propagated to all its neighbors in Nn(c). It takes
at least n instants to go at a Manhattan distance n. When many data travel on the same branch
of the network, they are queued in FIFO channels and processed one-by-one. Thus the global
clock is refined in a communication clock where every step of the global clock corresponds to a
finite sequence of micro-steps.

In order to manage the communication, the cell is augmented with routing capacities. The
original finite state machine become the computation cell. It is complemented with a communi-
cation cell called “router" which interfaces the computation cell with the network. The router
and the computation cell are strongly connected through dedicated channels.

Each router has four connections per dimensions. It is connected through an input and an
output channels to the left and right (or up and down) neighbors. The generic behavior of a
router is presented in Algorithm 1. At each micro-step, the router consumes a datum on one of
its input channels and propagates it to one or many of its output channels (including the local
channel to the computation cell) according to an internal propagation rule. One could also define
a feeding rule to determine which input channels are considered micro-step after micro-step. It
is allowed to considered many input channels simultaneously but only if the propagation rule
guaranties that two data (or more) cannot be propagated on the same output channel at the
same micro-step. Lastly, when a datum is propagated by a router, it can be considered by the
direct neighbor only at the next micro-step. Propagation and feeding rules are data independent
similarly to a cell of a Kahn process network [5].

Figure 1 presents a 2-dimensional CA where each cell is divided in a computation cell plus a
router.

Inria

Refining cellular automata with routing constraints 5

Algorithm 1 describes the generic behavior of a router as a reactive process
while true do

in_ports = feeding_rule(){decide which ports to read}
for all in_port ∈ in_ports do
data = in_port.read()
destinations = propagation_rule(data){decide where to propagate data}
for all out_port ∈ destinations do
out_port.write(data)

end for
end for
pause{wait for the next micro-step}

end while

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Figure 1: A 2-dimensional CA with bidirectional channels.

3 Neighborhood Broadcasting Algorithm (NBA)

In the game of life [4], the state of a cell depends upon the previous states of its direct neigh-
borhood. However there is some applications such as the class of stencil computation [2] where
not only the direct neighborhood are concerned but also some indirect neighbours matching a
stencil. In the worst case, every cell needs to know the state of all its neighborhoods at a radius
n. This operation requires a consequent exchange of data which would generate congestions on
the network.

NBA is a 2-dimensional propagation algorithm to simultaneously send a datum from every
single cell to all their neighborhoods (up to a given radius). Thanks to the multicasting ability
of the routers, a single datum is emitted once by its source cell and then broadcasted to all the
other cells through the network. Informally, at the first micro-step, a router receives a datum on
its local port. The datum is cloned and propagated on every port. Then, at the next micro-steps,
the neighbours multicast the data straight, left, and to the local port so that after i micro-steps,
all the routers at a Manhattan distance i from the source receive the data. The propagation
edge forms a diamond shape as one can see on the first three pictures of Figure 2.

RR n° 8051

6 Millo & de Simone

1 2 3 4 5 6

Figure 2: The broadcasting pattern from a single node.

The path from a given source to a given destination always follows one coordinate direction
fully, then the other one. The data always turn left at this change of directions, i.e. counter-
clockwise. When a datum reaches a Manhattan distance n, the router that receives it sends it
to its local port and left but does not propagate the data straight further.

On the third picture of Figure 2, the top-most, bottom-most, left-most, and right-most routers
are at a Manhattan distance n(= 3) from the source. So on the fourth picture, the data are not
propagated straight but left.

As a result, the northbound data spawns duplicated data that travel West (left of North) to
reach all destination cells in the North-West quadrant. Similarly, the westbound data spawns
duplicated data to the South-West quadrant, and so on.

The last thing to notice is that data traffics originating from North and South (resp. from
East and West) never interfere in the same router. Northbound data only use up and leftward
channels, southbound ones the down and rightward channels instead. So data processing along
vertical directions (resp. horizontal) can be parallelized in the same micro-step. So the feeding
rule is to alternate vertical and horizontal input channels.

3.1 Router

NBA is distributed amongst routers. It consists in a set of routing directives (the propagation
rule) that every router follows. The resulting global behavior will be the one presented in Figure
2 but for every cell simultaneously.

Figure 3 presents the only four propagation patterns among all (modulo rotation) that are
used to realize the NBA. In these four patterns, the datum is sent to the local port. In B and
D, it is sent straight, lastly, in C and D it is multicasted on the left branch.

A B C D

Figure 3: The three data propagation patterns for the all-to-all propagation algorithm.

As we have seen, a datum first travels on a direction fully and then turn left and travel
on the secondary direction until the destination. When a datum has been emitted on vertical

Inria

Refining cellular automata with routing constraints 7

ports (resp. horizontal ports), the main direction/coordinate is x (resp. y) and the secondary
direction/coordinate is y (resp. x). The radius is denoted n.

The routing directives are the following:

1. At the first micro-step, a router broadcasts the datum from its local port in every direction,

2. At the even micro-steps, the North and South input ports are processed.
At the odd micro-steps, the East and West input ports are processed.

(a) If the data comes from a straight neighbour (the secondary coordinate equals 0) :

i. If the data comes from a distance n relative to the main direction, it follows
Pattern C of Figure 3.

ii. If the data comes from less than a distance n relative to the main direction, it
follows the Pattern D of Figure 3.

(b) If the data does not come from a straight neighbour :

i. If the data comes from a distance n relative to the secondary direction, it follows
the Pattern A of Figure 3.

ii. If the data comes from less than a distance n relative to the secondary direction,
it follows the Pattern B of Figure 3.

4 Running the NBA

4.1 Performance analysis

NBA has been designed to be as fast as possible. For a radius n, NBA execution takes 2∗n∗(n+1)
micro-steps to complete. Every port of every router is in charge of a quadrant of size n× n+ 1.
In Figure 2 the radius is 3 and the quadrant contains 12 cells. A port has to deal with one datum
from each cell of its quadrant, one at each micro-step. Since horizontal (East, West) ports are
sequential with vertical (North, South) ports, the completion time for a router is twice the time
than for a single port. Finally, every router acts and terminates simultaneously so the completion
time of a router is the one of the NBA.

The capacity of the interconnection channels are derived from the following behavioral anal-
ysis. A capacity n for every channel is required. At the ith stage of the execution, data from a
Manhattan distance i are in the input channel of the router (see below for details). When i = n,
the maximum is reached.

4.2 Step-by-step execution

Let us focus on the traffic generated at the input port of the routers while running NBA. First, it
appears that the data arrive in the order of their Manhattan distance from their source. However,
all the data with the same Manhattan distance does not come in the same order if we consider
the vertical ports or the horizontal ports.

The evolution of the traffic can be divided in stages. The ist stage starts when the input
channel of the studied port contains the data from a Manhattan distance i. The stage ends when
all these data have been routed. As a indirect consequence, the channel contains at the end of
the ist stage, the data from a Manhattan distance i+ 1 but nothing else. Figure 4 shows which
data are present in the channel at the beginning of each stage. Figure 4 focuses on the right top
corner of a neighborhood with a raduis 5 (N5(r)).

RR n° 8051

8 Millo & de Simone

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage 8

Stage 9

Stage 10

r
Figure 4: The origin of the data in input of the North port of a router r stages after stages.

At the first stage, every router broadcasts the datum from their local port in every direction.
Consequently, every router gets the data from its direct neighbours in each of its input port.

At the second stage, every router multicasts these data straight, left and to the local port
because they come from a straight neighbour. At the end of the second stage, every router gets
two data in each of its input port.

At the third stage, the first data in the channel has to be multicasted because it comes from
a straight neighbour but the second should not. So it generates three data in each input port.

At stage n (Step 5 in Figure 4), each router receives a data from a straight neighbour at a
Manhattan distance n. This data is propagated left but not straight. It correspond to the case
(2.-(a)-i.) of the routing directives (Section 3).

At stage n + 1 onward, each router receives some data coming from the neighbours at a
distance n relative to the main direction. These data are not propagated but only sent to the
local port. However, the routers also receive some data that have to be forwarded straight but
none of them is multicasted on the left any more.

In Figure 4, the six routers on the upper horizontal line are at a distance n from r relative
to the main direction. The left most one is a straight neighbour.

North(r) =

[(
0
1

) (
0
2

) (
1
1

) (
0
3

) (
1
2

) (
2
1

) (
0
4

) (
1
3

) (
2
2

) (
3
1

) (
0
5

) (
1
4

) (
2
3

) (
3
2

) (
4
1

)
(
1
5

) (
2
4

) (
3
3

) (
4
2

) (
5
1

) (
2
5

) (
3
4

) (
4
3

) (
5
2

) (
3
5

) (
4
4

) (
5
3

) (
4
5

) (
5
4

) (
5
5

)]

West(r) =

[(
0
1

) (
1
1

) (
0
2

) (
2
1

) (
1
2

) (
0
3

) (
3
1

) (
2
2

) (
1
3

) (
0
4

) (
4
1

) (
3
2

) (
2
3

) (
1
4

) (
0
5

)
(
5
1

) (
4
2

) (
3
3

) (
2
4

) (
1
5

) (
5
2

) (
4
3

) (
3
4

) (
2
5

) (
5
3

) (
4
4

) (
3
5

) (
5
4

) (
4
5

) (
5
5

)]

Table 1: North(r) and West(r) for a neighborhood of radius 5.

Formally, let n be the radius of the neighborhood and r be a router. We give to r the

coordinate
(
0
0

)
. The coordinates iterate positively toward resp. the North and East. Let

Inria

Refining cellular automata with routing constraints 9

North(r) be the ordered list of data going through the FIFO channel in input of the North port

of r. North(r) =

[(
x
y

)(
x′

y′

)
...

]
where

(
x
y

)
are the coordinates of the source of the first data

entered in the channel and
(
x′

y′

)
are the coordinates of the second. Initially, North(r) = [∅].

South(r), East(r), and West(r) are defined similarly to North(r). North(r) is given by Table
1.

South(r) is the same as North(r) except that the coordinates of the origins are the exact

opposite of the ones in North(r). Formally ∀
(
x
y

)
∈ North(r) at position i, ∃

(
−x
−y

)
∈ South(r)

at position i. East(r) can be computed from West(r) with the same transformation. Table 1
also presents West(r). Here we choose to put the main coordinate (i.e. y) on top to enhance the
similitude with North(r). For the same reason, the second value is −x instead of x.

The order of arrival of the data in West(r) inside a stage is the exact opposite of North(r).

For instance,
(
0
2

)
followed by

(
1
1

)
in the second and third position ofNorth(r) but

(
1
1

)
followed

by
(
0
2

)
in the second and third position of West(r). This order inversion occurs because the

feeding rule of the routers gives priority to the vertical ports at the expense of the horizontal
ones.

4.3 Static scheduling of router

Table 1 gives the status of the channel in input of a router step by step. Therefore, the behavior
of the routers is predictable and can be computed statically. The following algorithm generates
the sequence of Table 1 but for any radius n. A similar algorithm can be written for the other
ports of the router.

Algorithm 2 computes North(r) for any given router r and radius n
Input : a radius n.
Output : North(r) for any router r.
North(r) =
for sum from 1 to 2n do

for x from (sum <= n)?0 : sum− n to j < sum and j ≤ n do

North(r).append(

(
x

sum− x

)
)

end for
end for
return North(r)

From the sequence generated with Algorithm 2, the propagation rule can be symbolically
applied on any given ordered list of data such as North(r) and one can generate the sequence
of decisions that every router shall take to correctly route such data. Figure 5 gives the internal
crossbar of a router for a radius 5. The crossbar connects the inputs on the left side of the figure
to the outputs on the right side. The connections to the computation cell are at the bottom.

From left to right, the first demultiplexer says when a data has to be forwarded straight. The
sequence of decisions is given as a binary word. Concerning the data from the North, the first
tenth data are forwarded, the eleventh is not, and so on. The second demultiplexer says when

RR n° 8051

10 Millo & de Simone

a data should be forwarded left. Concerning the data from the West, the first one comes from
a straight neighbour and thus is forwarded. The second is not and the third is. See Table 1 to
match the complete sequence.

C
O

P
Y

C
O

P
Y

C
O

P
Y

C
O

P
Y

North

South

East

West

North

South

East

West

Local
cell

X 0
1

110014014013012010

X 0
1

1140140130120100

X 0
1

110014014013012010

X 0
1

1140140130120100

0
1

101021031041015

X

0
1

1101021031019

X

0
1

101021031041015

X

0
1

1101021031019

X

Figure 5: The internal crossbar of the router with the switching conditions.

5 Experimental results

We have implemented the NBA in SystemC [1]. Our implementation is composed of:

• a module Cell which implements the structure and the behavior of a computation cell.
Initially, it sends its state and then collects the states from the other cells in its neighbor-
hood. When it has got all the data, it computes its new state and, at the next micro-step,
re-sends its state.

• a module Router which implements the structure and the behavior of a router, namely the
NBA.

• a module CA which is a torus with a parametric size composed of cells (router + compu-
tation cell).

The propagation rule has been implemented in two ways. First, we have implemented the
dynamic routing directives given in Section 3. Secondly, these routing directives has been replaced
by the static patterns given in Figure 5. The overall behavior of the system is the same whatever
option has been selected.

This experiment consolidates the fact that the propagation rule for a given application can
be computed analytically upfront as static decisions and then inserted into the routers.

Inria

Refining cellular automata with routing constraints 11

Stencil applications We have also extended the experiments to the more general case of
stencil applications [2, 3]. Stencil applications are a class of distributed applications where the
new state of a cell depends of the current state of some of its neighbours. The map which says
which neighbours are concerned and which others are not is called a stencil. Stencil applications
are massively used in scientific computation.

In our implemetation, the stencil is given as a odd square matrix of booleans where the middle
entry represents the concerned node. The other entries represent its neighborhood. The boolean
says whether the state of the corresponding neighbor is required or not. Every router is aware
of the stencil and routes the data with respect to their origin.

We ran many case studies where each stencil is characterized by the number of neighbors it
involves and the moore distance to the farest neighbor. Table 2 relates the number of micro-steps
required to route all the data with respect to the different cases (The number of neighbors in
each stencil is noted N).

\ N = 4 N = 8 N = 16 N = 24 N = 32 N = 48

||~x||∞ ≤ 1 2 4 - - - -
||~x||∞ ≤ 2 4 4 12 16 - -
||~x||∞ ≤ 3 6 8 18 18 18 24

Table 2: Experimental results of routing duration for stencil applications

Again, whatever is the shape of the stencil, the dynamic routing conditions can be replaced
by static pattern which are the same in every router. Similarly to the NBA, a pattern represents
the sequence of decisions to route the data required for the current computation step. The next
computation step of the stencil application repeats the same behavior.

6 Conclusion
In the classical model of Cellular Automata (CA), the communications between cells are assumed
to be instantaneous. However if we consider the possible implementation of a 2-dimension CA on
a many-cores system-on-chip, the communications take time. In order to prepare such implemen-
tation, this paper has presented a refinement of the classical model of CA where the exchance
of data between cells is time-consuming. The focus is given on routing the data through the
communication topology.

Every step of the global clock (the one of the classical synchronous CA) is refined as a
sequence of micro-steps during which the data from each cell travels through the underlying
topology toward its destination. To ensure the routing of data, each cell is augmented with
routing capabilities and so is divided in the original computation cell plus a router.

In order to compute the next state of the cells when it depends upon all the neighboors
up to a Moore distance n, we have proposed the Neighborhood Broadcasting Algorithm (NBA)
to simultaneously broadcast the state of every cell to their respective neighborhoods. We have
studied the NBA and deducted that the propagation rules in every router can be expressed as
either dynamic on-line or static off-line decisions.

To go further in this scope, we would like to challenge some of the assumptions we took
initially. First, our approach is limited to CA that can be seen as infinite unfolding of a spatial
periodic state structure. Our approach considers that the size of a tile (a spatial periodic state
structure) is less or equals to the size of the the Network-on-Chip (NoC). However, NoC size are
often limited to 64 up to 128 nodes but tiles can be much bigger. By extention, we consider that
the physical topology (of the NoC) matches with the topology of the CA. One could consider

RR n° 8051

12 Millo & de Simone

the mapping of a n-dimension CA on a m dimension NoC. Lastly, we consider only synchronous
CA but one can consider the same challenge, routing data through the communication topology
in the asynchronous CA.

References
[1] Accellera. System c, March 2007. http://www.accellera.org/downloads/standards/systemc.

[2] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid
Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil computation optimiza-
tion and auto-tuning on state-of-the-art multicore architectures. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08, pages 4:1–4:12, Piscataway, NJ, USA,
2008. IEEE Press.

[3] Kaushik Datta, Samuel Williams, Vasily Volkov, Jonathan Carter, Leonid Oliker, John Shalf,
and Katherine Yelick. Auto-tuning the 27-point stencil for multicore. In In Proc. iWAPT2009:
The Fourth International Workshop on Automatic Performance Tuning, pages –, 2009.

[4] Martin Gardner. The fantastic combinations of john conway’s new solitaire game «life».
Scientific American, 223:120–123, 1970.

[5] Gilles Kahn. The semantics of a simple language for parallel programming. In Proceedings
of IFIP CONGRESS 74, pages 471–475. North-Holland publishing company, 1974.

[6] Jarkko Kari. Theory of cellular automata: A survey. Theoretical Computer Science, 334(1-
3):3 – 33, 2005.

[7] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes: The Art of
Scientific Computing. Cambridge University Press, third edition, 2007.

Contents
1 Introduction 3

2 Cellular automata model 3
2.1 Cellular automata with routing management . 4

3 Neighborhood Broadcasting Algorithm (NBA) 5
3.1 Router . 6

4 Running the NBA 7
4.1 Performance analysis . 7
4.2 Step-by-step execution . 7
4.3 Static scheduling of router . 9

5 Experimental results 10

6 Conclusion 11

Inria

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Cellular automata model
	Cellular automata with routing management

	Neighborhood Broadcasting Algorithm (NBA)
	Router

	Running the NBA
	Performance analysis
	Step-by-step execution
	Static scheduling of router

	Experimental results
	Conclusion

