
HAL Id: hal-00743196
https://hal.inria.fr/hal-00743196

Submitted on 18 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of partially observed recursive tile systems
Sébastien Chédor, Christophe Morvan, Sophie Pinchinat, Hervé Marchand

To cite this version:
Sébastien Chédor, Christophe Morvan, Sophie Pinchinat, Hervé Marchand. Analysis of partially ob-
served recursive tile systems. 11th Int. Workshop on Discrete Event Systems, Oct 2012, Guadalajara,
Mexico. pp.265-271. �hal-00743196�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49855908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00743196
https://hal.archives-ouvertes.fr


Analysis of partially observed

recursive tile systems

Sébastien Chédor ∗ Christophe Morvan ∗∗ Sophie Pinchinat ∗

Hervé Marchand ∗∗∗

∗ Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
∗∗ Université de Paris Est, Marne-La-Vallée, France

∗∗∗ Inria Rennes - Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes,
France

e-mail: sebastien.chedor@inria.fr, christophe.morvan@univ-paris-est.fr,
sophie.pinchinat@irisa.fr, herve.marchand@inria.fr

Abstract
The analysis of discrete event systems under partial observation is an important topic, with major
applications such as the detection of information flow and the diagnosis of faulty behaviors. We consider
recursive tile systems, which are infinite systems generated by a finite collection of finite tiles, a
simplified variant of deterministic graph grammars. Recursive tile systems are expressive enough to
capture classical models of recursive systems, such as the pushdown systems and the recursive state
machines. They are infinite-state in general and therefore standard powerset constructions for monitoring
do not always apply. We exhibit computable conditions on recursive tile systems and present non-trivial
constructions that yield effective computation of the monitors. We apply these results to the classic
problems of opacity and diagnosability.

Keywords: Diagnosability, Opacity, Discrete event systems, Recursive systems

1. INTRODUCTION

The automated analysis and generation of programs is a very
active area. It aims at supporting the development of devices
that monitor either computing systems or even physical ones
while they evolve. Additionally, the communication between
the device and the system under consideration may be limited,
hence the actual executions of the system may be only par-
tially observed. Even under partial observation, some hidden
information may be computationally reconstructible from some
specification of the system. Typical fields that address such
issues are those of information flow detection Badouel et al.
(2007); Bryans et al. (2008); Cassez (2009) and of diagno-
sis Sampath et al. (1995); Yoo and Lafortune (2002); Jéron et al.
(2006); Tripakis (2002); Bouyer et al. (2005).

On the one hand, information flow detection relates to computer
security, based on the notion of opacity. The opacity problem
consists in determining whether an observer, who knows the
system’s behavior but who imperfectly observes it, is able to
reconstruct critical information (e.g., a password stored in a
file, the value of some hidden variables, etc.). On the other
hand, the field of diagnosis concerns systems that may have
faulty behaviors. A diagnoser is a monitor which reveals the
faults at runtime. In an ideal situation, we expect the device to
be sound (when a fault is declared, it is indeed the case) and
complete (every faulty behavior is eventually revealed within a
finite delay). Soundness is often guaranteed by equipping the
device with standard state estimate techniques, whereas com-
pleteness, also known as the diagnosability property Sampath
et al. (1995); Yoo and Lafortune (2002), is tightly coupled with
the observation capabilities and has to be established on its own.

Original works in the literature address these issues on fi-
nite discrete event systems. Regarding the opacity problem,
Bryans et al. (2008); Badouel et al. (2007); Dubreil et al.
(2009) show its PSPACE complexity. For infinite systems how-
ever, Cassez (2009) shows its undecidability for timed systems.
Regarding diagnosis, the diagnosability property is now well
understood Sampath et al. (1995); Cassandras and Lafortune
(1999); Jéron et al. (2006), and the most efficient checking
procedure seeks for particular cycles in a self-product con-
struction, hence it yields a quadratic-time algorithm. On the
contrary, for infinite systems, this approach may not be effective
in general. For example, Tripakis (2002) investigates timed
systems and proves that diagnosability property is equivalent
to non-zenoness. Bouyer et al. (2005) expand this work, and
exhibit complexity bounds for the diagnosability problem: a
2EXPTIME complexity for the class of deterministic timed
automata, and a PSPACE complexity for event-recording timed
automata. Note that instead of building a self-product, they
use game-based techniques. They also provide a construction
for the diagnoser. Ushio et al. (1998) consider Petri nets and
propose an effective construction of the diagnoser and show
the undecidability of the diagnosability property. Baldan et al.
(2010) generalize the setting by considering graph transforma-
tion systems which allow to capture systems with mobility and
variable topologies. The main contribution is to compute the set
of executions of the system that characterizes a given observa-
tion. With the same objective, Hélouet et al. (2006) consider
a distributed observation of a distributed system modeled by
a High Level Message Sequence Chart. Recently, Morvan and
Pinchinat (2009) consider pushdown systems and show that the
diagnosability property is decidable for a subclass of visibly
pushdown systems. As exemplified in the literature, opacity and

 
265

Preprints of WODES 2012 
October 3-5, 2012 
Guadalajara, México 



diagnosis problems can be solved by using common techniques:
the ability to compute an �-closure (a projection), to perform a
standard determinization preserving state properties, to com-
pute a self-product or simulate it as a game, to detect infinite
executions, and to support reachability analysis.

In this paper, we aim at solving the two aforementioned
problems in the setting of recursive tile systems (RTS). RTS
are equivalent to deterministic graph grammars of Courcelle
(1990), and they represent infinite-state systems, in general.
They form a natural extension pushdown systems (see e.g.,
Caucal (2007)) as well as the recursive state machines Alur
et al. (2001). Furthermore, they cannot be compared with Petri
nets in general, nor with timed automata whose control struc-
ture is finite-state.

Example 1. Let us motivate the use of the RTS by the following
small example modeling a production system: it handles two
resources (A and B) with an urgency feature depicted by the
automaton on Figure 1. Resource B has higher priority than A.

0 1 2

initA

cleanA

initB

cleanBstackA

useA

stackB

useB

Figure 1. A two-resource system.

In the initial state 0, the system contains no resource and can
not handle any resource. In State 1 (resp. state 2), the system
is configured to process resource A (resp. B). The transitions
stackA and stackB models the reception of resources A and B,
respectively. Similarly, the transitions useA and useB models
the handling of such resources (implicitly implying the exis-
tence of such resource in the system). This system is rather
simple, however two main features are not (and cannot) be
depicted by this finite-state automaton: whenever transition
initB is used, resources A that where already in the system re-
main, and whenever transition cleanB is used, there should not
be any resources B in the system. Its worthwhile noticing that
such properties can be easily modelled by a machine with two
counters. Nevertheless, since two counters machines are Turing
complete, this would lead to undecidability of very elementary
problems such as reachability. However, as we shall see, RTS
may be employed whenever counters are hierarchically organ-
ised, while still preserving interesting decidability results.

We exhibit the class of weighted RTS which capture visibly
pushdown systems, as the right notion to address effectiveness
of the needed constructions for analysis. Weighted RTS are
generated by weighted deterministic graph grammars Caucal
and Hassen (2008). We identify decidable hypothesis under
which the opacity and the diagnosis problems can be solved.
The present work strictly extends the results of Morvan and
Pinchinat (2009), and relies on a new approach with non-trivial
constructions and transformation on graph grammars. In this
presentation, we define RTS as objects generated by a finite set
of tiles, a formalism equivalent to deterministic graph gram-
mars introduced in Chédor et al. (2012). The monitor needed
both for analyzing of information flow and fault occurrences is
represented by a typing machine, a DES which preserves the set
of observations of the system and the set of states reached by
a given observation. It relies on an (observational) closure of
the original system, followed by a determinization procedure.
Straightforward application of these operations to RTS may
produce objects which are not RTS. However, we propose a

way to effectively compute the closure so that the result remains
an RTS, but which is not weighted in general. Therefore, we
consider the class of CwRTS composed of the RTS whose clo-
sure is weighted. The class CwRTS is decidable. We then show
that the typing machine of every RTS in CwRTS is an RTS,
which makes possible the reachability analysis needed to verify
the opacity property. Also, the self-product techniques useful
to check the diagnosability property turns out to be effective
for elements of the class CwRTS.

This paper is organized in three main parts: in Section 2, we
define DES under partial observation we introduce the diagnos-
ability and the opacity problems. We present a mathematical
setting to solve these problems, abstracting from effectiveness
aspects. In Section 3, we introduce RTS, based on tiling sys-
tems, and we investigate respectively the detection of infinite
paths, the computations of the closure, the determinization and
the self-product. Finally, in Section 4, we apply the techniques
to solve the opacity and diagnosis problems for infinite systems
described by RTS in the class CwRTS.

2. DISCRETE EVENT SYSTEMS UNDER PARTIAL
OBSERVATION

2.1 Discrete event systems

The model of DES is commonly used to represent the behavior
of systems at a very high level of abstraction. It is composed
of a (possibly infinite) set of states (or configurations) and
transitions between those states, labeled by actions representing
the atomic evolution of the system.

Definition 1. A discrete event system (DES) is a tuple A =
(Σ, Q,Λ, q0,Δ, Ty) where Σ is the alphabet of events, Q is
the (infinite) set of states, q0 ∈ Q is the initial state, Δ ⊆ Q×
Σ × Q is the set of transitions, Λ is a set of propositions and
Ty : Q → 2Λ is a typing function which allocates to each state
q ∈ Q the set of propositions Ty(q) that hold in q. Ty(q) is
called the type of q.

For the remainder of Section 2, we fix a typed DES A =

(Σ, Q,Λ, q0,Δ, Ty). A transition (p, a, q) in Δ is written p
a
→

q. State p is the source and state q the target. The in-degree
(resp. out-degree) of a state q is the number of transitions
having q as target (resp. source); the degree of a state is the
sum of its in and out-degrees. A typed DES A is deterministic
if Δ is a function from Q × Σ to Q. We extend the relation →
to an arbitrary word by setting: q

ε
→ q for every state q and

q
ua
→ p whenever q

u
→ q� and q�

a
→ p for u ∈ Σ

∗, a ∈ Σ and

for some q� ∈ Q. We note p →∗ q whenever p
u
→ q for some

u ∈ Σ
∗ and we say that q is reachable from state p. We denote

ReachA(P,Σ
�), the set of states that can be reached from the

set of states P only triggering events of Σ
�. A proposition λ

naturally denotes the set of states Qλ = {q ∈ Q|λ ∈ Ty(q)} in
A.

A path ℘ is given by an alternating sequence of events and
states, indexed by an interval I℘ of Z, such that, for each pair

(k, k+1) in I℘, there is a transition qk
ak→ qk+1. Observe that we

allow infinite paths (with intervals ending with −∞ or +∞).
For a finite path ℘, we define its type Ty(℘) as the type of its
last state. Given Σ

� ⊆ Σ, we say that ℘ is a Σ
�-labelled path

ak ∈ Σ
�, for all k ∈ I℘.

 
266



The (possibly infinite) word formed by the sequence of labels
(ak)k∈I℘ is the label of ℘. A path from the initial state q0
of A is called a run and its label is a trace of A. We define

by L(A) = {t ∈ Σ
∗ | qo

t
→ q for some q ∈ Q} the set of

traces of A and by A(t) = {q ∈ Q|q0
t
→ q} the set of

states reachable from q0 by a trace t of A. Given P ⊆ Q,
LP (A) = {t ∈ L(A) | A(t) ⊆ P} denotes the set of traces
that can end in the set of states P . Given a trace t ∈ L(A),
we write L(A)/t = {u ∈ Σ

∗ | tu ∈ L(A)} for the set of
traces that extend t in A. Given a finite path ℘, its type Ty(℘)
is the type of its last state. The notation is extended to traces
t ∈ L(A), Ty(t) is

�

q∈A(t) Ty(q), corresponding to the set

propositions that hold in at least one of the states that could be
reached in A by the trace t.

The notion of type extends to traces: t ∈ L(A), by letting
Ty(t) =

�

q∈A(t) Ty(q), corresponding to the set propositions

that hold in at least one of the states that could be reached in A
by the trace t.

Partial Observation. The key point of our approach concerns
the ability for a device to deduce information from a system by
observing only a subset of its events. For this purpose, the set of
events Σ of a DES A is partitioned into two subsets Σo and Σuo

containing respectively observable events and unobservable
ones. The canonical projection π of Σ onto Σo is standard:
π(ε) = ε, and ∀t ∈ Σ

∗, a ∈ Σ, π(ta) = π(t)a if a ∈ Σo, and
π(t) otherwise. π naturally extends to languages. The inverse
projection of L is defined by π−1(L) = {t ∈ Σ

∗ | π(t) ∈ L}.

For every µ ∈ Σ
∗

o, we write p
µ
� q if it there exists t ∈ Σ

∗ such

that µ = π(t)a and p
ta
→ q.

An observation of A is a sequence µ ∈ Σ
∗

o such that µ = π(t)
for some t ∈ L(A) ∩ Σ

∗
Σo; in that case, t is associated to

observation µ. We denote by obs(A) the set of observations
of A and by obsP (A) the set of observations that can end in
the set of states P . Following previous notations, we define

A(µ) = {q ∈ Q | q0
µ
� q} as the set of states reached by

a run with observation µ. Two runs ℘ and ℘� are equivalent if
their traces are associated to the same observation.

In our setting, the information is encoded by the set of proposi-
tions that holds in the states of the system. In order to be able
to infer information based on the observations, we first need to
define the type of an observation. To do so, we naturally extend
the typing function Ty of A to observations in the following
way.

Definition 2. Given an observation µ ∈ obs(A), its type Ty(µ)
is
�

q∈A(µ) Ty(q).

Notice that the type of traces and observations interact since
Ty(µ) can alternatively be defined as

�

t∈π−1(µ)∩Σ∗Σo
Ty(t).

In particular, Ty(u) ⊆ Ty(π(u)). Intuitively, the type of an
observation µ corresponds to the set propositions that hold in at
least one of the states that could be reached in A by a trace t
that is compatible with the observation µ.

To compute the type of observations, we may use a typing
machine :

Definition 3. A typing machine of A, is a deterministic DES
TΣo

(A) = (Σo, Q
�,Λ, q�0,Δ

�, Ty�) such that ∀µ ∈ obs(A),
Ty�(µ) = T (µ).

This definition of a typing machine is not constructive and not
surprisingly, building a typing machine cannot be achieved for
arbitrary DES, but it is very standard in the finite case setting.
The construction highly relies on the notion of closure, given
here for arbitrary DES.

Definition 4. We define the Σuo-closure as the DES Ao =
(Σo, Q,Λ, q0,Δ

�, Ty�) such that Δ� = {(p, a, q) | a ∈ Σo ∧

p
a
� q} and Ty�(q) = Ty(q) for all q ∈ Q.

In other words, every unobservable transition of A is re-
moved in the closure, while preserving the set of observations
(obs(Ao) = obs(A)) together with their types (Ty�(µ) =
Ty(µ), ∀µ ∈ obs(A)).

Finally, the classical approach to effectively compute typing
machines in the finite case consists in two operations: (1) com-
pute the Σuo-closure of the DES, and (2) compute its deter-
minization (see Cassandras and Lafortune (1999) for example).
Clearly, for a finite DES A, the closure Ao of A is computable.
Now, notice that Ao may not be deterministic in general, finite
DES can be determinized using a well-known powerset con-
struction. We note it D(A). It is easy to see that given a finite
DES A and Ao its Σuo-closure, D(Ao) is a typing machine of
A.

2.2 Opacity and diagnosis problems

We examine two problems arising in the partial observation
setting: the diagnosis problem and the opacity problem. We first
fix some notations that will be used throughout this section. We

consider a DES A = (Σ, Q,Λ, q0,Δ, T y) with Λ = {λ,λ}.
We assume a given partition of Σ: Σuo,Σo. We refer to states

with type {λ} (resp.
�

λ
�

) as positive (resp. negative) states.
We assume that the set of positive and negative states form a
partition of Q (i.e. Q = Qλ ∪Q

λ
). Due to partial observation,

an observation µ ∈ Σ
∗

o may correspond to runs of the system
reaching both positive and negative states. Such an observation

will have the type {λ,λ}. To have a uniform terminology, an

observation with type {λ} (resp. {λ}) is called positive (resp.

negative). An observation with type {λ,λ} is called equivocal.

The opacity problem. Opacity was introduced by Bryans
et al. (2008) as a security property. The problem of opacity
consists of determining whether an attacker, that knows the
system and having only a partial observations of the system, is
able or not to discover some secret behaviors occurring during
execution. We here assume that the system is given by a DES

A with Λ = {λ,λ} and that the secret is modeled by the
state space Qλ. Intuitively, there is no information flow (i.e.
the system is opaque) as far as the attacker cannot surely infer,
based on the observations, that after an execution the system is
in Qλ. More formally the secret set of states Qλ is opaque w.r.t.
A and Σo, if

∀µ ∈ Σ
∗

o, T y(µ) �= {λ} (1)

Definition 5. Given a DES A with Σo ⊆ Σ and Λ =
�

λ,λ
�

the opacity problem consists in checking whether (1) holds.

Example 2. Consider the DES A on Figure 2, with Σo =
{a, b}. The secret is given by the set of states Qλ = {q2, q5}.

Qλ is not opaque, as after the observation of a trace in b∗ab,
the attacker knows that the system is in a secret state. Note that
he does not know whether it is q2 or q5 but he knows that the
state of the system is in Qλ.

 
267



q0 q�0 q1 q2 q3

q4 q5 q6

τ a b a

a, bb a b

a

b

a, b

Figure 2. Non-opaque system

The opacity problem is shown reducible to the language univer-
sality problem (Dubreil et al. (2009)), hence, for arbitrary DES,
it is undecidable (see Bryans et al. (2008) for more detailed
results). However, in the finite-state case, checking the opacity
of a secret in a system A and Σo relies on the computation
the Σuo-closure of A and the corresponding deterministic DES
D(Ao). It is then sufficient to search for state with type {λ}
in this new DES. If the system is not opaque, the next step
is to build a monitor detecting any information flow. Follow-
ing Dubreil et al. (2009), this monitor is based on the typing
machine D(Ao).

Example 3. Back to Example 2, the corresponding monitor (a
part of the typed machine) is depicted in Figure 3. State {q2, q5}
is reachable from the initial state, so that the secret is not
opaque.

{q0} {q1, q4}

{q2, q5}

a

b

b

a, b

Figure 3. The corresponding Typing machine

The diagnosis problem. The diagnosis problem is a notion
introduced by Sampath et al. (1995) which consists of detecting
the satisfaction of a persistent property in a partial observation
setting (in Sampath et al. (1995), the property encodes the fact
that some fault has occurred in the system). As for opacity, we

attach to each states of A either the type {λ} or
�

λ
�

with the
hypothesis that for all positive states (i.e. typed by {λ}), only
positive states can be reached. Hence, a negative state means
that the property has not been satisfied so far when the system
reaches this state, and a positive state means that the property
has been satisfied in the past.

We define the Diagnosis Problem as the problem of synthe-
sising a diagnoser, that is, a function Diag : Obs(A) →
{yes, no, ?} on observations whose output value answers the
question whether all traces corresponding to the observation
have reached Qλ. The function should verify:

Diag(µ) =







yes if Ty(µ) = {λ}
no if Ty(µ) =

�

λ
�

? otherwise.

Clearly, as for the monitoring of opacity, the diagnoser of a
DES A can be derived from its typing machine D(Ao) with
the convention that the verdict yes is attached to each state
of type {λ}, no to each state of type

�

λ
�

and ? to each state

of type
�

λ,λ
�

. For the diagnoser to have practical interest,
when a {λ}-typed trace takes place, we expect Function Diag
to eventually output the yes verdict. This can be formally
captured by the notion of diagnosability: given a DES A =
(Σ, Q,Λ, q0,Δ, T y) and Σo ⊆ Σ, a proposition λ ∈ Λ is

diagnosable in A w.r.t. Σo whenever for all u ∈ LQλ
(A), there

exists n ∈ N such that for every t ∈ L(A)/u with �π(t)� ≥ n,

π−1(u.t) ∩ L(A) ⊆ LQλ
(A)

In other words, λ is diagnosable in A w.r.t. Σo whenever
it is possible to detect, within a finite delay and based on
the observation, that the current run of the system reached a
positive state.

This can be equivalently formulated as follows.

Lemma 1. (Morvan and Pinchinat (2009)) A proposition λ is
not diagnosable in A w.r.t. Σo if, and only if, there exist two
infinite runs having the same observation, such that one reaches
Qλ and the other not.

Definition 6. The diagnosability problem consists in the fol-
lowing: Given a DES A with Σo ⊆ Σ and Λ =

�

λ,λ
�

, is λ
diagnosable in A w.r.t. Σo ?

In the general case, the diagnosability problem is undecid-
able (Morvan and Pinchinat (2009)): it is proved by an easy
reduction of the emptiness of the intersection of context-free
languages. On the contrary, the problem is decidable for finite-
state DES. The standard procedure consists in contructing the
self-product of the closure of the system and in seeking an
“equivocal” loop in this structure (Jéron et al. (2006)). We recall
the classic notion of self-product.

Definition 7. The self-product of a DES B = (Σ, Q,Λ, q0,
Δ, T y) is the DES B2 = (Σ, Q×Q,Λ, (q0, q0),Δ

�, T y�) where
((p1, p2), a, (q1, q2)) ∈ Δ

� if and only if (p1, a, q1) ∈ Δ and
(p2, a, q2) ∈ Δ and Ty�(p1, p2) = Ty(p1) ∪ Ty(p2).

In the next section, we focus on a particular class of infinite-
state systems, where the opacity and diagnosis problems can be
approached.

3. RECURSIVE TILE SYSTEMS AND THEIR
PROPERTIES

In this section, we define the Recursive Tile Systems (RTS),
a model to define infinite states DES based on the regular
graphs of Courcelle (1990). We present some key properties
of these systems relative to closure (suppression of internal
events), product and determinization that will be useful for
partial observation problems.

Definition 8. A recursive tile system (RTS) is a tuple R =
((Σ,Λ), T , τ0) where

• Σ = Σo ∪ Σuo is a finite alphabet of events partitioned
into observable and unobservable ones,

• Λ is a finite set of colours with init ∈ Λ.
• T is a set of tiles τ = ((Σ,Λ), Q,→, C, F ) defined on
(Σ,Λ) where

· Q ⊆ N is the set of vertices,
· →⊆ Q× Σ×Q is a finite set of transitions,
· C ⊆ Q× Λ is a finite set of coloured vertices,
· F ⊆ T ×2N×N, the frontier, relates to some tile, τ �, a

partial function (often denoted f �) over N, associating
to vertices of Q�, vertices of Q.

• τ0 ∈ T is an initial tile (the axiom).

We will provide a formal definition of tiling later on, however,
the frontier F of a tile τ is used to append other tiles to τ . F
identifies tiles and how some of their vertices are merged with
those of τ . From a tile τ , with (q0, init) ∈ C, one can derive

 
268



τmain: 0 1 ff(0)

initA

cleanA

check

τg: 0 1 fg(0)

stackB

useB

check

τf: 0 1 ff(0)

1 fg(0)

stackA

useA

initBcleanB

check

Figure 4. An RTS

a DES [τ ] = (Σ, Q,Λ, q0,Δ, T y) with ∀q ∈ Q, Ty(q) =
{c | (q, c) ∈ C}. Example 4 provides three tiles which may be
used to monitor the production system presented in Example 1.

Example 4. The tiles depicted in Figure 4 model the property
we want to monitor on the production system defined in Exam-
ple 1. The τmain tile ensures that the system is initialised for re-
source A and that it is cleaned at the end. The τf tile ensures that
each resource A stacked is used before the cleanA. It also en-
sures that the urgency mode can be activated at every moment.
The τg tile ensures that each resource B will be treated before
returning to the normal mode. The check self loop represents
an inspection routine that can occurres at any time. Formally,
the corresponding RTS is defined by: R = ((Σ,Λ), T , τmain)
with Σo = {check, stackA, stackB, useA, useB}, Σuo =
{initA, initB, cleanA, cleanB}, Λ = {init}, a set of tiles
T =

�

τmain, τf, τg
�

, and τmain the initial tile.

• τmain = ((Σ,Λ), Qmain,→main, Cmain, Fmain) with
Qmain = {0, 1}, Cmain = {(0, init)} (init depicted by

)
Fmain = {(f, {0 → 1})}, and →main depicted in Figure 4,

• τf = ((Σ,Λ), Qf,→f, Cf, Ff) with
Qf = {0, 1, 2}, →f Cf = ∅
Ff = {(f, {0 → 1}), (g, {0 → 2})} and →f depicted in
Figure 4.

• τg = ((Σ,Λ), Qg,→g, Cg, Fg) with
Qf = {0, 1}, →g Cg = ∅
Fg = {(g, {0 → 1})} and →g depicted in Figure 4.

For the frontier, e.g., in the tile τmain, 1 ff(0) means that

(f, {0 → 1}) belongs to Fmain, i.e. the vertex 0 of tf is
associated to the vertex 1 of τmain.

The semantics of an RTS is formally defined by a DES by a
tiling operation that appends tiles to another tile (initially, the
axiom), inductively defining a DES. Formally, given a set of
tiles T and a tile τ = ((Σ,Λ), Q,→, C, F ) with F defined
on T , the tiling of τ by T , denoted by T (τ), is the tile
τ � = ((Σ,Λ), Q�,→�, C�, F �) iteratively defined according to
the elements of the frontier F , as follows:

(1) Initially, Q� = Q, →�=→, C� = C F � = ∅;
(2) for each pair (τk, fk) ∈ F , with τk = ((Σ,Λ), Qk,→k

, Ck, Fk) ∈ Tk,
let ϕk : Qk → N be the injection mapping vertices of Qk

to new vertices of Q� with ϕk(n) := fk(n) whenever n ∈
dom(fk), n+max(Q�) + 1 otherwise, where max(Q�) is
the vertex with greatest value in Q�. The tile τ � is then
defined by:
• Q� = Q� ∪ Im(ϕk),
• →�=→� ∪ {(ϕk(n), a,ϕk(n

�)) | (n, a, n�) ∈→k},
• C� = C� ∪ {(ϕk(n),λ) | (n,λ) ∈ Ck},

• F � = F � ∪ {(tk� , Fk�) | (τk� , fk�) ∈ Fk}
Fk� = {(ϕk(j), fk�(j)) | j ∈ dom(fk�)}. The update
of F � expresses that the frontier of the new tile τ �

is composed from those of the tiles that have been
added.

Remark 2. In a tiling, the order chosen to append a copy of the
tiles that belong to the frontier is not important. Two different
orders would produce isomorphic tiles (up to a renaming of
vertices).

Example 5. We illustrate the principle of tiling using the RTS
defined in Example 4. Consider that τmain is the initial tile.
Its tiling T (τmain), is performed as follows: there is a single
element in its frontier; we add a copy of τf (with new vertices),
identifying vertex 1 of τmain to vertex 0 of τf. This new tile may
be in turn extended by adding a copy of τf, identifying 3 to 0
of τf and 4 to 0 of τg. We illustrate the resulting tile in Fig. 5
(observe that our definition of ϕcomp induces that some elements
of N are left out).

0 1

initA

cleanA

check

1 3

4

stackA

useA

initBcleanB

check

3 fg(0)

stackBuseB

3 6 ff(0)

7 fg(0)

stackA

useA

initBcleanB

check

Figure 5. The DES defined by the tile T 2(τmain)

A DES is finally obtained from an RTS as the union of the
DES of tiles resulting from the iterated tilings from the axiom.
Formally,

Definition 9. Let R = ((Σ,Λ), T , τ0) be an RTS. R defines a
DES [R] = (Σ, QR,Λ, Qinit,ΔR, T yR) given by

�

k[T
k(τ0)].

The infinite union of Definition 9 is valid because, by con-
struction, for all k ≥ 0: [T k(τ0)] ⊆ [T k+1(τ0)], where ⊆ is
understood as the inclusion of substructures (inclusion of states,
transitions and colourings).

For an RTS R with axiom τ0, and a state q in [R], �(q) denotes
the level of q, i.e. the least k ∈ N such that q is a state of
[T k(τ0)], and τ(q) denotes the tile in T that generate q. For
a vertex v of a tile of R, [v] denotes the set of states in [R]
corresponding to v.

Remark 3. The DES obtained from RTS correspond to the
equational, or regular graphs of Courcelle (1990) and Cau-
cal (2007) (derived from an axiom using deterministic HR-
grammars). In fact RTS have been introduced in Chédor et al.
(2012) and aims at a greater simplicity.

Reachability Computation of reachability sets, central for ver-
ification problems, is effective for RTS:

Proposition 4. (Adapted from Caucal (2007)). Given an RTS
R = ((Σ,Λ), T , τ0), a sub-alphabet Σ� ⊆ Σ, a colour λ ∈ Λ,
and a new colour rλ �∈ Λ, an RTS R� = ((Σ,Λ∪ {rλ}), T

�, τ �
0
)

can be effectively computed, such that [R�] is isomorphic to [R]
with respect to the transitions and the colouring by Λ, and states
reachable from a state coloured λ by events in Σ

� are coloured
by rλ: Qrλ = reach[R�](Qλ,Σ

�).

 
269



Detecting infinite paths is central for the computation of the clo-
sure of regular DES which is the backbone of the diagnosability
and opacity problems. Infinite paths can be either divergent, or
composed of cycles. A divergent path contains infinitely many
distinct states, its existence impacts on the finite representabil-
ity of the closure. Moreover, arbitrary infinite paths need being
considered for verifying diagnosability.

Proposition 5. Given an RTS R and colour λ, the existence of
an infinite path such that after some index i0 ∈ Z every state of
index i (i ≥ i0) has type λ ∈ Λ in [R] is decidable.

Proposition 5 derives from Lemma 1 in Chédor et al. (2012)
(it enables the detection of infinite paths). Slightly adapting it,
enable the detection of infinite paths crossing, eventually, only
states of a given colour.

Observable behaviour of RTS: Abstracting away internal
transitions is important for partial observation questions. The
following proposition (from Chédor et al. (2012)) computes the
closure of RTS.

Proposition 6. Let R be an RTS with observable events Σo ⊆
Σ, and [R] = (Σ, QR,Λ, QRinit

,ΔR, T yR) its DES. One can
effectively compute an RTS Clo(R) with same colours Λ,
whose DES [Clo(R)] = (Σo, Q

�

R
,Λ, Q�

Rinit
,Δ�

R
, T y�

R
) has no

internal event, is of finite out-degree, and for any colour λ ∈ Λ,
obsQRλ

([R]) = LQ�

Rλ

([Clo(R)]).

Determinization of RTS. In the following we consider weighted
RTS. This class possesses the property of being determinizable
and closed by self-product.

Definition 10. An RTS R is weighted for λ if in its DES [R] =
(Σ, QR,Λ, QRinit

,ΔR, T yR), if QRλ
is a singleton {q0}, and

for any u ∈ Σ
∗ and any states q, q� ∈ QR, q0

u
→ q and q0

u
→ q�

implies �(q) = �(q�) (same level).

Since we use RTS to represent DES we simply say that a RTS
is weighted, whenever it is weighted for init.

Note that determining if an RTS is weighted for any given
colour is decidable, using an algorithm from Caucal and Hassen
(2008).

The construction of typing machines used to check the opacity
of a system and build the corresponding monitor highly relies
on the determinization operation. An RTS R is deterministic if
its underlying DES [R] is deterministic. This is decidable from
the set of tiles defining it.

Proposition 7. (Caucal and Hassen (2008)). Any weighted RTS
R can be transformed into a deterministic one D(R) with same
set of traces and, for any colour, same traces accepted in this
colour.

The next theorem provides sufficient conditions under which
the determinization of a weighted RTS R yields a typing
machine of [R].

Proposition 8. Let R = ((Σ,Λ), T , τ0) be an RTS such that
Clo(R) is a weighted RTS, then determinizing the Clo(R)
produces a typing machine of [R].

Proof. According to Proposition 6, Clo(R) is an RTS and the
types of traces are preserved. Finally, as Clo(R) is a weighted
RTS, applying Proposition 7, produces a deterministic RTS
D(Clo(R)). This RTS, in turn, preserves the traces of [Clo(R)]

from QRinit (and thus of [R]) as well as their types. Hence
[D(Clo(R)] is a typing machine of [R]. ✷

Self-Product. As for the determinization case, the class of
RTS is not closed by self-product Morvan and Pinchinat (2009).
However, for weighted RTS, the following result holds, pro-
vided the colour init is defined in the self-product only for
pair vertices which both have colour init.

Proposition 9. The self-product of an RTS weighted for init,
is an RTS weighted for init.

Proof.(Sketch) To prove this proposition it is sufficient to con-
sider the weighted RTS R = ((Σ,Λ), T , τ0) as well as the
RTS R2 = ((Σ,Λ), T2, τ02) where T2 is the set of products of
tiles defined as follows: Given two tiles τ1 = ((Σ,Λ), Q1,→1

, C1, F1) and τ2 = ((Σ,Λ), Q2,→2, C2, F2), we denote their
product by τ1×2 = ((Σ,Λ), Q1×2,→1×2, C1×2, F1×2). As for
a traditional synchronous product, Q1×2 = Q1 × Q2, for
(q1, q

�

1) and (q2, q
�

2) ∈ Q1×Q2 and a ∈ Σ, ((q1, q
�

1), a, (q2, q
�

2))
∈→1×2 if (q1, a, q2) ∈→1 and (q�1, a, q

�

2) ∈→2. For any
two pairs, (τi, fi) ∈ F1, and (τj , fj) ∈ F2, an element of
F1×2 is produced: (τi×j , fi × fj), where the product of func-
tions is the function over idependent product (fi × fj(a, b) =
(fi(a), fj(b))). Then, for every c ∈ Λ \ {init}, ((q1, q2), c) ∈
C1×2 whenever (q1, c) ∈ C1 or (q2, c) ∈ C2. Finally, init is
given to pairs where each vertex has colour init.

Finally, observe that such a computation may be performed for
any RTS. But, unless R is weighted 1 , there is no guarantee
to have [R2] = [R]2. More precisely, the weighted property
ensures that two paths in [R], with identical labels, reach the
same level, hence may be carried out in [R2].Thus, a simple
induction proves that any path, from init, in [R]2 may be
performed in [R2] (the converse is always true). ✷

4. OPACITY AND DIAGNOSIS PROBLEMS FOR RTS

We come back to opacity and diagnosability problems, but fo-
cusing on systems definable by RTS. We characterize sufficient
conditions over RTS for the opacity problem and diagnosability
problems to become decidable, as it is not the case in general.

Proposition 10. The opacity problem is undecidable for RTS.

Proof. We reduce the inclusion problem for context-free lan-
guages: Let L and L� be two context-free languages over an
alphabet Σ and two new symbols s and # not in Σ (we denote
by Σ# the set Σ ∪ {#}). The languages L# and L�# can

be represented 2 respectively by A = ((Σ#,Λ), T , τ0) and
A� = ((Σ#,Λ), T

�, τ �
0
) two RTS each having a single vertex

labelled by init (vertices 0 of tiles τ0 and τ �0) and such that λ

holds in the accepting states of [A]. λ holds in all the other
states of [A] and [A�]. Let us now consider the RTS A” =
((Σ# ∪ {s} ,Λ), T ∪ T � ∪ {τ ��

0
}, τ ��

0
) such that τ ��

0
= ((Σ# ∪

{s} ,Λ), {0, 1}, {0
s
→ 1}, {(0, init)}, {(τ0, 0, 0), (τ0, 1, 0)}).

In the RTS A”, every path leading to a secret state corresponds
to a word in L�#, and each path finishing with the symbol #
leading to non-secret state corresponds to a word of L#, thus,
L� ⊆ L if, and only if, the set of secret states is opaque w.r.t.
A” and Σ# (s ∈ Σuo). ✷

1 This is a sufficient condition. There might be others.
2 This simple construction of a tiling system with an initial vertex is presented

in Caucal (2007), Section 5 in the contetxt of deterministic graph grammar.

 
270



We can mimic the classic desicion procedure to decide the
opacity problem on finite-state systems, which (as explained
in Section 2.2) relies on the construction of a typing machine.
Such a machine can be built whenever the closure of the RTS is
also weighted. Let us denote by CwRTS the class of RTS whose
closure 3 is weighted (recall it is already an RTS).

Theorem 1. The opacity problem is decidable over the class
CwRTS.

Proof. We give the decision procedure: let R ∈ CwRTS, as
Clo(R) is weighted, we apply Proposition 8 and obtain an
RTS D(Clo(R)) such that [D(Clo(R))] is a typing machine.
It is then sufficient to solve the reachability of {λ}-states in
[D(Clo(R))], which is decidable by Proposition 4. ✷

Turning to diagnosabilty, we have the following.

Proposition 11. Diagnosability problem for RTS is undecid-
able.

This result is a consequence of Morvan and Pinchinat (2009)
since visibly pushdown systems are a strict subclass of weighted
RTS. However, we have a result similar to Theorem 1.

Theorem 2. The diagnosability problem is decidable over the
class CwRTS.

Proof. Let R ∈ CwRTS, since Clo(R) is weighted, by Propo-
sition 9, their exists an RTS R2 such that [R2] = [Clo(R)]2

(self-product of [Clo(R)]) (Proposition 9). Now, by Lemma 1,
non-diagnosability is equivalent to finding an infinite path of
�

λ,λ
�

-typed states in [Clo(R)]2. This can be decided accord-
ing to Proposition 5. ✷

Note that the RTS D(Clo(R)) is a valuable object. Indeed,
whenever the system is not opaque (following Dubreil et al.
(2009) for finite-state systems), D(Clo(R)) can be exploited to
monitor the system [R] and detect effective information flow.
Similarly, when diagnosability holds, the RTS D(Clo(R)) pro-
vides the desired diagnoser.

5. CONCLUSION

The present paper demonstrates a way to extend detection
of information flow and property diagnosis for infinite DES.
We could overcome undecidability by exhibiting the subclass
of weighted RTS for which determinization, self-product and
detection of infinite path are effective. Note that the model
subsumes visibly pushdown automata and height deterministic
pushdown automata which also support these transformations.
Furthermore, the conjoint description of the system and the
property (the typed RTS) enables us to consider either regular
properties with infinite-state systems, or symmetrically finite-
state system with a non-regular properties. Indeed the product
between an RTS and a finite-state machine is still an RTS.

Note that the effectiveness of the transformations on weighted
RTS does not imply the decidability of the diagnosability
and opacity problems: for example, although computable, the
closure of a weighted RTS is not weighted in general. This
prevents us from going further in computing its determinization
and self-product. A track to alleviate these drawbacks would
be to investigate structural conditions on the initial RTS so
that the applied transformations preserve the property of being
weighted.

3 according to Proposition 6, see also Chédor et al. (2012).

Finally, we believe that connected topics such as prognosis and
supervisory control may also be approachable for RTS.

REFERENCES

Alur, R., Etessami, K., and Yannakakis, M. (2001). Analysis
of recursive state machines. In CAV, volume 2102 of LNCS,
207–220.

Badouel, E., Bednarczyk, M., Borzyszkowski, A., Caillaud, B.,
and Darondeau, P. (2007). Concurrent secrets. Discrete
Event Dynamic Systems, 17, 425–446.

Baldan, P., Chatain, T., Haar, S., and König, B. (2010).
Unfolding-based diagnosis of systems with an evolving
topology. Information and Computation, 208(10), 1169–
1192. doi:10.1016/j.ic.2009.11.009.

Bouyer, P., Chevalier, F., and D’Souza, D. (2005). Fault
diagnosis using timed automata. In FoSSaCS’05), volume
3441 of LNCS, 219–233. Edinburgh, U.K.

Bryans, J., Koutny, M., Mazaré, L., and Ryan, P.Y.A. (2008).
Opacity generalised to transition systems. Int. J. Inf. Sec.,
7(6), 421–435.

Cassandras, C.G. and Lafortune, S. (1999). Introduction to
Discrete Event Systems. Springer.

Cassez, F. (2009). The Dark Side of Timed Opacity. In
Proc. of the 3rd International Conference on Information
Security and Assurance (ISA’09), volume 5576 of LNCS, 21–
30. Seoul, Korea.

Caucal, D. (2007). Deterministic graph grammars. In Texts in
logics and games 2, 169–250.

Caucal, D. and Hassen, S. (2008). Synchronization of gram-
mars. In CSR, volume 5010 of LNCS, 110–121.

Chédor, S., Jéron, T., and Morvan, C. (2012). Test generation
from recursive tiles systems. In A. Brucker and J. Julliand
(eds.), 6th International Conference on Tests and Proofs,
volume 7305 of LNCS, 99–114. Prague, Czech Republic.

Courcelle, B. (1990). Handbook of Theoretical Computer
Science, chapter Graph rewriting: an algebraic and logic ap-
proach. Elsevier.

Dubreil, J., Jéron, T., and Marchand, H. (2009). Monitoring
confidentiality by diagnosis techniques. In ECC, 2584–2590.
Budapest, Hungary.

Hélouet, L., Gazagnaire, T., and Genest, B. (2006). Diagnosis
from scenarios. In proc. of the 8th Int. Workshop on Discrete
Events Systems, WODES’06, 307–312.

Jéron, T., Marchand, H., Pinchinat, S., and Cordier, M.O.
(2006). Supervision patterns in discrete event systems di-
agnosis. In WODES’06, 262–268.

Morvan, C. and Pinchinat, S. (2009). Diagnosability of push-
down systems. In HVC2009, Haifa Verification Conference,
volume 6405 of LNCS, 21–33. Haifa, Israel.

Sampath, M., Sengupta, R., Lafortune, S., Sinaamohideen, K.,
and Teneketzis, D. (1995). Diagnosability of discrete event
systems. IEEE Trans. on Automatic Control, 40(9), 1555–
1575.

Tripakis, S. (2002). Fault diagnosis for timed automata. In
W. Damm and E.R. Olderog (eds.), FTRTFT, volume 2469
of LNCS, 205–224. Springer.

Ushio, T., Onishi, I., and Okuda, K. (1998). Fault detection
based on petri net models with faulty behaviors. IEEE Int.
Conf. on Systems, Man, and Cybernetics., 1, 113–118 vol.1.

Yoo, T.S.. and Lafortune, S. (2002). Polynomial-time verifi-
cation of diagnosability of partially-observed discrete event
systems. IEEE Trans. on Automatic Control, 47(3), 1491–
1495.

 
271


