
HAL Id: hal-00736261
https://hal.inria.fr/hal-00736261v2

Submitted on 1 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-deterministic Population Protocols (Extended
Version)

Joffroy Beauquier, Janna Burman, Laurent Rosaz, Brigitte Rozoy

To cite this version:
Joffroy Beauquier, Janna Burman, Laurent Rosaz, Brigitte Rozoy. Non-deterministic Population
Protocols (Extended Version). [Research Report] 2012. �hal-00736261v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49860765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00736261v2
https://hal.archives-ouvertes.fr

Non-deterministic Population Protocols (Extended Version)

Joffroy Beauquier12, Janna Burman12, Laurent Rosaz1, and Brigitte Rozoy12

1 LRI - CNRS UMR 8623, Université Paris Sud XI, Bât 650, 91405 Orsay cedex, France,
{jb, burman, rozoy, rosaz}@lri.fr, fax: +33 (0)1 69 15 65 79, tel: +33 (0)1 69 15 68 60

2 INRIA Saclay - Ile de France, Grand Large project

Abstract. In this paper we show that, in terms of generated output languages, non-deterministic
population protocols are strictly more powerful than deterministic ones. Analyzing the reason for this
negative result, we propose two slightly enhanced models, in which non-deterministic population pro-
tocols can be exactly simulated by deterministic ones. First, we consider a model in which interactions
are not only between couples of agents, but also between triples and in which non-uniform initial states
are allowed. We generalize this transformation and we prove a general property for a model with inter-
actions between any number of agents. Second, we simulate any non-deterministic population protocol
by a deterministic one in a model where a configuration can have an empty output.

Non-deterministic and deterministic population protocols are then compared in terms of inclusion of
their output languages, that is, in terms of solvability of problems. Two transformations, which realize
this inclusion, are presented. The first one uses (again) the natural model with interactions of triples,
but does not need non-uniform initial states. As before, this result is generalized for the natural model
with interactions between any number of agents. The second transformation is a parameterized one
with parameters depending on the transition graph of the considered non-deterministic protocol and
on the population.

Note that the transformations in the paper apply to a whole class of non-deterministic population
protocols (for a proposed model), in contrast with the transformations proposed in previous works,
which apply only to a specific sub-class of protocols (satisfying a so called “elasticity” condition).

Keywords: networks of mobile agents, population protocols, non-determinism vs. determinism

1 Introduction

Population protocols have been introduced [2] as a computation model (of functions or predicates) for
asynchronous networks of simple (anonymous, resource limited) mobile agents, interacting pairwise. A char-
acterization of what can be computed in this model is given in [4], namely the first order predicates in
Presburger arithmetic. There, the protocols are assumed to be deterministic, meaning that, when two agents
interact, there is a unique executable transition. The computational power of non-deterministic population
protocols has been only partially studied in [1, 5].

The question concerning the comparison, in terms of computability and expressiveness, of deterministic
and non-deterministic machines is a natural question in all computation models. Concerning population
protocols, this question appears at different levels.

As population protocols were originally introduced in the context of function and predicate computation
[2], at the first level, the question is whether or not deterministic and non-deterministic population protocols
compute the same functions and the same predicates (in the sense of [2, 4]).

The second level concerns expressiveness in general. Some common method to define any problem (and
not only a problem of function or predicate computation) is to define a set of (correct) execution sequences
(see, e.g., [9]). An execution of a population protocol generates an output sequence, each configuration being
associated to an output value. Thus, a problem can be also defined by the set of (correct) output sequences.
Then, a population protocol can be defined to solve a problem, if its (non-empty) set of output sequences is

included in the set of output sequences characterizing the problem.3 At this level, the question is whether or
not non-deterministic population protocols solve the same family of problems as the deterministic ones. In
other words, are they equivalent in terms of the problems they can solve? This issue is not only theoretical.
Indeed, implementing non-determinism is usually made by randomization. However, non-determinism is not
randomization. Why using randomization, if a deterministic solution for the same problem is available?
At the same time, designing a non-deterministic solution is sometimes easier and more elegant than the
equivalent deterministic one. Thus, the availability of automatic transformers of non-deterministic protocols
into deterministic ones, could be of some help for a developer. Note that such transformers are generally a
by-product of the study on expressiveness.

The third level concerns the generating power of population protocols. In finite automata and language
theory, a label is associated to each transition, so that an execution generates a word, and an automaton
produces a language. The Rabin and Scott construction [8] shows that, in terms of generated languages,
non-deterministic and deterministic finite automata are equivalent, both generating the family of regular
languages. However, language theory is related to programming language analysis and compilation, so its
tools and outcomes hardly apply in a model of mobile agents. For instance, the definitions of non/determinism
in population protocols are very different. Even if the rules defining a population protocol are deterministic,
the resulting global transition system is not, because of the unpredictable interactions assumed between the
agents. What is more relevant for the study of the generating power of population protocols is to consider
and compare (for equivalence or inclusion) the generated languages of output sequences.

To motivate the study on this third level, note that proving inclusion of the output language of a protocol
in the output language of another one implies that the former protocol solves the same problem as the latter.
This may appear useful in practice, as already explained before in context of solvability of problems. At the
same time, having equivalence of generated output languages can be also of practical help. For instance, if an
implementation of a deterministic version of a protocol is preferable to that of a non-deterministic one (e.g.,
due to some development cost reasons), it can be useful and even necessary to have the same set of output
sequences generated by the corresponding deterministic protocol. For instance, one reason may be efficiency
in terms of time complexity. That is, e.g., the average complexity or the complexity of prevalent execution
scenarios could be much better when concerning the larger set of executions/output sequences. Another
reason may be the necessity to perform statistics over the whole set of execution/output sequences that can
be generated by the non-deterministic protocol. Thus, it will be helpful to study whether the deterministic
version of the protocol generates the same language.

Now, we summarize what is already known and what are the new results in this paper about population
protocols in terms of the three types of questions explained above. First, the question about the computational
power (in terms of predicate or function computability) of non-deterministic population protocols has been
already raised in [3]. One can consider it received an answer in [1], where it is actually only stated that the non-
deterministic population protocols compute exactly the Presburger predicates, exactly like the deterministic
ones.4

In the context of problem solvability in general, (rather than in the context of computability of predicates
or functions), [5] proves that the protocols solving the, so called, elastic problems (elastic behaviors, in terms
of [5]), have a deterministic counterpart solving the same problem. To define elastic problem, first, define
the repetition closure of a sequence t as the set of sequences obtainable from t by repeating each element of
t one or more times. Extend this definition to a set of sequences O by taking the union of repetition closures
of every sequence t ∈ O. Then, O is said elastic if it is closed by repetition closure. An elastic problem is
a problem characterized by an elastic set of output sequences. Note however that this result of [5] does not
imply that the output language of the deterministic counterpart is included in the output language of the

3 One can see the terms “problem”, “output sequence” and “solving a problem” as equivalent to the terms “behavior”,
“output trace” and “implementing a behavior”, respectively. These terms are used in the literature about population
protocols as well (see, e.g., [5, 6]).

4 In some unpublished submitted version, one can find only the sketch of proof of the statement. There, the proof
uses a transformation technique also used in [5] and one can understand how a complete equivalence proof would
use this transformation.

2

given non-deterministic protocol. Still, one can deduce the following different result for some smaller class
of protocols that we call strongly elastic.

A population protocol is strongly elastic, if for every rule (p, q) → (p′, q′) of the protocol, there is an
idempotent rule (p, q) → (p, q). Then, it can be easily deduced from [5] that, if a problem is elastic and if
there exists a strongly elastic non-deterministic population protocol solving this problem, then there exists
a transformation giving a deterministic population protocol solving the same problem and moreover, with
an output language included in the output language of the non-deterministic protocol.

However, the transformation in [5] does not provide the equality between the output languages of the
strongly elastic non-deterministic population protocol and of its deterministic transformed version. In this
paper, we study a way to obtain such an equality for population protocols in general (Sec. 3). Unfortunately,
we come with a counter example (Sec. 3.1). When studying carefully the reason for this negative result,
it appears that a natural way for simulating the non-determinism in the transitions of a non-deterministic
population protocol is to use the non-determinism in the interactions between the agents. The negative result
comes from the fact that, when there are not enough possible interactions between agents, a high degree of
non-determinism in the transitions cannot be simulated.

In order to circumvent this negative result, we propose (in Sec. 3.2) to increase the number of possible
interactions by allowing interactions between more than two agents. Without changing the total number of
agents, this allows more non-determinism. As a matter of fact, we prove that a non-deterministic population
protocol with pairwise interactions can be exactly simulated by a deterministic population protocol with
three agent interactions, under the assumption that the initial states of the agents may be different. We
show how this result can be generalized to k agent interactions, for any integer k > 1.

A second attempt to obtain equality of output languages consists in modifying slightly the definition of
what can be an output value of a configuration (Sec. 3.3). Thus, an empty output value for a configuration
is introduced such that, when it appears in the output sequence, it is taken as an identity element. We
show that, in this extended model, the equality of output languages of non-deterministic and deterministic
population protocols is obtained.

The results about equality of output languages yield also results about inclusion. However, we try to
weaken the assumptions (that are made to obtain equality) in order to obtain stronger results about inclusion.
It happens that, when considering interactions with more than two agents, we do not need non-uniform initial
agent states, as we require for obtaining equality (see Sec. 4.1). This involves that, if the model does not
restrict the number of agents in the interactions, non-deterministic and deterministic population protocols
are equivalent, in terms of solvability of problems.

Finally, in the original model of pairwise interactions, we extend the result of inclusion for strongly
elastic population protocols to the whole class. Contrary to [5], we cannot provide a transformation that
is independent from the non-deterministic population protocol it transforms. We believe that such a gen-
eral transformation does not exist and we explain the reason why (see appendix). However, for getting the
inclusion result, we do not need this independence. Indeed, in Sec. 4.2, we propose a parameterized transfor-
mation. The parameters are the considered non-deterministic protocol and the population (the number of
agents and their interaction graph). Given these parameters, the transformation constructs a deterministic
population protocol solving the same problem as the given non-deterministic one.

2 Basic Model and Notations

As a basic model, we use the model of population protocols, as defined in [5, 6]. A population Â consists of
a set A of n agents together with a weakly connected directed graph G(A, E). An agent represents a finite
state sensing device and n is unknown to the agents. G(A, E) is called the interaction (or communication)
graph, where E ⊆ A×A. An edge (u, v) ∈ E represents the possibility of a communication (an interaction)
between u and v in which u is the initiator and v is the responder.

Population protocols can be modeled as transition systems. Thus, each agent is represented by the same
finite transition system. The states of agents are from a finite set Q. Each agent has a constant input value
and different agents may have different input values. For simplicity and as we assume constant input values,

3

we consider the inputs as a part of the state of an agent. There is an output value associated to each state
of an agent. A transition function δ maps each element of Q×Q to a subset of Q×Q. Let (p, q) ∈ Q×Q. If
(p′, q′) ∈ δ(p, q), then (p, q) → (p′, q′) is called a transition, and (p, q) → δ(p, q) is called a rule. When, two
agents u, in state p, and v, in state q, interact (meet), respectively playing the roles of initiator and responder,
they execute a transition (p, q) → (p′, q′) such that (p′, q′) ∈ δ(p, q). As a result, u changes its state from p to
p′ and v from q to q′. It is possible that p = p′ and/or q = q′. The transition function and the protocol are
deterministic, if δ(p, q) always contains just one pair of states (in other words, if each rule provides just one
transition). Otherwise, if |δ(p, q)| = k > 1, δ and the protocol are said non-deterministic (then u, v execute
one of the k transitions in δ(p, q) chosen non-deterministically). Let us call k the degree of non-determinism
of the rule (p, q) → δ(p, q). Let d = max(p,q)∈Q×Q{|δ(p, q)|} be the degree of non-determinism of δ and of
the protocol. For simplicity, for any non-deterministic protocol, if for some (p, q) ∈ Q × Q, |δ(p, q)| < d,
we duplicate some pairs of states in δ(p, q) in order to obtain |δ(p, q)| = d. Thus, w.l.o.g., we assume that
∀(p, q) ∈ Q×Q, |δ(p, q)| = d.

A population protocol is also a finite transition system whose states are called configurations. A configu-
ration is a mapping C : A → Q. A subset of configurations C0 defines the initial configurations. We say that
C goes to C ′ via pair (interaction) π = (u, v), denoted C

π→ C ′, if the pair (C ′(u), C ′(v)) is in δ(C(u), C(v))
and for all w ∈ A \ {u, v}, C ′(w) = C(w). We say that C can go to C ′ in one step (or C ′ is reachable in

one step from C), denoted C → C ′, if C
π→ C ′ for some edge π ∈ E. If there is a sequence of configurations

C = C0, C1, . . . , Ck = C ′, such that Ci → Ci+1 for all i, 0 ≤ i < k, we say that C ′ is reachable from C,

denoted C
∗→ C ′.

An execution is an infinite sequence of configurations C0, C1, C2, . . . such that C0 ∈ C0 and for each i,
Ci → Ci+1. The output of a configuration C is the multi-set of the output values of agents in C. The output
word (or the output trace) of an execution e = C0, C1, C2 . . . is a sequence O0, O1, O2, . . . resulting from the
concatenation of the successive outputs of the configurations of e. That is, for all i ≥ 0, Oi is the output of
the configuration Ci. The set of output words of a protocol P is called the (generated) output language of
the protocol and denoted by L(P).

Let P1 and P2 be two protocols with sets of states Q1 and Q1×Q′ respectively, for some set Q′. For a state
s2 = [s1 s′] ∈ Q1 ×Q′ of P2, where s1 ∈ Q1 and s′ ∈ Q′, ΠP1(s2) = s1. That is, ΠP1(s2) denotes the state of
P1 which is the projection of s2 on P1 (in other words, which is the mapping of s2 to the state component
of P1). We extend the notation of Π in the natural way to configurations, sets of states or configurations,
rules, transitions and executions.

A problem is defined by some conditions on executions, or equivalently by the sub-set of the executions
that satisfy the conditions. As an output word associated to an execution can be defined to be the execution
sequence itself (by defining the output of each agent as being the whole state), a problem can be well defined
by giving conditions only on output words. Thus, w.l.o.g. and for the sake simplicity, we assume that a
problem is defined by conditions on output words, i.e., by a sub-set B of output words. A population protocol
is said to solve a problem, if and only if the set of its output words O is non-empty and each output word
o ∈ O satisfies the conditions defining the problem, i.e., o ∈ B or equivalently, O ⊆ B (see, e.g., [9]).

The transition graph G(P, Â) of a protocol P running in population Â is a directed graph whose nodes
are all possible population configurations and whose edges are all possible transitions on those nodes. A
strongly connected component of a directed graph is final iff no edge leads from a node in the component to
a node outside.

As originally for population protocols, we assume a strong fairness condition on the executions that is
called global fairness. An execution is said globally fair, if for every two configurations C and C ′ such that
C → C ′, if C occurs infinitely often in the execution, then C ′ also occurs infinitely often in the execution.

3 Results about Equality of Output Languages

In this section, we study the strong relation of equality between the sets of output languages of deterministic
and non-deterministic population protocols. First, we give a negative result (Theorem 1, Sec. 3.1) showing

4

that in the basic model of Sec. 2, in terms of the equality between the sets of generated output languages, non-
deterministic protocols are more powerful. Then, in sections 3.2 and 3.3, we propose two model extensions
that allow to circumvent this negative result.

3.1 A Negative Result

The following example provides some simple preliminary intuition for the result stated in Theorem 1 below.
Consider a population of two agents in the initial configuration (q0, q0) and the non-deterministic protocol
P with two rules (q0, q0) → {(q0, q0), (q1, q1)} and (q1, q1) → (q0, q0). Assume that the output of an agent
in P is its state. Then, each output word is an infinite concatenation of the output sequences of the form
(q0, q0)

k, (q1, q1), for any positive integer k. Thus, P has an output language of infinite size. However, the
output language of any deterministic protocol executing on two agents (with finite states) has a finite size.
This example proves the theorem below for two agent populations. Note that the same argument is wrong in
larger populations, since then, intuitively, there exists a non-determinism in the choice of interactions that
can lead to an infinite output language size. In the proof of the theorem, we give an example that works for
a population of any size n.

Theorem 1. Given a population of size n, the set of output languages of non-deterministic population
protocols strictly contains the corresponding set of deterministic population protocols.

Proof. It consists in exhibiting an example of a non-deterministic protocol whose output language is not
equal to the output language of any deterministic protocol.

Consider a population of n agents and a non-deterministic population protocol P . Let t = n·(n−1). Let P
to have a single non-deterministic rule (p0, p0) → {(p1, p1), (p2, p2), . . . , (pt+1, pt+1)}, and t+1 deterministic
rules (p1, p1) → (p0, p0), (p2, p2) → (p0, p0), . . . , (pt+1, pt+1) → (p0, p0). Let oi be the output value associated
to a state pi. We choose oi = pi. The initial configuration of P is C0 = (p0, p0, p0, p0). Note that the output of
C0 is the multi-set M0 = {p0, p0, p0, p0}. Assume, for the sake of contradiction, that there is a deterministic
population protocol P ′ such that L(P ′) = L(P).

In P , consider all the prefixes of execution of a type e = (C0, C). There are exactly t + 1 different
configuration output prefixes corresponding to these execution prefixes. Now, consider the concatenation of
two such prefixes e e , which is also a prefix of a possible execution in P . The number of different configuration
output prefixes for e e is (t+1)2, and more generally, for the concatenation of k prefixes of e , the number is
(t+1)k. Denote byHk the set of these output prefixes (|Hk| = (t+1)k). Since L(P ′) = L(P), all the prefixes in
Hk are also output prefixes of P ′. However, if P ′ has a single configuration with output {p0, p0, p0, p0} = M0,
P ′ can “generate” only t output prefixes of length 2, starting from C0. More generally, P ′ can “generate”
only tk output prefixes composed by concatenation of k output prefixes of length 2, starting from C0. The
number t = n · (n− 1) is the maximum number of different pairs of states that n agents can have (with the
distinction between initiator and responder).

Thus, since |Hk| = (t+1)k > tk, but L(P ′) = L(P), P ′ has necessarily more than one configuration with
output {p0, p0, p0, p0} = M0. Assume then that P ′ has r different configurations with output M0. Each of
them “generates” at most tk different concatenated (k times) output prefixes of length 2 starting with C0.
That is, P ′ can “generate” at most r · tk different such output prefixes. However, since L(P ′) = L(P), r · tk

must be at least as large as (t + 1)k. This involves that r is at least as large as (t+1)k

tk
and that, for every

integer k ≥ 1. A contradiction arises from the fact that r is bounded by the number of the configurations of
P ′ which is finite. ⊓⊔

An immediate corollary from the proof of Theorem 1, is that one of the reasons for the theorem correctness
is the assumption that each agent in population protocols has only a finite size state. One can also notice that
the negative result comes from the fact that, when there are not enough possible interactions between agents,
a high degree of non-determinism in the transitions cannot be simulated by any deterministic protocol. That
is why, increasing the number of agents in an interaction, as in Sec. 3.2, allows to overcome the negative
result.

5

3.2 Equality with Interactions of More than Two Agents

One way to increase the degree of non-determinism through the interactions of agents is to consider a more
general population protocol model, where the interactions concern more than only two agents. The issue of
considering such a generalization was raised already in [2], but to our knowledge, it was not dealt in the
literature in the context of non-deterministic protocols as in this work.Thus, to obtain the desired equality
of output languages, we consider interactions involving more than two agents. Roughly, the idea is to assign
a different integer from [1, d] to each agent, where d is the degree of non-determinism of the given non-
deterministic protocol. Then, we simulate deterministically the kth (k ∈ [1, d]) choice of a non-deterministic
transition between two agents u and v, by an interaction between three agents u, v and an agent holding
the integer k.

Let us denote by PPk the model of population protocols in which possible interactions are between k
agents or less. The definition of PPk follows the definition of the basic model of population protocols in
Sec. 2. However, for PPk, we should generalize the definition of the transition function δ and the notion of
initiator and responder. During an interaction of k′ agents, u1, u2, . . . , uk′ , 2 ≤ k′ ≤ k, we say that u1 is the
initiator, u2 is the primary responder, u3 is the secondary responder, and so on. Now, δ maps each element
in Qk′

, for each 2 ≤ k′ ≤ k, to a subset of Qk′
. We first prove the following result.

Theorem 2. Consider a non-deterministic population protocol P1 with the degree of non-determinism d.
Let Â, be any population with n ≥ d+2 and a complete interaction graph. Given a protocol P1 executing on
Â in PP2 (the basic model of Sec. 2), there exists a deterministic population protocol P2 executing on Â in
PP3 (with d+ 2 non-uniform initial states)5 and generating the same output language as P1.

The proof consists in, first, constructing for any population protocol P1 a deterministic population pro-
tocol P2 and then, in proving that L(P1) = L(P2). Thus, we first construct P2. As explained in Sec. 2, we
assume, w.l.o.g., that all the rules of P1 have the same degree d of non-determinism. The state of an agent
in P2 is a couple [p c], where p is a state of P1 (p is the projection of [p c] on P1, denoted ΠP1([p c]) = p),
and c is an input value of P2 which is an integer in [1,m],m = d+2. The purpose of c is to serve as a switch
value to decide deterministically, in P2, on a transition of a non-deterministic rule of P1. For every initial
configuration C0 of P1, there is one initial configuration C ′

0 of P2 such that ΠP1(C
′
0) = C0. We make an

important assumption about the input value c. During an execution, each value in [1,m] is the input value c
of at least one agent (in all this section, we assume n ≥ m). The output of the state [p c] in P2 is the output
of p in P1. To each rule (p, p′) → {(p1, p′1), (p2, p′2), ..., (pd, p′d)} of P1, the construction associates three types
of deterministic rules of P2:

i. For c in [1, d], ([p c1], [p
′ c2], [q c]) → ([pc c1], [p

′
c c2], [q c])

ii. For c1 in [1, d], ([p c1], [p
′ c2]) → ([pc1 c1], [p

′
c1 c2])

iii. For c in {d+ 1, d+ 2}, ([p c1], [p
′ c2], [q c]) → ([pc2 c1], [p

′
c2 c2], [q c])

The intuition behind the rules of P2 is, for any pair of states (p2, p
′
2) with ΠP1(p2, p

′
2) = (p, p′), to be able

to simulate any possible transition in the set δ(p, p′) of P1, and this by executing only one transition of P2.
For obtaining the equality of output languages, it is important to be able to execute exactly one transition

for this purpose.6 Thus, the rule of type i. serves to execute a projected transition (p, p′)
(u,v)→ (pc, p

′
c), for

two agents u, v, in the case where there exists another agent holding the switch input value c. Otherwise,
the rules of type ii. and iii. are provided for the case where the same “needed” switch value is unique and
held either by the initiator or by the primary responder (respectively). Below, we prove the equality of the
output languages of P1 and P2. For that, we first prove the following basic lemma that actually validates
the intuitive ideas explained above.

5 Note that this assumption cannot be used to assign identifiers to agents, if n≫ d+2. As for population protocols,
it is generally assumed that n ≫ |Q|, that implies that n ≫ d + 2. In any case, we show in the sequel (Sec. 4.1)
that this assumption can be dropped to obtain a weaker property of inclusion for the output languages.

6 Note, however, that by changing the model definitions, e.g., for the output words of a protocol, as in Sec. 3.3,
it is possible to drop this requirement when still having the equality of output languages for non/deterministic
protocols.

6

Lemma 1. Let C2 be a configuration of the deterministic protocol P2 given by the construction above. Let
C1 = ΠP1(C2) and let C ′

1 be any configuration of P1 such that C1 → C ′
1. Then, there exist a configuration

C ′
2 of P2 and C2 → C ′

2 such that C ′
1 = ΠP1(C

′
2).

Proof. Let C ′
1 be reachable from C1 by executing a transition (p, p′) → (pi, p

′
i), corresponding to the ith

choice in δ(p, p′). As C1 is a projection of C2, in C2, there are two agents, one in a state [p cp], and another
one in a state [p′ cp′]. If cp = i, then applying rule ii. of P2, in configuration C2, gives a configuration C ′

2 whose
projection is C ′

1. Otherwise, if cp′ = i, then, by the construction of P2, there are at least two agents with
switch value equal to either d+1 or d+2. Then, rule iii. can be applied in C2, which results in configuration
C ′

2 whose projection is C ′
1. In case neither cp, nor cp′ is equal to i, there is at least one additional agent

with a switch value equal to i. Then, rule i. can be applied in C2, which results in configuration C ′
2 whose

projection is C ′
1. Thus, in all cases, C ′

2 is reachable from C2. ⊓⊔

Proof (of Theorem 2). To prove the theorem, we first show that given any globally fair execution e2 of P2,
its projection e1 = ΠP1(e2) is a globally fair execution of P1 and thus the output word of e2 is in the output
language of P1. Then, we show that for every globally fair execution e1 of P1, there is a globally fair execution
of P2 whose projection on P1 is e1 and thus, the output word of e1 is in the output language of P2.

Thus, let e2 be a globally fair execution of P2. The projection e1 = ΠP1(e2) is an execution of P1, since,
by construction, the projection of each transition of P2 is a transition of P1. In the following, we show that e1
is globally fair. Let C1 be a configuration of P1 appearing infinitely often in e1, and let C ′

1 be a configuration
reachable in one step from C1, C1 → C ′

1. Then, since e1 is the projection of e2, there are infinitely many
configurations appearing in e2, whose projection is C1. Thus and by the finiteness of the states of the agents,
there is such a configuration C2, appearing infinitely often in e2. By Lemma 1, a configuration C ′

2 of P2

whose projection is C ′
1 is reachable from C2 in one step. As e2 is globally fair, C ′

2 appears infinitely often in
e2. Thus C

′
1 appears infinitely often in e1. That proves that e1 is globally fair.

Now consider a globally fair execution e1 of P1. Consider the prefix of e1 of length r, er1, for some
integer r ≥ 1 and assume (by induction on r) that there exists a segment er2 , prefix of an execution of
P2, with projection er1 on P1 (the basis of the induction, for r = 1, holds by construction). Assume that
er+1
1 = (er−1

1 , C1, C
′
1) and er2 = (er−1

2 , C2). By Lemma 1, a configuration C ′
2 of P2 whose projection is C ′

1 is
reachable from C2 in one step. Thus, there is a prefix of an execution of P2, e

r+1
2 , whose projection on P1 is

er+1
1 . Thus, by induction, an execution e2 whose projection is e1 can be built. As e1 is globally fair and as
the switch values are constant, e2 is also globally fair. ⊓⊔

The result of Theorem 2 can be generalized for any k.

Theorem 3. Consider any population Â with n ≥ d + k2 and complete interaction graph. For any non-
deterministic population protocol on Â in PPk, there exists a deterministic population protocol on Â in
PPk+1 (with d+ k2 non-uniform initial states) with the same output language.

Proof Sketch. For the general case, we propose two kinds of transformation protocols in PPk+1. One, denoted
P3, is a generalization of the protocol P2 (given above for k = 2). Thus, in P3, for any k > 1, m = d + k2.
During any execution, each value in [1,m] is the input value c of at least one agent. To each rule of P1,
(p1, p2, . . . , pk′) → {(p11, p12, . . . , p1k′), (p21, . . . , p2k′), . . . , (pd1, . . . , pdk′)}, for 2 ≤ k′ ≤ k, the construction
associates two types of deterministic rules of P3:

i. For c in [1, d],
([p1 c1], [p2 c2], . . . , [pk′ ck

′
], [q c]) → ([pc1 c1]), [pc2 c2], . . . , [pck′ ck

′
], [q, c])

ii. For c in [d+ x · k + 1, d+ x · k + k] and for any integer x, 0 ≤ x < k′,
([p1 c1], [p2 c2], . . . , [p′k ck

′
], [q c]) → ([pcx1 c1], [pcx2 c2], . . . , [pcxk′ ck

′
], [q c])

Another transformation protocol to simulate the non-deterministic protocol P1, denoted P ′
3, differs from P3

by the value of m, the conditions on the inputs and by the transition function δ. Thus, for P ′
3, m = d. During

any execution, each value in [1,m] is the input value c of at least k + 1 agents. To each rule of P1,
(p1, p2, . . . , pk′) → {(p11, p12, . . . , p1k′), (p21, . . . , p2k′), . . . , (pd1, . . . , pdk′)}, for 2 ≤ k′ ≤ k, the construction

7

associates the following deterministic rule of P ′
3:

([p1 c1], [p2 c2], . . . , [pk′ ck
′
], [q c]) → ([pc1 c1], [pc2 c2], . . . , [pck′ ck

′
], [q c]). To see the correctness of the

transformations, notice that Lem. 1 holds also for P3 and P ′
3. That is, given any configuration C3 of the

transformed protocol (P3 or P ′
3) and its projection C1 on P1, for any C ′

1 such that C1 → C ′
1, there exists a

configuration C ′
3 such that C3 → C ′

3, and C ′
1 = ΠP1(C

′
3). The rest of the correctness proof follows the proof

of Theorem 2.7 ⊓⊔

3.3 Equality by Simulation with Empty Outputs

Theorem 1 states that there is no Rabin and Scott-like construction for population protocols, at least with
the original definitions of [5, 6]. We note that the negative property strongly depends on the definition of
what an output value can be. We think this definition can be changed, without reappraisal of the basic model
of population protocols. In the sequel, we investigate the way of modifying the definition of the output of
a configuration, in order to get an equivalence result for the output languages. The idea we develop is to
consider an empty output ϵ for a configuration, serving as an identity element in the monoid generated by
output values of configurations. That is, we allow the empty output ϵ to be a possible output value for a
configuration such that for any segment of an output word o, (o, ϵ) = (ϵ, o) = o.

Intuitively, this idea of introducing empty outputs in the model can be helpful in the following way.
For instance, assume that agents, in the deterministic protocol (simulating the non-deterministic one), hold
different integers used as a switch to indicate one of the possible non-deterministic choices. These switch
values can be changed by the protocol. A problem arises when an agent u in a state p, holding the switch
value c, interacts with an agent v in a state q, but the non-deterministic choice c′ has to be simulated to
obtain a specific output word (to obtain equality of output languages with the non-deterministic protocol).
In this situation, one would like to perform some transitions (called null-transitions, in the sequel) to obtain
a configuration where the switch value c′ is in u and the rest of the states of u and v stays unchanged.
However, the outputs of the intermediary configurations reached by these null-transitions are repetitions of
the same value. This may result in an output word that is not in the output language of the corresponding
non-deterministic protocol. With empty outputs, it is possible to remove such repetitions of the same output
and obtain the equality of the output languages. Notice that a difficulty comes from the fact that the same
configuration can be reached either by a null or a non-null-transition. In the first case, it is required to output
the empty output, but not in the second.

Theorem 4. In terms of generated output languages, the non-deterministic and the deterministic population
protocols are equivalent in the model allowing empty outputs for configurations.

To prove the theorem, we present a general technique to transform the rules of any non-deterministic
population protocol P1 into the deterministic rules of a population protocol P3, in the model with empty
outputs. Next, we prove that L(P1) = L(P3) (see Theorem 5). The transformation we propose, denoted D,
takes as an input a protocol P1 and another deterministic transformation D′. It is required that D′ applied to
P1, denoted D′(P1), results in a deterministic protocol P2 satisfying conditions defined in Property 1 below.
We write P2 = D′(P1) and P3 = D(D′(P1)). In the sequel, we show that there exists such a transformation
D′, e.g., the transformation presented in [5] (see Lem. 4). Recall that this transformation (in [5]) only applies
to some sub-class of protocols and does not provide the equality of languages for non/deterministic protocols
even for this sub-class.

We use the following definitions to state Property 1 and to define D. Let P and P ′ be two protocols with
sets of states Q and Q×Q′′ respectively, for some set Q′′. A transition t of P ′, (p, q) → (p′, q′), is called a (P -
)null-transition, if (p, q) ̸= (p′, q′), but ΠP (p, q) = ΠP (p

′, q′). Two consecutive and different configurations
C1, C2 in an execution of P ′ are called (P -)similar, if C2 is obtained from C1 by a P -null-transition (that
is, ΠP (C1) = ΠP (C2)).

7 The required memory for an agent in P3 is larger than the one in P ′
3. However, when k ≪ d, P3 may be more

advantageous. In this case, the state space requirements for the two transformations differ only slightly, though
the minimum number of agents required by P ′

3 may be much larger than the one of P3.

8

Property 1. Let P1 be any non-deterministic population protocol with a set of states Q1. Protocol P2 is said
to satisfy Property 1, if it satisfies the following conditions:

1. The protocol P2 is a deterministic protocol with a set of states Q1 ×Q′, for some set Q′. The projection
of the rules of P2 on P1, is the set of rules of P1.

2. The output of a configuration C in P2 is the output of the configuration ΠP1(C) of P1.
3. For every initial configuration C0 of P1, there is one initial configuration C ′

0 of P2 such that ΠP1(C
′
0) = C0.

4. For every two configurations C,C ′ of P2, if C → C ′, then C ̸= C ′.
5. Let C2 be a configuration of P2 such that C1 = ΠP1(C2). Let C ′

1 be a configuration of P1 such that

C1 → C ′
1. Then, there exists a configuration C ′

2 such that C2
∗→ C ′

2 and ΠP1(C
′
2) = C ′

1. In addition, C ′
2

is reachable from C2 using a finite number of null transitions of P2, except for the last transition that
results in C ′

2.

Definition of the transformation D. The main idea of the transformation D is to simulate P2 = D′(P1)
(satisfying Property 1) while eliminating the effect of the P1-null-transitions of P2 in the output words. This
is done by introducing empty outputs, for obtaining the equality of output languages. Now, we define the
protocol P3 = D(P2). Let Q1 and Q2 = Q1×Q′ be the sets of states of P1 and P2, respectively. Starting from
P2, we build a deterministic population protocol P3, which has a lot of similarities with P2, but differs mainly
in the definition of states (configurations) and configuration outputs. The set of states of P3 is Q3 = Q2×Q2.
Then, a configuration of P3 can be viewed as a pair (C∗, C) of configurations of P2. For every transition
(rule) of P2, (p, q) → (p′, q′), D associates a transition ([p∗ p], [q∗ q]) → ([p p′], [q q′]) of P3. Thus, iff C → C ′

in P2, then (C∗, C) → (C,C ′) in P3. In an execution of P3, a component C∗ of a configuration (C∗, C)
can be viewed as the previous configuration in the corresponding execution of P2, and C can be viewed as
the actual configuration. The reason of doing that is to be able to locate P1-similar configurations in an
execution (resulting from the null-transitions in P2) and “eliminate” their output from the output word.
Thus, the output of a configuration (C∗, C) is defined to be the empty output ϵ, if C∗ and C are P1-similar.
Otherwise, the output of (C∗, C) is the output of C in P2 (which is the output of ΠP1(C) in P1, by Property
1). For every initial configuration C0 of P2, (C0, C0) is the initial configuration of P3.

Theorem 5. Consider a population protocol model allowing empty outputs for configurations. Let P1 be any
non-deterministic population protocol and a protocol P2 = D′(P1) (satisfying Property 1). Let P3 = D(P2).
Then, L(P1) = L(P3).

We prove the theorem by proving the following two lemmas.

Lemma 2. Consider a population protocol model allowing empty outputs for configurations. Let P1 be any
non-deterministic population protocol. Let P2 = D′(P1) and P3 = D(P2). Then, the output word of any
globally fair execution of P3 is the output word of a globally fair execution of P1 (that is, L(P3) ⊆ L(P1)).

Proof. Let E be an (infinite) globally fair execution of P3 and w its output word. In E, we replace any two
consecutive configurations (C∗, C), (C,C ′), by C,C ′ and a starting configuration (C0, C0) by C0. Then, in the
resulting sequence E2, we replace any sequence of consecutive similar configurations by the first configuration
of the sequence. Let E′ be the resulting sequence. By the construction of P3 and the definition of the empty
output, the output word of E′ is w. The projection of E′ on P1 is an execution e of P1. To prove the lemma
we show that e is globally fair for P1 and thus, its output, which is also w, is an output word of P1. Note that
by construction of D, E2 is a globally fair execution of P2. Now, consider a configuration c of P1 appearing
infinitely often in e, and assume that there is a configuration c′, reachable from c in one step. Since e is the
projection of E′, there exist in E′, and then in E2, infinitely many configurations whose projection is c. Since
the set of configurations of P2 is finite, at least one of these configurations, C, appears infinitely often in E2.
By Property 1, condition 5, there is a configuration C ′ such that C

∗→ C ′ using only P1-null-transitions but
the last, and such that c′ = ΠP1(C

′). As E2 is globally fair, the sequence of configurations from C to C ′,
using only null-transitions but the last, appears infinitely often in E2. Thus, by construction of e, c′ appears
infinitely often in e. That involves that e is globally fair. ⊓⊔

9

Lemma 2 is sufficient for proving the inclusion of the output languages of P3 and P1, involving that
the class of problems solved by non-deterministic and deterministic population protocols is the same (when
empty outputs are allowed). For proving the equality of the output languages, we need to prove the converse
inclusion.

Lemma 3. Consider a population protocol model allowing empty outputs for configurations. Let P1 be any
non-deterministic population protocol. Let P2 = D′(P1) and P3 = D(P2). Then, the output word of any
globally fair execution of P1 is the output word of a globally fair execution of P3 (that is, L(P1) ⊆ L(P3)).

Proof. Consider a globally fair execution e1 = C0, C1, C2, C3, . . . of P1. First, we build a corresponding
globally fair execution e2 of P2. By a simple induction, and using conditions 5 and 3 of Property 1, there
is e2 = C ′

0, e
′
0, C

′
1, e

′
1, C

′
2, . . . such that ∀i ≥ 0, e′i is a finite sequence of P1-similar configurations and C ′

i =
ΠP1(Ci). As e1 is globally fair and the states of P2 are finite, each e′i can be chosen such that e2 is globally fair.
Now, we build an execution e3 = (C ′

0, C
′
0)(C

′
0, C

′′
1)(C

′′
1 , C

′′
2)(C

′′
2 , C

′′
3) . . . of P3 such that, ∀i ≥ 2, (C ′′

i−1, C
′′
i) →

(C ′′
i , C

′′
i+1) in e3, if C

′′
i → C ′′

i+1 in e2. It is easy to see that if e2 is globally fair, then e3 is globally fair. By
construction of D, the output word of e3 is the output word of e1. Thus, the lemma holds. ⊓⊔

Lemma 4. Given any non-deterministic population protocol P1 and the transformation D′ presented in [5],
D′(P1) = P2 is a deterministic protocol satisfying Property 1.

Proof. All conditions of Property 1, except the last, trivially hold for P2, by the construction of D′ in [5].
Condition 5 holds by lemmas 3.1 and 3.2 in [5] and the fact that the statements of these lemmas are achieved
by executing P1-null-transitions only, as it is shown in their proofs. ⊓⊔

4 Results about Inclusion of Output Languages

In this section, we consider the weaker requirement of inclusion for output languages of non/deterministic
protocols. As noted in the introduction, [5] gives a transformation of any strongly elastic non-deterministic
population protocol into a deterministic one, whose output language is included in the output language of
the former. Dropping the “elasticity” condition, without introducing empty output values, is difficult (we
explain the reason for that in the appendix).

One way to solve this difficulty is to use a parameterized transformation, presented in Sec. 4.2 below.
In contrast with the transformation of [5], it uses non-uniform initial states for agents and depends on the
transition graph of a given non-deterministic protocol and on the population.

Another, more natural (and coherent with population protocols) way to obtain inclusion of output lan-
guages is, like in Sec. 3.2, to allow interactions with three (or more) agents. The idea is to use the secondary
responder with a required switch value to be always able to execute deterministically any possible transition
of the non-deterministic transition function. It appears that, when only inclusion is required (in contrast
with Sec. 3.2), it is not necessary for the switch values to be initially distinct. Indeed, we provide a protocol
(Protocol 1 below) that, starting from a symmetrical initial configuration, distributes the different switch
values between the agents. The idea of Prot. 1 is to generalize a (circulating) leader election population
protocol proposed in [1] to manage several (instead of one) leader marks (which we call here tokens). Note
that Prot. 1 cannot be used to obtain equality.

4.1 Inclusion with Interactions of More than Two Agents

Thus, we propose a deterministic protocol Prot. 1 that distributes tokens of m (n ≥ m ≥ 1) different types
(represented by integers in [1,m]) between n agents. By Lem. 5 proven below, eventually, there is exactly
one token of each type and every agent holds at most one token.8

It is assumed that there are at least m agents and that initially, each agent holds one token of each type.
Note that these initial states are uniform and the protocol works in any PPk model, for any integer k > 1.

8 Note that the property given by the lemma does not state that eventually the same token stays with the same
agent. On the contrary, the protocol ensures that the tokens are always exchanged between the agents (lines 2-3).
This makes the protocol work for populations with interaction graph of any topology.

10

Protocol 1 - to distribute m tokens of different types between n agents

Initialization:
Every agent x has a set Tx = {t1, t2, . . . , tm} of m ≥ 1 different tokens. For every pair of agents x, y, Tx = Ty.

1: when an initiator x interacts with a primary responder y do
2: if (Tx ∩ Ty) = ∅

∧
|Tx| = |Ty| then

3: T ′ ← Tx, Tx ← Ty, Ty ← T ′ // exchange the tokens
4: // distribute the tokens
5: if (Tx ∩ Ty) ̸= ∅

∧
(T ′ ← (Tx ∩ Ty) = {t′1, t′2, . . . , t′|T ′|}) then

6: Ty ← Ty \ {t′1, t′2, . . . , t′⌈ |T ′|
2

⌉
}

7: if |T ′ > 1| then
8: Tx ← Tx \ {t′

⌈ |T ′|
2

⌉+1
, . . . , t′|T ′|}

9: if (Tx ∩ Ty) = ∅
∧
(dif ← |Tx| − |Ty|) > 1 ∧ (Tx = {tx1 , tx2 , . . . , tx|Tx|}) then

10: sizex ← |Tx|, sizey ← |Ty|
11: Tx ← {tx1 , . . . , tx⌈ dif

2
⌉+sizey

}
12: Ty ← Ty ∪ {tx⌈ dif

2
⌉+sizey+1

, . . . , txsizex}

Lemma 5. Eventually, in each configuration reached by an execution of Prot. 1, there is exactly one token
of each type and every agent holds at most one token.

Proof. Let us denote lines 2-3 of the protocol, by action 1; lines 5-8, by action 2; and lines 9-12, by action 3.
Note that, according to all the actions, the number of tokens held by an agent is non-increasing. Thus and
because of the initial configuration, two interacting agents can have at most two tokens of a similar type
(each agent, at most one such token). When two agents, holding tokens of a similar type, interact as initiator
and primary responder, action 2 is applied. Then, exactly one of the two tokens of the similar type remains
in one of the agents. No action removes a token appearing only in one of the interacting agents. Thus, there
is always at least one token of type r, for every type 1 ≤ r ≤ m.

Now, assume for the sake of contradiction that there are two tokens of the same type existing during an
infinite suffix of some execution. However, by action 1 and the global fairness assumption, eventually, two
agents, each having one of these two tokens, interact (as initiator and primary responder), and action 2 is
applied. Thus, only one of these tokens remains. Then, if still at least two tokens of the same considered
type exist, a similar execution repeats, until only one token of the type remains - a contradiction.

Finally, assume for the sake of contradiction that there is an agent u with at least two tokens in infinitely
many configurations. By the paragraph above, eventually, for each type, there is at most one token of the
type. Then, first, there are exactly m ≤ n tokens (u holding at least two of them) and thus, there are
some agents with no tokens. Second, only action 3 or 1 can be applied. Action 1 can only move these two
tokens together from agent to agent. Then, if the tokens are still at one agent, an agent holding them,
eventually interacts (by the global fairness) with an agent with no token (they interact as initiator and
primary responder) and action 3 is applied. If the two tokens are still at one agent after this interaction (it
can happen in case where there are more than two tokens in u), a similar execution repeats until the two
are finally “separated” by action 3 - a contradiction. ⊓⊔

Now, given a non-deterministic population protocol P1 in PP2 (or in PPk, for any integer k > 1), we build
a deterministic version PDI of P1 (given by Protocol 2 below) such that L(PDI) ⊆ L(P1) (see Theorem
6). That is, the deterministic protocol PDI solves the same problems as P1. To build PDI, we combine
Prot. 1 with protocol P2 (for PP3), or with its generalization P3 (for PPk+1), constructed in Sec. 3.2. In
the following, either of these protocols is denoted by P ∗. In Sec. 3.2, P ∗ is constructed in such a way that
L(P1) = L(P ∗). For that, in particular, non-uniform initial states are assumed by the transformations in
Sec. 3.2. Here, to achieve only inclusion, we can drop this assumption with the help of Prot. 1.

11

Thus, the composition PDI is obtained by taking the Cartesian product of the state sets of Prot. 1 and
P ∗, and by updating the states for each protocol independently. The output of a configuration C in PDI is
the output of the configuration ΠP∗(C) in P ∗.

Protocol 2 PDI - deterministic transformation in PPk+1 with uniform initial states

Initialization:
Initialize the variables of Prot. 1 and the switch variable cx of P ∗ to 1 (cx ← 1, for every agent x ∈ A). Initialize
the projection of states of PDI on P ∗ as in P ∗.

1: when interaction occurs do
2: ⟨execute transition of Prot. 1⟩
3: ⟨execute transition of P ∗⟩
4: for all agent x in the interaction do
5: if |Tx| > 1 then
6: cx ← 1
7: else if Tx = {ti} then
8: cx ← i

Theorem 6. Consider any population Â with n ≥ d + k2 and with complete interaction graph. Let P1

be a non-deterministic population protocol in PPk (for any integer k > 1) on population Â. Then, the
protocol PDI, given by Protocol 2, is the deterministic version of P1 on Â in the model of PPk+1 such that
L(PDI) ⊆ L(P1). That is, the deterministic protocol PDI solves the same problems for Â, in PPk+1, as the
non-deterministic protocol P1, in PPk.

Proof. In the composition PDI, P ∗ reads the variables of Prot. 1 (the content of the set of tokens T), on
each interaction (lines 5,7, Prot. 2). However, Prot. 1 neither reads, nor writes in the variables of P ∗. Thus,
for PDI, the conditions of a fair composition [7, 9] holds, as well as Lem. 5. Thus and by line 8, eventually,
the requirement of P ∗ on the switch values c is satisfied. That is, eventually, each value in [1,m] is the value
c of at least one agent. Thus, eventually, Lem. 1 holds for the projection of PDI on P ∗. Then, by Lem. 1,
exactly as in the proof of Theorem 2, one proves that given any globally fair execution e4 of PDI, ΠP1(e4)
is a globally fair execution of P1. Then, the output word of e4 is in the output language of P1. ⊓⊔

4.2 Inclusion with Parameterized Transformation

The phenomenon described in the appendix makes difficult to prove the inclusion result by exhibiting a
general transformation, in the original model of population protocols. We even conjecture that such a trans-
formation does not exist. Thus, in this section, we present a parameterized transformation, the parameter
depending on the transition graph of the non-deterministic protocol that we want to transform for a given
population.

Theorem 7. Given a non-deterministic population protocol P1 (with a set Q of states) and population Â of
n agents, there exists a deterministic population protocol P2 for population Â (with a state space of Ω(|Q|2n)
and using non-uniform initial states) such that L(P2) ⊆ L(P1).

Proof Sketch. Consider the transition graph G(P1, Â). Let a traveling salesmen walk, TSW, be a closed path
in G(P1, Â) that starts from the initial configuration, goes through any possible configuration at least once,
and gets back to the same initial configuration. As a first step, we assume that G(P1, Â) contains TSW. We
consider the other case later. TSW can be viewed as a sequence of transitions denoted S = σ1, σ2, . . . , σm.
Note that, for each transition in TSW, the pair of interacting agents is defined. The idea is to construct a
population protocol P2, which is forced to execute a very similar (if, in G, there exist several pathes to reach
the same configuration). sequence of transitions S infinitely often.

12

The state of an agent in P2 is composed of: a state of P1; the sequence S; a pointer toward one of the
transitions in S; and for each transition in S, an order number and an indicator of a role (initiator/responder).
An order number can be 0, which means that the agent has not to execute the corresponding transition. If the
order number of the pointed transition is i ̸= 0, then this transition corresponds to the ith transition, σi =
(p, p′) → (q, q′), in S. Moreover, the next transition of the agent (in P2) is of the type ([p i . . .], [p′ i . . .]) →
([q j . . .], [q′ k . . .]). This transition can be executed only between two agents in states [p i . . .], [p′ i . . .] and
with appropriate role indicators. After an execution of the transition, the pointer of an agent (participated in
the transition) points to the next transition to be executed. This is the next transition in S with a non-zero
order number (transition j for initiator, and k for responder, in the example above). The pointer “moves”
cyclically in S, ensuring an infinite execution of all the transitions in S.

In the initial configuration of P2, all agents are in the initial state p0 of P1, have the same sequence of
transitions S, but have different pointers, different order numbers and roles. This non-uniform information
can be provided to agents by, e.g., inputs. Note that in every configuration reached by an execution of P2,
every agent has a unique state and thus, P2 executes a very similar sequence of transitions in TSW.

It comes directly from the construction that the output word of any globally fair execution of P2 is the
output word of an execution of P1. So, it remains to prove that the projection on P1 of any execution of P2

is globally fair. That comes from the fact that the projection on P1 of execution of P2 reach infinitely often
all the configurations in TSW, which are by definition all the infinitely often reachable configurations of P1.

Now, consider the case where there is no TSW in G(P1, Â). As a matter of fact, this case is not very
different of the previous one. If there are infinite executions, there necessarily exist a final connected compo-
nent F (see definition in Sec. 2) which admits a TSW for F . Then, P2 is built by choosing any path f toward
F , and by applying the protocol above for S = fF , when the pointers in agents move on the transitions of
f and then cyclically on F . ⊓⊔

Acknowledgments. The authors would like to thank the reviewers for their thoughtful comments and
suggestions.

References

1. D. Angluin, J. Aspnes, M. Chan, H. Jiang, M.J. Fischer, and R. Peralta. Stably computable properties of network
graphs. In DCOSS, pages 63–74. LNCS 3560, 2005.

2. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks of passively mobile
finite-state sensors. In PODC, pages 290–299, 2004.

3. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks of passively mobile
finite-state sensors. DC, 18(4):235–253, 2006.

4. D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of population protocols. DC, 20
(4):279–304, 2007.

5. D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing population protocols. TAAS, 3(4), 2008.
6. M. Fischer and H. Jiang. Self-stabilizing leader election in networks of finite-state anonymous agents. In OPODIS,

pages 395–409, 2006.
7. T. Herman. Adaptivity through Distributed Convergence. (Ph.D. Thesis). University of Texas at Austin, 1991.
8. M. O. Rabin and D. Scott. Finite automata and their decision problems. 3(2):114, 1959.
9. G. Tel. Introduction to Distributed Algorithms (2nd ed.). Cambridge University Press, 2000.

13

A Appendix

Dropping the “Elasticity” Condition is Difficult

We conjecture that a generic transformation giving the output languages inclusion property, applicable to
all non-deterministic population protocols, in the original population protocol model, does not exist. We
explain the intuition behind this conjecture.

As noted in the introduction, [5] gives a transformation of any strongly elastic (defined in the introduction)
non-deterministic population protocol into a deterministic one, whose output language is included in the
output language of the former. Dropping the “elasticity” condition, without introducing empty output values,
is difficult.

Consider a non-elastic non-deterministic population protocol P1 and assume it is a solution to the same
problems as a deterministic population protocol P2. That means that the set of output words of P2 is included
in the set of output words of P1. As the output values depend on the states of the agents, the states of P2

are necessarily composite states, with one part in connection with the states of P1 (ensuring that the output
words of P2 are controlled by P1), and a second part with supplementary information (counter values, work
variables, etc.), whose role is to eliminate the non-determinism. However, the difficulty is not in constructing
P2 in such a way that any execution of P2 has a strong correspondence with an execution of P1 (for instance,
it can be obtained by ensuring the property that the projection of an execution of P2 is an execution of
P1). The problem is that, although the execution of P2 is globally fair for P2, for the correspondence to be
meaningful, the corresponding execution of P1 has to be globally fair for P1. Indeed, saying that P1 solves
some problem means that the globally fair executions of P1 satisfy the specification of the problem, which
says nothing about the non-globally fair executions.

To understand why it is not straightforward to overcome the latter problem, consider a configuration
C of P2, which appears infinitely often in an execution E of P2. In the execution e of P1 corresponding
to E, there is a configuration c appearing infinitely often. From c (in P1), all the possibilities given by the
non-determinism of P1 can be used (yielding configurations c1, c2, . . . , ck), while from C, the supplementary
information (in the state of P2) forces a particular choice, for being deterministic. With null-transitions
(yielding “elasticity”), using all the chose possibilities is easy, since the values for the chose counters and
other work variables can be modified by a sequence of transitions, which do not change the projection of the
configuration on P1. However, without null-transitions, the risk is that getting some values for the counters,
changes also the projection on P1. That is, one could have either the right counter values (corresponding to
some choice of a non-deterministic rule), but not c as projection; or c as projection, but not with the right
counter values. In this case, a possibility of transition given in P1 would never be given in P2, involving that
the projection of a globally fair execution of P2 on P1 would not be globally fair for P1. Thus, P2 could not
generate the same output words as the globally fair executions of P1.

14

