
HAL Id: hal-00672976
https://hal.inria.fr/hal-00672976v2

Submitted on 28 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JBInsTrace: A Tracer of Java and JRE Classes at
Basic-Block Granularity by Dynamically Instrumenting

Bytecode
Pierre Caserta, Olivier Zendra

To cite this version:
Pierre Caserta, Olivier Zendra. JBInsTrace: A Tracer of Java and JRE Classes at Basic-Block Gran-
ularity by Dynamically Instrumenting Bytecode. Science of Computer Programming, Elsevier, 2012.
�hal-00672976v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49861726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00672976v2
https://hal.archives-ouvertes.fr


JBInsTrace: A Tracer of Java and JRE Classes at Basic-Block
Granularity by Dynamically Instrumenting Bytecode

Pierre Caserta

LORIA - Campus Scientifique
615 Rue du Jardin Botanique CS 20101

54603 VILLERS-LES-NANCY CEDEX FRANCE

pierre.caserta@loria.fr

Olivier Zendra

INRIA Nancy - Grand Est / LORIA
615 Rue du Jardin Botanique, CS 20101

54603 VILLERS-LES-NANCY Cedex, FRANCE
olivier.zendra@inria.fr

Abstract

Understanding what happens during the runtime of a Java program is difficult. Tracking
runtime flow can bring valuable information for program understanding and behavior
analysis. Polymorphism, thread concurrency or even simple facts like the number of
method invocations and the number of executed bytecodes are valuable information to
track, but are difficult to compute outside the Java Virtual Machine (JVM) on running
programs. In this paper, we present JBInsTrace, a new tool that instruments and traces
Java bytecode. It produces static information about source code and a very fine grained
trace of Java software execution, combining them to allow detailed analysis of the run-
time. Our tool differs from others because it does not only trace program classes but
also JRE classes, and does so at basic block level, without altering the JVM and without
statically modifying class files. We explain JBInsTrace design, focused towards efficiency,
which results in reasonable performance penalty.

Keywords: Java, Tracing, Dynamic, Bytecode, Instrumentation, Profiling, Program
Analysis

1. Introduction

Dynamic analysis gives information on a particular execution of software and brings
significant information to analyze and understand program behavior (Ball (1999); Cor-
nelissen et al. (2009)), helping focus on modules which play a predominant role during the
runtime of a program. Dynamic information such as reflection and dynamic class loading
can be statically approximated (Christensen et al. (2003); Sreedhar et al. (2000)), but
dynamic analysis is needed for a real accuracy (Hirzel et al. (2004)). On the other hand,
static analysis gives insight about the source code itself and is thus useful to manage its

Preprint submitted to Special issue: WASDETT EST 2010 February 21, 2012



quality. Static analysis tools are more common than dynamic analysis tools; we think
this is because static analyses are easier to implement.

One important goal of JBInsTrace1 tool and this paper is thus to provide a technique
to perform fine-grained dynamic analysis of Java software with reasonable performance
penalty. To do this, we divide profiling in two stages. The first stage consists only in
tracing the exact runtime control flow and saving static information about the source
code. The second stage performs an off-line analysis of the trace (a.k.a. post mortem
trace analysis) and of the static information from the previous step, in order to create the
call graph and to compute complex dynamic metrics (Dufour et al. (2003); Arisholm et al.
(2004)). One advantage of this two-stage technique is that metrics are not computed at
runtime. In addition, when new metrics have to be computed, the instrumentation does
not need to be modified.

Most of the work on dynamic analysis focuses on tracing runtime at the method level.
Even though some works are very consistent in tracking method flow and do provide a
lot of valuable information, we wanted the extra accuracy of a finer level. Our analysis
of Java programs is thus made at the basic block2 level, which means that execution is
tracked even within methods. We can also analyze call sites within basic blocks.

Our tracing tool JBInsTrace instruments program classes as well as JRE classes be-
cause we want a full coverage of the whole runtime of the program, to obtain the most
complete trace of the control flow, which we think is necessary to fully understand the
behavior of a program. Of course, JBInsTrace allows switching off the tracing of JRE
classes when desired.

The emergence of new paradigms such as Aspect-oriented programming (AOP) makes
it easier to do rapid prototyping of profilers, debuggers, tracers, and reverse engineering
tools (Villazon et al. (2009)). Indeed, dynamically adding new functionalities on running
programs by modifying classes at runtime through bytecode instrumentation is a con-
venient way to add behavior to programs. Our tracing tool and technique rely on this
paradigm to instrument Java programs at strategic join points and extract information
from their runtime. However, the main difficulty in instrumentation lies in finding an
efficient design for the profiler (Mock (2003)).

In this paper, we present the design and some implementation details of our dynamic
instrumentation and tracing technique. In section 2 we give an overview of the technique
and tool we created to dynamically instrument Java classes. Section 3 details our tech-
nique. Then, in section 4 we discuss the static and dynamic outputs of the tracer and
how they are analyzed to compute valuable information. Section 5 shows performance
results that validate our approach to take user-perceived efficiency into account from the
very beginning. Finally, section 6 concludes and presents future work.

2. Overview of the JBInsTrace tracing technique

Since version 1.5, Java provides services that allow Java agents to instrument pro-
grams running on the JVM. The agent is executed in the same JVM, loaded by the same
class loader, and governed by the same security policy and context as the program. We

1Available at: http://www.loria.fr/˜casertap/jbinstrace.html
2A basic block is a sequence of bytecode instructions which ends by a jump instruction.

2



thus intercept Java classes when they are loaded to instrument them “on-the-fly”, even
if the program has custom class loaders.

The design of the JRE is complex, with a lot of coupling between classes. Mecha-
nisms to realize simple operations thus imply many underlying method calls and execute
many bytecodes. This make understanding what happens when calling a JRE method
difficult. As an example, the first program most people write is “hello world”, coded in
Java as: System.out.println("Hello world ...");. The runtime of this Java pro-
gram executes around 42550 bytecodes, a major part of which are program initialization
bytecodes. The println method call alone generates about 160 method calls and exe-
cutes around 2660 bytecodes. I/O methods are known to be complex, but this example
shows the importance of JRE methods execution.

A specificity of our profiling technique is that it performs a fully dynamic instrumen-
tation on all Java classes, including core JRE classes (see section 3.1). Classes loaded
because of reflection are also treated like the ones automatically loaded by the JVM: code
Class.forName("X") causes class X to be loaded and initialized, hence instrumented.

Since JRE classes may be used by both the observed program and the tracer, in-
strumented JRE classes could lead to trace pollution by the tracer. We explain our
mechanism to avoid this pollution in detail in section 3.3. However, like any Java in-
strumentation technique injecting bytecodes into classes, ours still impacts timing and
thread scheduling because of the extra tracing bytecodes to execute, even though they
are not put in the trace.

Runtime flow is traced at basic block level. This granularity gives insight about
intraprocedural control flow. With our JBInsTrace trace, we know how many times every
single bytecode is executed. Since call sites are traced, information about polymorphism
can be extracted during the analysis step by comparing the call site static type and
the method called at runtime. Native method calls and thread switches are detected as
well and feed additional information to our tracer (see section 3). In fact, JBInsTrace
provides enough information to precisely re-build the whole runtime flow of the profiled
program and thus perform very precise dynamic analyses.

Figure 1 summarizes the global functioning of our profiling technique. When a class
is loaded by the ClassLoader, a Java agent catches the bytecode of this class on the
fly (see section 3). The Instrumentor parses the class, injects new bytecodes and saves
static information about basic blocks, methods and classes (see section 3.2). The injected
bytecode adds a new (tracing) behavior, without altering the functional semantics of the
original bytecode but with an impact on timing and scheduling (see section 3.2). At
runtime, the injected bytecode calls back our Tracer (see 3.2.3), which must take care
not to pollute the trace with tracer events (see section 3.3). At the end of the runtime,
all the static information and the dynamic execution trace are available in files, ready to
be processed by any appropriate analyzer (see section 4).

3. Dynamic instrumentation of classes

Our dynamic instrumentation transforms only classes which are actually used during
a specific execution, without altering the original .class bytecode files on disk. We made
this choice because static instrumentation would have implied transforming all classes
that might be used by the program, whereas only a small percentage of this huge set

3



ClassLoader

J V M PROFILER

Instrumentor

Tracer

Java agent
Static 

information

Dynamic execution
Trace at basic block level 

Analyzer

Bytecode

Instrumented 
bytecode

Execution

Figure 1: Functioning of our profiler

of classes would actually be used at runtime. Moreover, static instrumentation requires
keeping both an instrumented and a non-instrumented version of class files on disk,
more than doubling the space. Since classes appear in JAR files, it would have been
constraining to first extract classes, then instrument them and finally re-JAR them, and
do so at each new version of a particular class. Furthermore, static instrumentation
cannot be done on dynamically created classes. For all these reasons we decided to
instrument code dynamically.

The following three subsections detail our technique. Section 3.1 explains how the
Java agent works. Section 3.2 details how we instrument classes. Section 3.3 shows how
we avoid polluting the trace of the running program with our JBInsTrace tracer.

3.1. Instrumenting classes with a Java agent

A Java agent, deployed as a JAR file, is a service that allows instrumenting programs
running on the JVM through the -javaagent command line option. Our JBInsTrace
tracer has been tested with the Java HotSpot VM and the IBM z/VM, but it should
work on any JVM that provides the agent service.

The premain method is a method called by the Java agent before the main method of
the application but after the JVM has initialized. JBInsTrace uses premain to register
its class transformer (Instrumentor) which will be applied on all future class definitions.

However some classes are loaded during the initialization phase of the JVM (we
name them “core JRE classes”), hence before our class transformer is registered. Indeed,
the JVM follows a lazy loading process, which means that classes are loaded only when
needed. When the JVM starts without the Java agent, it loads the initial class, initializes
it, and invokes its class method main(String[]) (Lindholm and Yellin (1999)). With
the Java agent, the initialization process is changed and all the classes needed for the
execution of the premain method are also loaded by the JVM during its initialization.
In our case this adds around 350 core JRE classes, mainly from the java.lang package.

We instrumented such core JRE classes with the retransform method from Sun-
Oracle implementation, but had to overcome some limitations: the instrumentation must
not add, remove or rename fields or methods, change the signatures of methods, or change
inheritance (Sun Microsystems (2008)).

4



This differs from other existing dynamic techniques which usually introduce new
methods acting as wrappers and adding extra arguments to methods to track the calling
context (Villazon et al. (2009)). With such techniques, core JRE classes have to be
treated differently. The solution proposed by Binder and al. (Binder et al. (2007)) in
their “JP” tool was to statically instrument the .class files. They have reimplemented
their tool, now called “JP2” (Sarimbekov et al. (2011)), which is much more advanced
and does not suffer from many of the restrictions the older version imposed. The new
tool does not perform structural change on classes anymore but still has to statically
modify the Thread class. Instead of adding new parameters to methods, they add a new
field to the Thread class and use it as a reference to save the calling context tree of the
running program. To trace native calls, they still need to statically instrument all the
JRE classes.

Obviously, with bytecode instrumentation, no tracing occurs during the JVM initial-
ization phase. The only way to do such tracing would be by modifying the JVM.

3.2. Bytecode instrumentation

Bytecode instrumentation injects new bytecodes into class. Several tools and libraries
exist to do this. We chose the ASM framework (Bruneton et al. (2002a,b); Bruneton
(2007); Kuleshov (2007a)) which provides libraries to parse Java classes and add bytecode,
allowing complex transformations, with very low memory requirements. According to
(Kuleshov (2007b)), it is much faster than other bytecode transformers such as BCEL
(Dahm et al. (2002, 2001)), SERP (White (2002)) and Javassist (Chiba (2004)).

In subsection 3.2.1 we show how we extract static information from loaded classes.
Then in subsection 3.2.2 we describe where we inject bytecodes in classes and what the
purpose of these new bytecodes is.

3.2.1. Static information extraction

When classes are loaded, JBInsTrace parses them and performs three operations:

• unique identifiers are assigned to each class, method and basic block.

• static information is extracted from the class source code.

• the class is instrumented with new bytecodes.

These identifiers are used to identify parts of the source code, when the trace is saved
on disk. All the important static information about classes, methods and basic blocks is
also saved. This information is then used during the analysis phase, when identifiers are
read from the trace and related the corresponding static information.

The static information is saved in XML (with the Xerces library) or CSV format. In
this paper we use XML for the static information because it is more readable. Here is
an example of the static information saved for a basic block:

<basic_block id="5095440"

metrics="4 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 0">

<call_site_list>

<call_site call="java/nio/CharBuffer:hasRemaining()Z"

type="INVOKEVIRTUAL"/>

</call_site_list>

</basic_block>

5



The metrics field is a list of basic block metrics. The latter contains the numbers
of: bytecodes, array read operations, array write operations, floating point operations,
reference loads, control bytecode instructions, changing control bytecode instructions,
read operations on object fields defined in the class, write operations on object fields
defined in the class, read operations on primitive field defined in the class, write primitives
on object field defined in the class, read operations on object field defined in another class,
write operations on object fields defined in another class, read operations on primitive
fields defined in another class, write primitives on object fields defined in another class,
invocations of another class, new bytecode operations, virtual calls and finally static
calls. In future versions of JBInsTrace we plan to save the entire bytecode of each basic
block instead of just a list of metrics. More information can be found on the JBInsTrace
web page (http://www.loria.fr/˜casertap/jbinstrace.html).

3.2.2. Code segmentation

JBInsTrace traces 3 kinds of events: when a method starts and ends, like any other
tracing tool, but also when a basic block is executed. Because a basic block contains only
one jump instruction at its end, it is executed from beginning to end, unless an exception
occurs. Section 4.2 explains how JBInsTrace follows the runtime flow with exceptions.

An event is recorded as a single integer to maximize performance. Figure 2 shows
how we divide a 32-bit integer, named event number, to encode 3 pieces of information:

• The 2 most significant bits encode the event type identifier : method start, method
end, basic block execution.

• The 19 bits in the middle encode the unique identifier of the method.

• If the event type is the execution of a basic block, the 11 least significant bits repre-
sent the unique identifier of the basic block within the method (unused otherwise).

Note that the event number can be negative, since the most significant bit is used for
event type encoding.

11 0000000010001011000 00000000011

Event type identifier Method identifier Basic block identifier 
within the method

Unique identifier 
of a basic block

Figure 2: Event number structure

Together the method identifier and the basic block identifier form a unique identifier
for the basic block. In fact, every event number is unique. This coding can identify
524288 different methods that can have at most 2048 basic blocks each. We think these
limitations are reasonable. Indeed, ArgoUML, which is a large open source UML mod-
eling tool loading around 5100 classes at startup, counts around 12000 instrumented
methods, with at most 180 basic blocks in a method. Moreover, trying about 100 runs
of ArgoUML with many different inputs led to a cumulated number of used methods of

6



(a) Original (b) After instrumentation

Figure 3: Java bytecode instrumentation principle (pseudo-Java code)

50000. If needed, we could switch to using a 64 bit long integer to lift these limitations,
but this would increase memory usage.

3.2.3. Instrumented code

Java programs are multi-threaded so runtime flow has to be put in the context of
the actual thread where execution takes place. Our tool thus also records for each event
(method start, method end, basic block start) the running thread number. To do it, every
time an event occurs, the instrumented code calls the Tracer (via the notifyEvent static
method) and passes it the associated event number and the current thread id. The Java
code corresponding to our instrumented bytecode is:

Tracer.eventNotifier(eventNumber, (int)Thread.currentThread().getId());

Figure 3 shows an example of how a piece of source code is instrumented. The left
part 3(a) is the Java code before instrumentation, while the right part 3(b) represents
the source code after instrumentation.

As illustrated in figure 3, instrumentation is done:

• at the beginning of each method. There, eventNumber is composed of event type
‘01’ binary meaning ‘method start’, followed by the method identifier.

• at the end of each method. There, eventNumber is composed of event type ‘10’
binary meaning ‘method end’, followed by the method identifier.

7



• at the beginning of each basic block. There, eventNumber is composed of event
type ‘11’ binary meaning ‘basic block start’, followed by the method identifier,
followed by the basic block identifier within the method.

With this technique, the numerous calls to the Tracer cost time, but we observed
good performance results (see section 5). Since it adds no new method nor any extra
parameter, it preserves the semantics of the original program and the injected code is
the same for all classes, including JRE core classes. However, like any technique which
injects new bytecodes into classes, ours impacts timing and thread scheduling.

3.2.4. Saving dynamic instance types and class loading information

Class identifiers have two purposes: depict the dynamic type of an instance on virtual
and interface call sites, and identify the loaded classes.

To depict the dynamic type of instances on virtual and interface calls, the instru-
mented code is slightly different. When a method starts, the receiver dynamic type is
obtained using the reflexive method getClass():java.lang.Class on this (Sundaresan
et al. (2000)). Then the instrumented code calls method eventNotifierWithInstanceType

of the Tracer, which saves the corresponding class identifier in the output trace.
The pseudo-Java code inserted at the beginning of methods is thus:

Tracer.eventNotifierWithInstanceType(eventNumber,

(int)Thread.currentThread().getId(), this.getClass());

When a class is loaded, the Instrumentor notifies the Tracer which saves this in-
formation in the trace buffer. The event number is composed of event type ’00’ binary,
followed by the identifier of the loaded class.

3.3. Trace neutral tracer

Because both program and tracer run on the same JVM, JBInsTrace uses many JRE
classes which are themselves instrumented. We must separate the execution of the tracer
and the execution of the program to avoid having traces of the tracer in the trace files.
To solve this issue, we resorted to a system of boolean flags that switch tracing on or off.
These flags avoid creating infinite recursion between JRE classes and the Tracer.

First, instrumented bytecode calls the Tracer using the notifyEvent method. The
Tracer changes the authorization boolean to false to forbid tracing. Then the
code of our Tracer is executed. This code relies on the JRE classes, which are them-
selves instrumented, causing these JRE classes to call the Tracer again. This time the
authorization flag is false and forbids tracing, since we are in the Tracer. At the end
of the notifyEvent method, the authorization flag is switched back to true to allow
tracing again.

The same boolean mechanism is used by the Instrumentor to forbid its own tracing,
as shown in figure 4.

The principle is trivial but care must be taken because Java programs are multi-
threaded, so we must constantly track the number of the current thread and manage one
authorization flag per thread.

Figure 5 presents the UML class diagram of our JBInsTrace tracer.
The LockManager class plays a central role in the design of the tracer. It provides a

way to differentiate, in the executed bytecodes, those from the program itself and those
8



Figure 4: Sequence diagram illustrating the technique used to prevent trace pollution

Figure 5: UML Class diagram of our JBInsTrace tracer.

from the tracer. This class stores one Lock object for each thread of the program and
each Lock object contains the authorization boolean. The getAuthorization method
returns the appropriate boolean corresponding to the current thread.

9



3.4. The Tracer

Our Tracer class is a singleton which can be called by any class of the program. This
Tracer simply buffers the list of observed events (integers) before writing them to disk.
The Tracer can manage the event buffer using two modes:

Mode 1 – one unique, shared trace to save the pairs (eventNumber, threadId) for all
threads.

Mode 2 – one trace of events per thread (no sharing),

In mode 1 (one unique trace for all threads), synchronization is mandatory to prevent
pollution and/or dead locks. However, this may drastically slow down the tracer because
of waits to reach the critical zone. The tracer in mode 1 (one unique trace) is thus much
slower than in mode 2 (one trace by thread), but it preserves the thread concurrency
scheduling.

Note that the Tracer is called intensively by the instrumented program so methods
notifyEvent and notifyEventWithInstanceType must be as fast as possible. In fact
the only operations in these methods are:

• check the value of the authorization boolean that corresponds to the current
thread (see figure 4)

• save the (event number, thread ID) pair in the shared buffer (in mode 1), or
save only the event number in the buffer according to the thread ID (in mode
2)

• in notifyEventWithInstanceType an extra operation consists in saving the dy-
namic instance type in the appropriate buffer.

4. Exploiting the program trace and static information

Our JBInsTrace tracer provides files that contain the exact control flow of each thread
at basic block level, plus static information about these basic blocks. We exploit this
information with a trace analyzer (see the rightmost part of figure 1). In this section we
explain how to develop such a trace analyzer for JBInsTrace traces. In subsection 4.1
we explain how to build a new JBInsTrace trace analyzer. Then in subsection 4.2 we
describe how the tracing of exceptions is handled in JBInsTrace. Finally, subsection 4.3
details how we detect native calls.

4.1. Building a JBInsTrace Trace Analyzer

The first step is to read the static information and construct the data structure
representing the observed program. An interesting meta-model of Java programs can be
found in (Hoffmann et al. (2008)): since it takes basic blocks into account it is adapted
to model the static information from JBInsTrace. We used a similar meta-model in
our analyzer. Then, a map that links the integer identifiers of the JBInsTrace trace (see
section 3.2.2) to their corresponding elements in the meta-model instance has to be built.

The functioning of our analyzer is as follows. We relate each event of the trace with
the static information saved. For instance if we find that basic block b has been executed

10



in the trace, we search for the static information of basic block b and see what kind of
bytecode basic block b has. This technique allows to re-simulate the whole execution
call stack and to compute very precise dynamic metrics. For example, for each method
call event in the trace, we can compare the static type of a virtual call site (in the static
information) and the dynamic type of the instance (in the trace), to compute metrics
related to polymorphism such as the metric that counts how many times receiver types
change on call sites.

The authors of (Dufour et al. (2003)) have defined several interesting dynamic metrics
which are implemented in our analyzer. These metrics can be used to categorize programs
according to their dynamic behaviour in five areas: size, data structure, memory use,
concurrency, and polymorphism. Dynamic metrics related to program size and structure,
use of data structures, use of polymorphism, memory footprint and concurrency are
computable with our analyzer. We also use it to compute precise call graphs of programs
and libraries, to feed in our advanced visualization tool (Caserta et al. (2011)).

4.2. Tracking exceptions

The only way the execution flow of a basic block may be disrupted is by an exception,
which causes program control to jump to an exception handler. In some cases, the call
stack has to be popped until the corresponding catch block is found. The try/catch

structure thus has to be recorded, to have each basic block aware of the basic block
identifiers it can potentially jump to. This information allows simulating the call stack
during the analysis phase.

Here is an example of the static information saved on a basic block with two possible
exception handlers:

<basic_block id="5095441"

metrics="7 0 0 1 0 1 0 1 0 0 0 0 2 0 0 1 0 1 0">

<exception_handler_list>

<exception_handler basic_block_id="3764234"

type="java/io/InterruptedIOException" />

<exception_handler basic_block_id="3764235"

type="java/io/IOException" />

</exception_handler_list>

</basic_block>

4.3. Tracking native calls

With our tracing technique, it is the called method that informs the trace about
its beginning and its end, not the caller. Native method calls are traced differently,
because native methods are not coded in Java, hence are not instrumented. Moreover
our technique does not add any new method to classes, because of the limitation on core
JRE classes. Using wrapper methods to detect native calls is thus impossible for us. As
a matter of fact, we use a very simple technique to detect native calls. When analyzing
runtime, we still follow static information about each basic block. When a method call
is found in the basic block static information, we check whether the corresponding call is
present in the actual dynamic trace. If not, we know this call is a native one. Exceptions
thrown in native methods are tracked like other exceptions (see section 4.2).

11



5. Performance

In this section, we show the time performance of our JBInsTrace v0.6 tracer on
several Java benchmarks. We first present results obtained on well-known Open Source
Java software, then results on the SPECjvm2008 benchmark suite. Our tests were made
on a 8-core, 64-bit Intel(R) Xeon(R) CPU E5440 2.83GHz workstation, with 16GB RAM,
running Windows Vista SP1. All tests were performed with our tracer in mode 2 (one
trace by thread).

The benchmarks are:

• ArgoUML v0.28, the leading Open Source UML modeling tool including support
for all standard UML 1.4 diagrams. 5173 classes are loaded during startup.

• JEdit v4.3pre17, a mature programmer text editor with hundreds of person-years
of development behind it, including developing plug-ins development. 2822 classes
are loaded during startup.

• Columba v1.0, an email client written in Java, featuring a user-friendly GUI with
wizards and internationalization support. The runtime of the startup of this inter-
active benchmark loads 3646 classes.

• Apache Ant v1.8.2, a Java library and command-line tool to drive processes de-
scribed in build files as targets and extension points dependent upon each other.
Ant is mainly used to build Java applications. The runtime of the startup of Ant
(performing a compilation of itself) loads 1438 classes. We chose to build Ant itself
because it does activate the most common features that are used to build a typical
java project according to (Andy Zaidman (2008)).

• SPECjvm2008, a benchmark suite that focuses on the performance of the JRE
executing a single application; it reflects the performance of the hardware processor
and memory subsystem (Shiv et al. (2009)). The SPECjvm2008 workload mimics a
variety of common general purpose application computations (Benchmarks (2008)).

An issue with instrumentation is the instrumented program slowdown. In JBInsTrace,
three elements contribute to this: the instrumentation process itself, the instrumented
bytecode which calls the tracer back, and the recording of the static information and
trace to the disk.

Our JBInsTrace tool has two ways of writing the trace files to disk. When memory is
constrained, the trace is incrementally written to the disk, at “stop-the-world” garbage
collector times. This allows a larger trace to be built, without having to retain it all
in memory. Without memory constraints, the entire trace can be kept in memory and
dumped to disk at the very end of the execution.

Table 1 presents performance results on ArgoUML, JEdit, Columba and Ant, showing
the impact of JBInsTrace on the benchmark runtime. Our goal is to demonstrate that
the instrumented software is still fully usable even with our tracer switched on. The
first three benchmarks are interactive programs, but to avoid disturbing performance
measurements with human interaction and for the sake of repeatability we only traced
their startup. The second column in the table shows the benchmark execution time
without tracer. The 3rd and 4th columns show the runtime figures with the tracer on.

12



Column 3 is the execution time, while column 4 is the time to save data to disk (we
had enough memory to keep the entire trace in memory and dump it at the end of the
runtime).

Software Without With the tracer
the tracer Execution Recording

ArgoUML 9 44 152
JEdit 6 14 15

Columba 7 17 19
Ant 5 40 170

Table 1: Impact of our JBInsTrace tracer (execution times, in seconds).

Regarding total execution times with and without the tracer, the slowdown factor is
21.8 for ArgoUML, 4.8 for JEdit, 5.1 for Columba and 42 for Ant. Obviously, there is
still work to do to improve the performance of our tracer.

But speed is not our main goal: we first want to acquire a very detailed trace of the
execution, including JRE classes, while keeping the tool easy to use and very flexible
regarding the information that can be collected at runtime. This of course implies some
performance penalty.

However, looking at how the different stages contribute to the slowdown in Table 1
shows that most of the time is spent saving data to disk: the larger the trace saved to disk,
the higher the slowdown factor. This explains the difference of performances between
these benchmarks, because slowdown factors correspond to the trace sizes magnitude.
Note that the size of the trace depends on the size of the scenario and operation performed
in the software. The time to write the data to disk depends strongly on hardware. For
example, it should be significantly lower with a SSD hard drive.

Although the time spent to write to disk may not be neglected, is it important to
remember that our main goal is to maintain a good perceived user experience, keeping
the instrumented software fully usable at runtime, even when the tracer runs.

Moreover, in our tests the trace fitted in memory until the end of the tracing, so
recording did not bother the user during the execution of the software per se.

For larger software systems, nonetheless, the trace does not fit in memory. In such
cases, JBInsTrace has to periodically pause the execution to dump the trace to disk.

When the time spend to write data to disk is factored out, the — perceived —
slowdown factors during the execution phase are 4.9 for ArgoUML, 2.3 for JEdit, 2.4 for
Columba and 8 for Ant. This shows that the software remains usable with our tracer
switched on, which is further confirmed by usability tests performed with actual users.

Figure 6 presents JBInsTrace performance on the famous SPECjvm2008 benchmark
suite. These are much smaller, non-interactive and computationally intensive bench-
marks. The overhead is computed as operations

second and the slowdown factor is computed as
operations/second without profiling
operations/second with profiling . For this experiment the time to write the trace to the

disk at the end of the profiling is not accounted. The tests were performed with both
HotSpot Client and HotSpot Server JVMs, with little difference in the results.

The overall results with SPECjvm2008 are consistent with the ones obtained with our
5 larger Java applications, although the intensity of computations degrades performance

13



a bit. The sunflow benchmark is a pathological case, not very representative of the actual
performance of JBInsTrace, that we have to investigate.

Figure 6: Performance results on the SpecJVM Benchmark.

6. Conclusion and future work

In this paper, we presented our tracing technique and tool, JBInsTrace. JBInsTrace
makes it possible to trace what happens at runtime in Java programs at basic block level,
on program classes as well as JRE classes using only dynamic bytecode instrumentation.

This complete tracing including JRE classes, at basic block level, generates a very
detailed and complete trace of the runtime, representing a huge amount of information
to process. Experimental results show that our tracer has a reasonable performance
penalty. However pure speed is not our main goal: perceived user experience is more
relevant and JBInsTrace provides a good one. Furthermore, JBInsTrace is mainly a
research-oriented tool; nonetheless its scalability limits can be found in industrial software
(Zaidman (2006)).

Our implementation is based on the Java agent service bundled with Java 1.6. As a
result, JBInsTrace is very easy to install and ready to use, with no impact on existing
Java library files, which makes life easier for users.

Several ways exist to improve our technique and tool. The first direction of our
future work will imply performing extensive benchmarking of Java programs with our
tracer to gather broader results. The second direction will add new methods in classes
when limitations to transform core JRE classes will be lifted. We will especially add
a finalize() to every class of the program, to detect and trace object destructions
when they occur. Another future direction concerns how to effectively exploit runtime
information to have a better understanding of software runtime and to optimize programs.

14



7. References

Andy Zaidman, S. D., 2008. Automatic identification of key classes in a software system using webmining
techniques. Journal of Software Maintenance and Evolution: Research and Practice 20 (6), 387–417.

Arisholm, E., Briand, L., Foyen, A., 2004. Dynamic coupling measurement for object-oriented software.
Software Engineering, IEEE Transactions on 30 (8), 491–506.

Ball, T., 1999. The concept of dynamic analysis. In: Software EngineeringESEC/FSE99. Springer.
Benchmarks, S., 2008. Standard performance evaluation corporation. http://www.spec.org/jvm2008/.
Binder, W., Hulaas, J., Moret, P., 2007. Advanced Java bytecode instrumentation. In: Proceedings of the

5th international symposium on Principles and practice of programming in Java. ACM, pp. 135–144.
Bruneton, E., 2007. Asm 3.0 a java bytecode engineering library. URL: http://download. forge. ob-

jectweb. org/asm/asmguide. pdf.
Bruneton, E., Lenglet, R., Coupaye, T., 2002a. ASM: a code manipulation tool to implement adaptable

systems. Adaptable and extensible component systems.
Bruneton, E., Lenglet, R., Coupaye, T., 2002b. Asm: a code manipulation tool to implement adaptable

systems. Adaptable and extensible component systems 30.
Caserta, P., Zendra, O., Bodénès, D., Sep. 2011. 3D Hierarchical Edge Bundles to Visualize Relations

in a Software City Metaphor. In: 6th IEEE International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT 2011). Williamsburg, États-Unis, pp. 1–8.

Chiba, S., 2004. Javassist: Java bytecode engineering made simple. Java Developers Journal 9 (1).
Christensen, A., Møller, A., Schwartzbach, M., 2003. Precise analysis of string expressions. Static Anal-

ysis, 1076–1076.
Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., Koschke, R., 2009. A systematic survey

of program comprehension through dynamic analysis. Transactions on Software Engineering 35 (5),
684–702.

Dahm, M., van Zyl, J., Haase, E., 2002. The bytecode engineering library (BCEL).
Dahm, M., et al., 2001. Byte code engineering with the bcel api. Java Informationstage 99, 267–277.
Dufour, B., Driesen, K., Hendren, L., Verbrugge, C., 2003. Dynamic metrics for Java. ACM SIGPLAN

Notices 38 (11), 149–168.
Hirzel, M., Diwan, A., Hind, M., 2004. Pointer analysis in the presence of dynamic class loading. ECOOP

2004–Object-Oriented Programming, 96–122.
Hoffmann, B., Pérez, J., Mens, T., 2008. A case study for program refactoring.
Kuleshov, E., 2007a. Using ASM framework to implement common bytecode transformation patterns.

Proc. of the 6th AOSD, ACM Press.
Kuleshov, E., 2007b. Using the asm framework to implement common java bytecode transformation

patterns.
Lindholm, T., Yellin, F., 1999. Java virtual machine specification. Addison-Wesley Longman Publishing

Co., Inc. Boston, MA, USA.
Mock, M., 2003. Dynamic analysis from the bottom up. In: WODA 2003 ICSE Workshop on Dynamic

Analysis. Citeseer, p. 13.
Sarimbekov, A., Moret, P., Binder, W., Sewe, A., Mezini, M., 2011. Complete and Platform-Independent

Calling Context Profiling for the Java Virtual Machine. In: Proceedings of the 6th Workshop on
Bytecode Semantics, Verification, Analysis and Transformation. pp. 1–15.

Shiv, K., Chow, K., Wang, Y., Petrochenko, D., 2009. SPECjvm2008 performance characterization.
Computer Performance Evaluation and Benchmarking, 17–35.

Sreedhar, V., Burke, M., Choi, J., 2000. A framework for interprocedural optimization in the presence
of dynamic class loading. In: Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation. ACM, pp. 196–207.

Sun Microsystems, I., 2008. Java platform standard ed. 6. package java.lang.instrument.
Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon, E., Godin, C., 2000.

Practical virtual method call resolution for java. In: Proceedings of the 15th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications. ACM, pp. 264–280.

Villazon, A., Binder, W., Moret, P., 2009. Flexible Calling Context Reification for Aspect-Oriented
Programming. In: Proceedings of the 8th ACM international conference on Aspect-oriented software
development. pp. 63–74.

White, A., 2002. SERP, an Open Source framework for manipulating Java bytecode.
http://serp.sourceforge.net/.

Zaidman, A., 2006. Scalability solutions for program comprehension through dynamic analysis. In: Pro-
ceedings of the 10th European Conference on Software Maintenance and Reengineering. IEEE.

15


