
HAL Id: hal-00735881
https://hal.inria.fr/hal-00735881

Submitted on 27 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging CVL to Manage Variability in Software
Process Lines

Emmanuelle Rouillé, Benoit Combemale, Olivier Barais, David Touzet,
Jean-Marc Jézéquel

To cite this version:
Emmanuelle Rouillé, Benoit Combemale, Olivier Barais, David Touzet, Jean-Marc Jézéquel. Lever-
aging CVL to Manage Variability in Software Process Lines. Asia-Pacific Software Engineering Con-
ference, Dec 2012, Hong Kong, China. �hal-00735881�

https://hal.inria.fr/hal-00735881
https://hal.archives-ouvertes.fr


Leveraging CVL to Manage Variability
in Software Process Lines

Emmanuelle Rouillé∗†, Benoît Combemale†, Olivier Barais†, David Touzet∗ and Jean-Marc Jézéquel†
∗Sodifrance

P.A. la Bretèche, avenue Saint-Vincent, 35768, Saint-Grégoire, France
Email: {erouille, dtouzet}@sodifrance.fr

†Université de Rennes 1
IRISA, Campus de Beaulieu, 35042, Rennes, France

Email: {emmanuelle.rouille, benoit.combemale, olivier.barais, jean-marc.jezequel}@irisa.fr

Abstract—Variability on project requirements often implies
variability on software processes. To manage such variability,
Software Process Lines (SPLs) can be used to represent common-
ality (i.e., common practices) and variability (i.e., differences) of
a set of related software processes. To this end, some Software
Process Modeling Languages (SPMLs) natively integrate vari-
ability mechanisms. Nevertheless, such a coupling between the
SPML and the variability mechanisms i) requires to interpret the
requirements variability in terms of the processes variability, ii)
limits the reuse of the requirements variability for other purposes
(e.g., the development itself), and iii) is a barrier to the use
of advances from the field of variability management. In this
paper, we propose an approach to apply the Common Variability
Language (CVL from the OMG consortium) for requirement
variability modeling and its binding to the processes. This
work is illustrated on a family of industrial Java development
processes. Our approach enables the definition of an SPL and
the automatic derivation of a process from this SPL according to
the requirements of a given project. The variability is managed
separately from the process model and benefits from existing
tools coming from process modeling community and CVL.

I. INTRODUCTION

A software development process captures the sequence of
steps to perform in order to realize a software engineering
project. Processes are a mean for capturing the know-how
that companies acquired during projects. Inherent variability
on project requirements often implies variability on software
processes that are still complex to capture. Moreover, the
more variants of a software artifact there are, the more the
management of variability reduces development costs and time
to market [1]. This is also true in context of processes. Some
approaches for modeling process variability and for enabling
the reuse of process model rely on Software Process Line En-
gineering (SPLE) [2]. Indeed, SPLE enables the definition and
reuse of common and variable parts between processes. These
approaches also use the Model-Driven Engineering (MDE) in
order to define a Software Process Line (SPL), which is a
set of processes that captures commonalities and variabilities
between these processes [3]. However, existing contributions
are dependent of a process metamodel. Indeed, some of them
modify a process metamodel with a variability concern, in
order to model places in processes that vary and the possible
variations. This prevents the reuse of the variability concern

with other process metamodels without adapting it. This also
requires the development of new tools (e.g. tools for process
modeling, execution, checking) for managing the modified
process metamodel. Other contributions do not modify the
process metamodel but transform the process model into a
pivot structure that captures the variability concern. These
contributions are also dependent of the process metamodel
because they require the definition of a transformation for each
process metamodel. We still miss an approach for automati-
cally reusing processes according to projects requirements that
is independent of the process metamodel.

As stated in the specification of the Common Variability
Language (CVL)1, CVL is a "domain-independent language
for specifying and resolving variability". Therefore, CVL
would address this limitation. Indeed, CVL is an OMG2

standardization effort for the product lines definition. It en-
ables to reference process elements defined in every process
model whose metamodel conforms to the Meta-Object Facility
(MOF)3 metametamodel and it provides operators to specify
how to derive a process.

In this article we answer the following research questions:

1) Rq1: how to use CVL in the context of processes?
2) Rq2: does CVL enable the management of processes

variability?
3) Rq3: is CVL independent of the process metamodel?

To answer these research questions, we lead an experi-
ment with Sodifrance4, a software and computing services
company. Sodifrance performs different kinds of projects that
are development, modernization and software maintenance
projects. This experiment consists in modeling and/or refac-
toring existing software development processes to enable their
reuse according to commonalities in projects requirements.
For this experiment, we use the Software Process Engineering
Metamodel (SPEM) 2.0 [4] as process metamodel. Indeed,
SPEM 2.0 is an OMG standard and commercial modelers
exist. However, we could choose any other process metamodel

1http://www.omgwiki.org/variability/
2http://www.omg.org/
3http://www.omg.org/mof/
4http://www.sodifrance.fr/



according to one’s needs and preferences. We perform this
experiment and illustrate our approach on a process line of
Java development processes.

This paper is organized as follows. Section II presents
our illustrative example. Section III presents SPEM 2.0 and
CVL. Sections IV, V and VI respectively answer the research
questions rq1, rq2 and rq3. Section VII presents the related
work. We conclude in Section VIII.

II. ILLUSTRATIVE EXAMPLE

In this section, we present a simplified Java development
process of the Sodifrance company as an illustrative example.

A. The Most Often Used Java Development Process

The most often used Java development process of the Sod-
ifrance company is as follows. During the first task, the cus-
tomer produces a specifications document defining the techni-
cal and functional specifications of the application to develop,
according to the project’s requirements. The following task,
the development, consists of manually writing the Java code
of the application. It takes as input the specifications document
and produces as output the Java code. During the tests task,
the developers test the application under development. If there
are errors, then the process flow goes back to the development
task in order to correct the errors. If there is no error, then
the process flow goes to the production task, which consists
of deploying the application on the customer environment.
During the development task, the developers have to use the
Eclipse IDE and a version control system, which is SVN in
this example. They also use MySQL as database during the
development task. Modelling the process permits to create the
initial configuration of a new project: building eclipse IDE,
generating the maven project object models, initializing the
source code repository, . . .

B. Variability in the Java Development Process

There are variants of the Java development process. For
instance, if the customer uses Oracle as database, then devel-
opers will use Oracle instead of MySQL. If there is no data
to persist, then there is no database. If the customer provides
the specifications into a formal language (e.g., UML 2.x), then
a code generation task occurs before the development task. It
consists of generating the code which is similar for all the
entities of the application. It produces some generated Java
code as output. When the code generation task occurs, then the
development task takes the generated Java code as additional
input and consists of manually writing the non generated code.

III. BACKGROUND

In this section, we present SPEM 2.0 and CVL.

A. SPEM 2.0

We use the SPEM 2.0 process metamodel to model the Java
development process example. The SPEM 2.0 specification
defines a metamodel whose general idea is that roles perform
activities, that take work products as inputs and outputs. The
peculiarity of SPEM 2.0 is that it separates the definition of

the process elements (the method content) from their use into
processes (the process structure).

Figure 1 shows an extract of the SPEM 2.0 metamodel we
use in the following. However, one can use every SPEM 2.0
concepts with our methodology.

The method content part contains method content ele-
ments (MethodContentElement) for defining role definitions
(RoleDefinition), that perform task definitions (TaskDefinition),
using a tool definition (ToolDefinition). A task definition uses
work product definitions (WorkProductDefinition) as inputs
and outputs.

The process structure part contains work breakdown struc-
tures (BreakdownElement and WorkBreakdownElement) and
structures for describing workflows (Activity, Process and
DeliveryProcess). A delivery process (DeliveryProcess) de-
scribes a complete project lifecycle. An activity (Activity)
is a container for breakdown elements (BreakdownElement).
Subtypes of the class named MethodContentUse use subtypes
of the class named MethodContentElement through corre-
sponding references. A role use (RoleUse) performs a task use
(TaskUse), which uses a work product use (WorkProductUse)
as input or output. The parameter type (attribute named
parameterType) of a process parameter (ProcessParameter)
defines a work product use of a task use.

We use UML 2 [5] activity diagrams to model the flow of
task uses because the class named TaskUse is a stereotyped
UML 2 Action.

Figure 2 shows the concrete syntax we use to represent
SPEM 2.0 and activity diagram model elements.

Figure 3 shows the SPEM 2.0 model of the most often used
Java development process of our illustrative example.

B. CVL

We use CVL to define an SPL and automatically derive a
process according to the project’s requirements from this SPL.
Figure 4 summarizes CVL and illustrates it in the context of
processes. CVL proposes to define a base model, which is
an instance of any metamodel conforming to the MOF. The
base model is a base process model in our case. Then, CVL
provides constructs to capture the variability (the Variability
Abstraction Model (VAM)). For instance, the VAM specifies
the projects requirements variability. CVL also provides con-
structs to define the realization of this variability on the base
model (the Variability Realization Model (VRM)). The VRM
is the original part of CVL. It allows designer to explicit the
mapping between the VAM (that can be compared to a feature
model) and the assets (the base model). In this mapping,
the VRM defines which base model elements are impacted
with a specific variation point but also how these base model
elements are impacted. CVL provides in the VRM several
types of variation point that capture the derivation semantics.
The main benefits of this model is the ability to capture the
variability requirement in the VAM and its materialization in
the base model using the VRM. In our case, the VRM defines
a binding between the projects requirements variability and
the processes variability. CVL provides constructs to resolve



Figure 1: Excerpt of the SPEM 2.0 metamodel

Figure 2: SPEM 2.0 and activity diagram concrete syntax

Figure 3: Illustrative example: most often used Java development process

Figure 4: Using CVL for SPLs

this variability in order to select a configuration of the base
model (the Resolution Model (RM)).

CVL can be executed. A CVL model composed of a VAM,
a VRM and a RM contains enough information to provide a
resolved base model without variability. The resolved model
is thus another instance of the metamodel that the base model
conforms to. In our context, the resolved model is a resolved
process model. Thereafter, we present the CVL metamodel
according to its three parts (variability abstraction, variability
realization and resolution). Figure 5 details the excerpt of the

CVL metamodel that we use in the following.

The variability abstraction part defines variability through
variability specifications (VSpec). A variability specification
can be a choice (Choice), i.e. a feature that will belong
or not to the resolved model depending on whether it is
resolved to true or false. A variability specification may
contain children. Children can be resolved to true only if their
parent is resolved to true. A variability specification also has
a group multiplicity (groupMultiplicity) defining the minimal
and maximal (attributes named lower and upper of the class



Figure 5: Excerpt of the CVL metamodel

named MultiplicityInterval) numbers of direct children that can
be resolved to true. If a choice is implied by its parent (attribute
named isImpliedByParent equals true), then it must be resolved
to true if its parent is resolved to true, expressing a mandatory
feature. The variability abstraction model provides the same
expression power than a feature model. Xor, Card, Or, Alt,
or Mandatory can be expressed using the groupMultilplicity
reference and the isImpliedByParent attribute.

The variability realization part defines the variation points
(VariationPoint), that are operations to perform on the base
model in order to derive a resolved model. A variation
point is performed when its binding variability specifications
(bindingVSpecs) are resolved to true. CVL defines several
types of variation points. Each of them can be seen as a
reusable function that can be applied on the base model
during the derivation. Among variation points, an object sub-
stitution (ObjectSubstitution) replaces an object of the base
model, the placement object (placementObject), by another
one, the replacement object (replacementObject), and deletes
the placement object. A link assignment (LinkAssignment)
sets a reference of the base model, the link end identifier
reference, to a new end (newEnd). A link object (link) contains
the reference, identified by its name (linkEndIdentifier). An
object existence (ObjectExistence) specifies that an optional
object (optionalObject) of the base model will still exist in
the resolved model. The optional object is removed from the
resolved model if at least one binding variability specifica-
tion is resolved to false. Thus, object existences execute in
negative variability. This means that the objects belong to
the base model if they belong to a configuration. They are
deleted during derivation if they do not belong to the selected
configuration. On the contrary, positive variability means that
all the objects are not in the base model and they are created
during derivation. The link handle (LinkHandle) and the object
handle (ObjectHandle) model elements reference an object of
the base model through their attribute named MOFRef, which
corresponds to the URI of the object to reference.

The resolution part contains choice resolutions (ChoiceRes-
olution) that resolve their resolved choices (resolvedChoice)
to true or false.

Figure 6 shows the concrete syntax we use to represent the
CVL model elements.

We now detail the part of the derivation algorithm which
is useful to understand the example of Section IV. The CVL

derivation engine performs each variation point whose binding
variability specifications are resolved to true. The derivation
applies on a copy of the base process model. To perform a
link assignment, it retrieves from the base process model copy
the link object. If its link end identifier reference has a upper
bound of one, it updates the link end identifier reference to
the new end. If the link end identifier has an infinite upper
bound, it adds the new end to the list of links that instan-
tiate the link end identifier reference. To perform an object
substitution, it retrieves from the base process model copy
the placement object and applies all its incoming references
to the replacement object. It then deletes the placement object
from the base process model copy. For an object existence, the
derivation engine removes the optional object from the base
process model copy if at least one of the binding variability
specifications of the object existence is resolved to false.
Finally, it serializes the modified copy of the base process
model into a new file, giving the resolved process model. Our
implementation of the CVL derivation engine relies on the
Eclipse Modeling Framework (EMF)5 API to load, manage
and save the models6.

IV. APPROACH

In this section, we answer rq1 by presenting our approach
to use CVL in the context of processes. Figure 7 shows an
overview of this approach. It involves two roles: a process
expert, who knows the different processes of a company and
their context of use, and an engineer, who is involved into a
project and needs a process specific to this project. The process
expert captures the requirements variability and its binding
to the SPL (steps 1 to 3). Then, the engineer automatically
derives a process from this SPL according to the requirements
of a given project (steps 4 and 5). Steps 4 and 5 occur
each time the engineer wants to derive a process. In our
approach, the process expert and the engineer use the CVL
tooling to perform steps 2 to 5. Any SPML can be used to
perform step 1, even if we focus in this paper on the use
of SPEM. Our approach preserves the separation between
projects requirements and processes. It also directly binds
projects requirements to processes, instead of interpreting
requirements variability in terms of processes variability. In

5http://www.eclipse.org/modeling/emf/
6CVL derivation engine can be downloaded http://goo.gl/ifGFD



Figure 6: CVL concrete syntax

Figure 7: Overview of an approach using CVL to bind the requirements variability to the process variability

the following of this section, we detail the different steps of
our approach, ranging from the SPL definition to the process
derivation. We illustrate them thanks to the illustrative example
introduced in Section II.

A. The SPL Definition

1) Methodology for Process Elements Modeling (step 1):
This step allows the process expert to model the process
elements required to define the expected family of processes.
The process expert performs this step using any modeler based
on its favorite SPML.

The process expert first models the most often used process
of the company into a base process model (called base model
in CVL). Then, the process expert provides all other process
elements that do not belong to the most often used process
(called external process elements). These external process
elements are added in the same base process model, without
linking them to the most often used process. Even if several
processes use the same external process element, it is modeled
only once in the base process model. Consequently, when a
process element common to several processes evolves, it has
to be updated only once. The different processes that use an
external process element often require different settings of the
properties of this external process element. In this case, the
process expert only sets the properties as the most often used
of these processes requires.

Using SPEM 2.0 as SPML, the process expert starts by
modeling the method content elements upon which the most
often used process and the external process elements will be
defined. The process expert then models the most often used
process and the external process elements in different delivery
processes. This way, there is no operation to perform on the

Figure 8: Method content elements of the illustrative example

base process model to derive the most often used process.
Indeed, in SPEM 2.0, a process describing a complete project
life cycle is described into a delivery process, and there the
most often used process is already described in a delivery
process.

While Figure 3 shows the most often used process of our
Java development process example, Figure 8 shows the corre-
sponding method content elements. As for the external process
elements, we model only their properties that correspond to
the most often used process that uses these method content
elements. For instance, we model that the task definition
named Development uses the tool definition named MySQL
and not the Oracle one.

Figure 9 shows the process fragment representing the
external process elements of the Java development process
example. Note that the outgoing control flow from the task
use named Code generation is invalid w.r.t the metamodel
since it does not have any target. Nevertheless, this control
flow is useful because getting a Java development process with



Figure 9: A process fragment representing the external process
elements of the illustrative example

code generation consists of adding the task use named Code
generation to the most often used process, as well as a control
flow from the task use named Code generation to the task use
named Development, while redirecting the control flow from
the task use named Technical and Functional Specifications
to the task use named Code generation. Since most of the
process modelers (e.g., SPEM-Designer7) do not enable the
modeling of invalid process elements, we rely on approaches
that handle model fragments (e.g., [6]) for such a purpose.

2) Projects Requirements Variability Specification (step 2):
In the second step of our approach, the process expert uses the
CVL variability abstraction metamodel to specify the projects
requirements variability in the VAM.

The right part of Figure 10 shows the VAM of the re-
quirements for the different Java development projects of our
illustrative example. A project uses a database or not, and if
yes, it is either a MySQL one or an Oracle one. Moreover, a
project uses code generation or not to produce the code of the
application to deliver.

In addition to the concepts used in the illustrative exam-
ple, CVL enables the specification of variability about the
number of fragment instances. Furthermore, CVL enables the
expression of constraints on the variability resolution that
are not in a parent-child relationship. To this end, CVL
provides the way to express constraints using first order logic
(including universal and existential quantifications), as well as
arithmetic constraints. CVL also enables to automatically infer
the resolution of variability specifications from the resolution
of other variability specifications, according to the constraints
imposed on their resolution.

3) Projects Requirements and Processes Binding (step 3):
In the third step of our approach, the process expert defines in
the VRM the binding between projects requirements variability
(the VAM defined in step 2) and processes (the base model
defined in step 1).

The center part of Figure 10 shows the VRM of our
illustrative example. This VRM specifies the configuration
of a delivery process used by an engineer according to the
possible requirements. The activity named Java development
process represents the delivery process of the most often used
process. For a project with a MySQL database and without
code generation, the VRM does not modify the delivery
process that contains the most often used process (cf. Figure
3). For a project with an Oracle database, it replaces the tool
definition named MySQL by the one named Oracle. For a
project without database, it deletes the tool definition named
MySQL. For a project with code generation, the VRM adds the
task use named Code generation, its outgoing control flow,

7http://marketplace.eclipse.org/content/spem-designer-helios-version

and the work product use named Generated Java code to
the delivery process of the most often used process. It then
redirects the outgoing control flow from the task use named
Specifications to the task use named Code generation and
redirects the outgoing control flow from the task use named
Code generation to the task use named Development. It finally
puts the work product use named Generated Java code as input
of the task use named Development. To this end, the VRM
adds a process parameter to the task use named Development
and puts the work product use named Generated Java code as
parameter type of this process parameter.

In addition to the concepts used in the illustrative example,
CVL provides various constructs to specify the VRM that are
useful in the context of processes. A construct assigns the
value of an attribute of a process element (slot assignment).
Some constructs specify the existence of an attribute or of a
link of a process element (slot value existence, link existence).
Constructs enable to specify a value to assign or an object to
substitute into the RM (parametric link assignment, parametric
slot assignment, parametric object substitution). These con-
structs are useful when the process expert does not know the
variants of a process element at the time of the VRM’s edition.
Some constructs replace a process fragment by another one
(fragment substitution, repeatable fragment substitution) and
create several instances of a process fragment (repeatable frag-
ment substitution). Figures 11a and 11b respectively illustrate
a fragment substitution and a repeatable fragment substitution.
On the other hand, some process metamodels enable the reuse
of objects. For instance, SPEM 2.0 introduces the notion of
process pattern, which factorizes a process fragment common
to several activities. Then, these activities can reuse this
process pattern. When a process pattern contains variability,
different activities can require different resolutions of this
process pattern to reuse it. However, an activity cannot reuse a
resolved process pattern if it is not resolved appropriately. This
problem applies to any object that contains variability and that
is reused with different variability resolutions in a model. The
CVL specification calls such an object a configurable container
object. To this end, CVL introduces constructs that specify a
configurable container object (configurable unit) and that clone
the configurable container object, resolve variability on the
clone and finally redirect the link of the base model object (that
uses the resolved clone) to the resolved clone (configurable
unit usage). Figure 11c illustrates the configurable unit and
configurable unit usage variation points with the example
of process patterns. Finally, the process expert can define
new variation points using a model to model transformation
(opaque variation point).

B. Process Derivation According to the Requirements of a
Project

1) Projects Requirements Variability Resolution (step 4):
The engineer uses the CVL resolution metamodel to select
in an RM the requirements of a given project among those
that the VAM specifies. We refer to this action as projects
requirements variability resolution.



Figure 10: The VAM, the VRM, and one possible RM of the illustrative example

(a) Fragment substitution

(b) Repeatable fragment substitution

(c) Configurable unit and configurable unit usage

Figure 11: Overview of other CVL variation points

The right part of Figure 10 also shows an RM for a Java
development project that requires code generation and no
database (see

√
for the choices selected by the engineer and

X for the implicitly unselected ones) .
2) Automatic Process Derivation (step 5): Finally, the last

step of our approach consists in automatically deriving the
process corresponding to the requirements of a given project.
For this purpose, we use the CVL derivation engine to allow an
engineer to derive a new process model from the base process
model (step 1), and according to the requirements selected in
the RM (step 4), and the variability realization captured in the
VRM (step 3). This step produces a resolved process model.

Figure 12 shows the resolved process model corresponding
to the RM depicted in Figure 10. In the resolved process
model, the CVL derivation engine has deleted the database
and it has introduced the code generation task to the most
often used Java development process.

If there are unlikely recurrent project specific needs, the

engineer can manually adapt the derived process to these
needs. Indeed, there is no need to capitalize on project specific
needs into the process line if they are unlikely recurrent.

V. USE OF CVL TO BRIDGE THE GAP BETWEEN THE
REQUIREMENTS VARIABILITY AND THE PROCESSES

VARIABILITY

In this section, we answer rq2 by discussing the capacity of
our CVL-based approach to capture the processes variability
according to the requirements variability.

According to our approach, the VAM captures the re-
quirements variability, while the VRM specifies the binding
between the requirements variability and the base process
model. These three models (VAM, VRM and base process
model) thus constitute the definition of an SPL.

Then, CVL allows an engineer i) to select the requirements
of a given project in a realization model (RM), and ii) to
automatically derive a process model from a given RM and
the base process model.



Figure 12: Complete resolved model according to the RM of Figure 10

In our illustrative example, we were able to capture the re-
quirements of 384 Java development projects of the Sodifrance
company and their corresponding processes. The Sodifrance’s
Java development projects vary on the version control system
(SVN or CVS), the database (MySQL, Oracle, Postgresql,
or no database), the GUI framework (Struts, JSF, Flex, or
GWT), the build tool (Ant or Maven), the development (with
code generation or not) and the delivery (delivery of the
source code, of the compiled code or installation of the
application on the customer environment by a Sodifrance
engineer). Following our approach, the SPL is composed of
86 model elements (48 SPEM process elements, 21 Variability
Specifications and 17 Variation Points). In comparison, the
modeling of the different processes in extension (i.e., without
factorizing the common parts between processes) would have
required the modeling of 384 processes, each of them made
of at least 30 process elements. Thus, it would have led to the
modeling of at least 11 520 process elements.

Basic Feature Models (BFMs) [7] and Orthogonal Variabil-
ity Models (OVMs) [1] would also enable the specification
of the projects requirements variability thanks to a dedicated
variability model. However, they do not provide a mechanism
to link the variability model (here, the requirements) to the
design models (here, the processes). On the contrary, the VAM
enables the capture of the requirements variability and the
VRM enables to directly reflect this variability on processes.

VI. USE OF CVL INDEPENDENTLY OF THE PROCESS
METAMODEL

In this section, we answer rq3 by analyzing the indepen-
dence promoted by CVL with respect to the metamodel on
which it is used (in our case, SPEM).

Since CVL uses a string in the object handle and the link
handle to reference a model element, CVL is independent
of the language on which it is applied. Nevertheless, we
observe that the CVL derivation operator can produce an
invalid resolved process model, while the VAM, the VRM and
the RM are valid. In the following, we identify the possible
sources of such an invalidity, and we classify them according
to the way to prevent them.

The first errors we observe occur during assignments (i.e.,
link assignment, slot assignment, parametric link assignment,
parametric slot assignment) or substitutions (i.e., object sub-
stitution, parametric object substitution, fragment substitution,
repeatable fragment substitution) that do not respect the type
compatibility with the base model.

These possible errors constitute the first category we have
identified. These errors arise because CVL does not constrain
the specification of the VRM according to the metamodel to
which it applies. Nevertheless, the use of CVL could be forced
by constraints generically expressed on its metamodel, thus
ensuring the validity of the VRM with respect to the resolved
models. For example, the type compatibility mentioned above
in the context of a link assignment could be avoided by using
the following constraint expressed with the Object Constraint
Language (OCL) [8] on the CVL metamodel:

1 c o n t e x t LinkAssignement inv :
2 -- where ’find’ resolve an URI into the suitable

model element and ’OclType’ gives the type of
the model element on which it is applied.

3 find(self.newEnd.MOFRef).OclType =
4 find(self.link.MOFRef).OclType

The second error is when there are dandling references in
the resolved model, i.e. when a link refers to an object that
does not exist anymore. This occurs during an object existence,
when an object is deleted but not its incoming links. In order
to avoid this error, the following constraint must be satisfied:
when an object is deleted, its incoming links must be deleted.
A link existence enables the deletion of the incoming links. We
are going to see in the following paragraph the error related
to the link existence and how to avoid it.

The third error concerns the non-respect of the multiplicity
of a reference. For instance, when a reference with a lower
bound of n and a upper bound of p is instantiated by m
links, with m < n or m > p. This occurs when a (paramet-
ric) link assignment (respectively a link existence) creates
(respectively deletes) a link that makes the number of links
instantiating a reference greater (respectively lower) than the
upper (respectively lower) bound of this reference. This also
occurs during a fragment substitution, because CVL enables
the assignment of new outgoing and incoming links to the
replacement fragment, as well as the deletion of existing
links, without ensuring the respect of the multiplicity of the
references that the links instantiate. Moreover, the error occurs
during a repeatable fragment substitution, when the incoming
links to which the replacement fragments are bound cannot
reference as much replacement fragments as the RM defines.
Finally, this occurs during a configurable unit usage, when the
container of the configurable container object cannot contain
as much configurable container objects as the ones that are
created by configurable unit usages. In order to avoid this
error, constraints must be satisfied. A new link can instantiate
a reference whose upper bound is strictly upper than one



only if the number of links already instantiating this reference
is strictly lower than the upper bound of the reference. A
link can be deleted only if the reference it is instantiating
before its deletion has a number of links strictly upper than
its lower bound. A process fragment can be duplicated only
if its incoming links can also be duplicated while ensuring
the respect of the multiplicity of the reference they instantiate.
For a configurable unit usage, the container of the configurable
container object must be able to contain one more configurable
container object.

The second and third errors constitute the second category
we have identified. These errors occur because CVL does not
constrain the specification of the VRM according to the base
model to which it applies and according to the metamodel
of the base model. A solution to ensure the constraints of
the second and third errors would be a generic static analysis
tool that would check before the derivation if the constraints
are satisfied. By generic we mean metamodel independent.
If the constraints are not satisfied, the tool would inform the
engineer of the error, of the variation point that introduces it
and of the constraint that is violated. Then, the process expert
and the engineer would have to correct the errors to start the
derivation.

The fourth error is when the resolved process model con-
forms to its metamodel but is semantically inconsistent. Figure
13 illustrates this error. In SPEM 2.0, a work sequence spec-
ifies the dependencies about the execution of activities. The
work sequence of kind finishToFinish means that the activity
named B can finish when the activity named A finishes. The
work sequence of kind finishToStart means that the activity
named B can start when the activity named A finishes. Here
the work sequence of kind finishToFinish is useless. In order
to avoid this error, we must ensure that there is no semantic
inconsistencies in the resolved process model.

This fourth kind of error constitutes the third category we
have identified. As for the second category, these errors also
occur because CVL does not constrain the specification of
the VRM according to the base model to which it applies
and according to the metamodel of the base model. However,
in this case, the errors are specific to a metamodel and
cannot be generalized. A solution would be to implement
a SPEM-specific derivation engine. It would ensure during
derivation that SPEM-specific constraints are satisfied, on top
of performing the same operations than the CVL derivation
engine. When a SPEM-specific constraint is not satisfied, the
SPEM-specific derivation engine would inform the engineer of
the error, of the derivation step that has introduced the error
and of the constraint that is violated.

Figure 13: Over-specified work sequence

VII. RELATED WORK

One approach for reusing processes provides a technique
for the retrieval of processes stored into a repository [9]. The
Debus-Booch prototype [10] enables to select a software de-
sign process from a family of such processes and to execute it.
These approaches define the different processes in extension.
Therefore, when a part common to several processes evolves,
it has to be updated in all the processes it belongs to, which
is error prone and time consuming.

The following approaches address this problem by defining
an SPL, in order to model places in processes that vary and the
possible variations. However, they are dependent of the process
metamodel because they modify the process metamodel with
variability mechanisms. In the field of software processes, one
approach relies on the variability mechanisms that SPEM 2.0
provides in order to model a general process model with
variability [11]. The vSPEM approach [12] extends SPEM 2.0
with variability mechanisms empirically evaluated as more
understandable [13]. Still in the field of software processes,
another approach [3] provides a metamodel for an SPL, that
must be specialized according to the process metamodel and
the variability to capture. In the field of business processes, ap-
proaches extend the Event-driven Process Chain (EPC) process
metamodel to model variability into an EPC reference process.
The reference process captures all the different processes
using conditional branching. Configurable EPC (C-EPC) [14]
expresses variability on the functions and connectors EPC
model elements. The approach in [15] extends C-EPC with
the concepts of role and object and specifies variability on
these concepts. Aggregate EPC (aEPC) [16] links process
elements to the configurations that use them. The PROcess
Variants by OPtions (Provop) approach [17] copes with the
non distinction between branching nodes that are part of a
process and the ones that denote different processes in a
reference process. It proposes to model one process and the
operations to perform on it to derive the different processes.
Still in the field of business processes, approaches [18], [19]
extend the BPMN metamodel for modeling places where
variability occurs in processes and their possible resolutions.
Another approach [20] captures process variability into a
hierarchical structure and provides support for variant process
elements management and reuse. Other approaches [21]–[23]
partially address the problem of the dependence towards the
process metamodel by transforming a process model into a
pivot structure to define variability. However, these approaches
require the definition of a transformation for each process
metamodel. Finally, the Adaptive Business Process Modeling
in the Internet of Services (ABIS) approach [24] introduces
constructs for managing variability in BPMN 2.0 processes
without modifying the BPMN 2.0 [25] metamodel. This ap-
proach is also dependent of the process metamodel. Indeed,
the variability constructs need to be adapted in case of the use
of another process metamodel.

The following approaches specify variability independently
of the process metamodel. However, they do not provide all



the mechanisms for automatically deriving a process. One
approach [26] proposes to model process variability separately
from the process model, using BFMs or OVMs. However,
BFMs do not provide a binding mechanism between the BFM
and the process model. OVMs provide a binding mechanism
with the model for which variability is specified (e.g., the
process model). However, this binding mechanism implies
modifying the metamodel of the model for which variability is
specified. Furthermore, OVMs do not provide a mechanism to
automatically derive a process. Other approaches are similar
to ours. One approach [27] proposes to model one process
and to augment it with process elements selected according
to a process goals specification, in order to obtain a particular
process. The notion of process goals specification is close to
our notion of requirements of a project. Our approach goes
further by providing mechanisms to automate the derivation of
a process according to the requirements of a project. Another
approach [28] provides a questionnaire-driven method for se-
lecting a process from a reference process model. Actions are
performed on the reference process model to derive a process
according to the answers to the questions. Our approach goes
further by providing a language to define actions on process
models whatever their metamodel is.

To conclude, approaches for reusing processes to our knowl-
edge either define the different processes in extension, or are
dependent of the process metamodel, or do not provide all the
mechanisms for automatically deriving a process.

VIII. CONCLUSION AND PERSPECTIVES

We propose an approach to use CVL in the context of
processes and we perform an experiment (i) to understand how
to use this new variability modeling language in this context,
(ii) to discuss if CVL enables the management of processes
variability, (iii) and to discuss if CVL enables the management
of processes variability while being independent of the process
metamodel. The lessons learned from this experiment are
mainly that CVL enables the definition of an SPL and the
automatic derivation of a process from this SPL according to
the requirements of a project. CVL is also independent of the
process metamodel, but this can be a source of errors in the
resolved process model.

Using CVL to model process lines has the advantage of
being independent of the process metamodel. This enables
the reuse of the approach with every process metamodel as
well as the reuse of process metamodel specific tools. The
current limitation of the use of CVL for modeling process
lines is that models are difficult to edit and maintain. Indeed,
processes other than the most often used one are not visible
in the SPL due to the structure of the base process model and
the variability management. Implementing a tool that enables
processes and variability modeling into the same diagram
would address this limitation.

As perspectives of work, we are implementing a generic
static analysis tool and a derivation engine plugin for SPEM, in
order to automatically ensure the satisfaction of the constraints
for deriving a valid resolved process model.

REFERENCES

[1] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[2] H. D. Rombach, “Integrated software process and product lines,” in
ISPW, 2005, pp. 83–90.

[3] T. Ternité, “Process Lines: A Product Line Approach Designed for
Process Model Development,” in SEAA, 2009, pp. 173–180.

[4] OMG, “Software and Systems Process Engineering Metamodel Specifi-
cation (SPEM) Version 2.0,” http://www.omg.org/spec/SPEM/2.0/, 2008.

[5] ——, “Documents Associated With UML Version 2.0,” http://www.omg.
org/spec/UML/2.0/, 2005.

[6] R. Ramos, O. Barais, and J. Jézéquel, “Matching model-snippets,” in
MoDELS 07, 2007, pp. 121–135.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
terson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,”
Carnegie-Mellon University Soft. Eng. Institute, Tech. Rep., 1990.

[8] OMG, “Documents associated with Object Constraint Language, Version
2.2,” http://www.omg.org/spec/OCL/2.2/, 2010.

[9] R. Lu and S. Sadiq, “On the Discovery of Preferred Work Practice
Through Business Process Variants,” in ER, 2007, pp. 165–180.

[10] X. Song and L. J. Osterweil, “Engineering Software Design Processes to
Guide Process Execution,” IEEE Transactions on Software Engineering,
vol. 24, no. 9, pp. 759–775, 1998.

[11] J. Hurtado Alegría, M. Bastarrica, A. Quispe, and S. Ochoa, “An MDE
Approach to Software Process Tailoring,” in ICSSP, 2011, pp. 43–52.

[12] T. Martínez-Ruiz, F. García, and M. Piattini, “Towards a SPEM v2.0
Extension to Define Process Lines Variability Mechanisms,” in SERA,
2008, pp. 115–130.

[13] T. Martínez-Ruiz, F. García, M. Piattini, and J. Münch, “Modelling
Software Process Variability: an Empirical Study,” IET Software, vol. 5,
no. 2, pp. 172–187, 2011.

[14] M. Rosemann and W. M. P. van der Aalst, “A Configurable Reference
Modelling Language,” Information Systems, vol. 32, no. 1, pp. 1–23,
2007.

[15] M. Rosa, M. Dumas, A. H. Hofstede, J. Mendling, and F. Gottschalk,
“Beyond Control-Flow: Extending Business Process Configuration to
Roles and Objects,” in ER, 2008, pp. 199–215.

[16] H. A. Reijers, R. S. Mans, and R. A. van der Toorn, “Improved
Model Management with Aggregated Business Process Models,” Data
Knowledge Engineering, vol. 168, no. 2, pp. 221–243, 2009.

[17] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing Variability in
Business Process Models: the Provop Approach,” Software Maintenance,
vol. 22, no. 67, pp. 519–546, 2010.

[18] V. Kulkarni and S. Barat, “Business Process Families Using Model-
Driven Techniques,” in BPM, 2010, pp. 314–325.

[19] A. Schnieders and F. Puhlmann, “Variability Mechanisms in E-Business
Process Families,” in BIS, 2006, pp. 583–601.

[20] W. Derguech and S. Bhiri, “Reuse-Oriented Business Process Modelling
Based on a Hierarchical Structure,” in BPM, 2010, pp. 301–313.

[21] F. Gottschalk, W. M. van der Aalst, M. H. Jansen-Vullers, and
M. La Rosa, “Configurable Workflow Models,” Cooperative Information
Systems, vol. 17, no. 2, pp. 177–221, 2008.

[22] S. Meerkamm, “Configuration of Multi-perspectives Variants,” in BPM,
2010, pp. 277–288.

[23] E. Santos, J. Castro, and O. Sánchez, J.and Pastor, “A Goal-Oriented
Approach for Variability in BPMN,” in WER, 2010, pp. 17–28.

[24] M. Weidmann, F. Koetter, M. Kintz, D. Schleicher, and R. Miet-
zner, “Adaptive Business Process Modeling in the Internet of Services
(ABIS),” in ICIW, 2011, pp. 29–34.

[25] OMG, “Documents Associated with Business Process Model and Nota-
tion (BPMN) Version 2.0,” http://www.bpmn.org/, 2011.

[26] J. Simmonds and M. C. Bastarrica, “Modeling Variability in Software
Process Lines,” Universidad de Chile, Tech. Rep., 2011.

[27] B. I. Simidchieva, L. A. Clarke, and L. J. Osterweil, “Representing
Process Variation with a Process Family,” in ICSP, 2007, pp. 109–120.

[28] M. La Rosa, J. Lux, S. Seidel, M. Dumas, and A. ter Hofstede,
“Questionnaire-driven Configuration of Reference Process Models,” in
CAiSE, 2007, pp. 424–438.


