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ELECTROMAGNETIC WAVE SCATTERING

FROM ROUGH PENETRABLE LAYERS

HOUSSEM HADDAR∗ AND ARMIN LECHLEITER†

Abstract. We consider scattering of time-harmonic electromagnetic waves from an unbounded penetrable
dielectric layer mounted on a perfectly conducting infinite plate. This model describes for instance propagation
of monochromatic light through dielectric photonic assemblies mounted on a metal plate. We give a variational
formulation for the electromagnetic scattering problem in a suitable Sobolev space of functions defined in an
unbounded domain containing the dielectric structure. Further, we derive a Rellich identity for a solution to
the variational formulation. For simple material configurations and under suitable non-trapping and smoothness
conditions, this integral identity allows to prove an a-priori estimate for such a solution. A-priori estimates for
solutions to more complicated material configurations are then shown using a perturbation approach. While the
estimates derived from the Rellich identity show that the electromagnetic rough surface scattering problem has
at most one solution, a limiting absorption argument finally implies existence of a solution to the problem.

1. Introduction. Consider an antenna placed over an unbounded penetrable dielectric
layer of finite height mounted on a planar metal substrate. Assuming that the antenna operates
at fixed frequency, the electromagnetic field caused by the antenna solves a source problem for
the time-harmonic Maxwell’s equations in the half-space above the substrate. The problem to
find this solution to Maxwell’s equations when given the source and the dielectric is what we
call the electromagnetic rough layer scattering problem. Figure 1.1 illustrates the setting of this
problem.

x3

(x1, x2)

Source

Air

Rough layer

Perfectly conducting substrate

Figure 1.1. Setting for the rough layer scattering problem. Points in R
3 are denoted as x = (x1, x2, x3)⊤.

The penetrable layer has finite distance to the hyperplane {x3 = 0}. We seek the wave field due to a time-

harmonic source situated in a neighborhood of the layer.

Due to the unboundedness of the domain, the rough layer scattering problem is quite involved
from the point of view of mathematical analysis. This is the case at least if the dielectric material
is a function of all three variables without decay or periodicity constraint, so that the problem
to find the electromagnetic wave field cannot be reduced, e.g., to a bounded domain. Actually,
already for the corresponding scalar wave problems the unbounded domain causes difficulties
because Rellich’s embedding lemma does not hold, Fredholm theory does not apply, and the
arguments needed to establish existence and uniqueness of solution to such problems are in
general far from trivial. Mathematical theory for scattering from rough unbounded structures
was developed from the mid-nineties on by Chandler-Wilde and co-workers starting with theory
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on integral equations for Dirichlet and impedance rough surface problems for the Helmholtz
equation, see, e.g., [5,10,21]. Corresponding results for the same problem in three dimensions are
very recent [6–8]. Scalar scattering problems involving penetrable media have been considered
in [9, 11, 12, 15] both in two and three dimensions. However, rigorous mathematical solution
theory for the full Maxwell’s equations in unbounded penetrable media seems, to the best of our
knowledge, not to exist in the literature.

Time-harmonic Maxwell’s equations and electromagnetic wave propagation have been an im-
portant research area in the last years. For bounded scattering objects the mathematical theory
for this system of partial differential equations is quite well developed, see, e.g., [17]. However,
there are numerous problems that do not seem to be adequately modeled by problems posed
in a bounded domain. Those include for instance electromagnetic wave propagation above un-
bounded rippled surfaces or interfaces, modeling for instance wave propagation related to ground
penetrating radar. As a further example consider light propagation in a dielectric optical device.
Such structures are often mounted on a substrate and thus their extension along the substrate
is very large when compared to their thickness in the direction orthogonal to the substrate.
Under periodicity assumptions on the structure wave scattering problems are usually reduced
to a bounded domain and again a rather complete solution theory is available, see, e.g., [1, 14].
However, if the dielectric assembly lacks periodicity, for instance due to imperfections, doping,
or combination of different sub-modules, then such a reduction does not work. Further, setting
the scattering problem on a bounded domain seems inadequate since the dielectric structure has
two different scales. Indeed, the thickness of such surface structures typically is of the order of
the wave length whereas the transverse length of the structure is several orders of magnitudes
larger. Thus, a natural way to model such wave propagation problems is to pose them on an
unbounded domain of finite height containing the penetrable dielectric layer.

In this paper, we set up a variational formulation for the electromagnetic scattering problem
in a suitably defined Sobolev space. This Hilbert space involves a singular spectral weight to
be able to integrate the radiation condition into the variational formulation. Somewhat related
spectral weights related to variational formulations for wave propagation problems have been
introduced earlier in [4,19]. For any solution of the variational formulation we derive an integral
identity, a form of a Rellich identity, which gives an a-priori bound on the solution, at least
if the dielectric material parameter satisfies certain non-trapping conditions. The appearance
of non-trapping conditions at this point is not surprising, since they are well-known to play a
crucial role in the solution theory of corresponding scalar problems, see [3, 11, 12, 15]. However,
for the vectorial problem, the non-trapping assumptions are considerably more involved. Under
suitable assumptions on the dielectric material, the Rellich identity yields uniqueness of solution
to the variational problem.

Derivation of the Rellich identity is quite a technical matter, and we go through this proce-
dure in detail. A special problem with definiteness of the variational formulation (to be explained
below) forces us to prove the Rellich identity also for solutions to the variational problem in the
case where the real wave number is replaced by an artificial complex wave number with small
positive imaginary part corresponding to absorption. The result is that the a-priori estimate
which follows from the Rellich identity is stable as the absorption parameter tends to zero. For
the problem with absorption existence and uniqueness of solution are clear. Hence, by a limiting
absorption process we obtain existence of solution to our variational problem. The main result
on solvability of the rough layer scattering problem is formulated in Theorem 8.2. We should
mention that the limiting absorption principle we require is not necessary to prove existence of
solution to the corresponding scalar Helmholtz problem, see [15]. The reason is that the varia-
tional form of the scalar problem is an L2-perturbation of a coercive form. Our variational form
for the electromagnetic problem is not coercive modulo L2-perturbations because the bound-
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ary terms incorporating the radiation condition have no definite real part. This is essentially a
feature caused by the nature of the Maxwell’s equations.

We have to mention a further restriction of our result. All right-hand sides appearing as
source terms in our analysis have to be divergence free. The treatment of right hand sides that
are not divergence free would require a Hodge decomposition (as it is done for a bounded domain
in [17] for instance). However, due to the unbounded setting such a procedure would introduce
even more technical difficulties that are not central in our present contribution and are postponed
to a future work.

This paper is organized as follows. In Sections 2 we present the strong formulation of our
scattering problem. In Section 3 we derive suitable variational formulations set in appropriate
function spaces. Section 4 contains a few technical lemmas. The Rellich identity is presented
in Section 5. Sections 6 and 7 derive a-priori estimates from the latter identity for two classes
of dielectric material parameters. Finally, in Section 8 we prove existence and uniqueness of
solution to our variational scattering problem.

Notation: Standard L2 based Sobolev spaces defined in a domain Ω or on a surface Γ are
denoted asHs(Ω) or Hs(Γ) for s ∈ R (see [16] for instance). The spaces H(curl,Ω) andH(div,Ω)
contain those functions in L2(Ω) whose curl or divergence belongs to L2(Ω), respectively (see,
e.g., [17]). For s ∈ N, W s,∞(Ω) denotes the function space of s times weakly differentiable
functions with essentially bounded derivatives up to order s (see [16] for instance).

2. Problem Setting. We consider the time harmonic linear Maxwell’s equations at fre-
quency ω > 0 in R

3
+ = {x ∈ R

3, x3 > 0} for a rough layered geometry which models a dielectric
layer on top of some metallic plate. The electric permittivity ε > 0 and conductivity σ ≥ 0 vary
inside a layer of finite height Ω = {0 < x3 < h} and they are constant above this layer. The
magnetic permeability µ is assumed to be constant. The two boundaries of Ω are denoted as
Γ0 = {x3 = 0} and Γh = {x3 = h}. Since we assume the dielectric layer to be mounted on a
perfectly conducting plate, the electric field E satisfies perfectly conducting boundary conditions
on Γ0. Consider a function g0 such that the support of g0 is included in Ω. Maxwell’s equations
describing the electric and magnetic fields E and H due to the source g0 read

curlE − iωµH = 0, curlH + iω(ε+ iσ/ω)E = g0 in R
3
+, E × e3 = 0 on Γ0. (2.1)

Here, e3 = (0, 0, 1)⊤. The system of partial differential equations (2.1) has to be complemented
by a radiation condition that we will later on set up using an adaption of the angular spectrum
representation. We eliminate the magnetic field from (2.1) to obtain a second-order equation for
the electric field,

curl2E − ω2µ(ε+ iσ/ω)E = iωµg0 in R
3
+, E × e3 = 0 on Γ0. (2.2)

The later variational analysis does by the way not work for the magnetic field, since we exploit
that E× e3 vanishes on Γ0.

Since we deal with a layered geometry, we assume that ε = ε+ > 0 and σ = 0 in {x3 > h−η}
for some constant ε+ > 0, 0 < η ≪ 1. The relative material parameter is then defined by
εr := (ε+ iσ/ω) /ε+, k2 := ω2ε+µ, and (2.2) becomes

curl2E − k2εrE = g in R
3
+, E × e3 = 0 on Γ0, (2.3)

where we have set g := iωµg0. We shall restrict ourselves to divergence free source terms,

div g = 0 in R
3
+.
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The wave number k is physically real, but for mathematical reasons, more precisely for a limiting
absorption argument, we also need to consider complex wave numbers k ∈ C such that

k2 ∈ {z ∈ C, Re(z) > 0, Im(z) ≥ 0}.
We need to complement Maxwell’s equations (2.3) by outgoing conditions in the half space

above Ω to have any chance to obtain a well-posed problem. To formulate these conditions we
use the two-dimensional Fourier transform F , defined for an integrable vector field φ,

F(φ)(ξ) =
1

2π

∫

R2

φ(x) exp(−i x̃ · ξ) dx.

We recall that this integral transform can be extended to a unitary operator on L2(R2)3 or on
L2(R2). Since the Fourier transform acts component-wise on φ we do not distinguish between
transforms of scalar and vector-valued functions.

Since the material parameter εr is constant in {x3 > h}, and since the support of the source
term g is included in Ω, the electric field E satisfies a vector Helmholtz equation ∆E+ k2E = 0
for x3 > h. Writing x̃ = (x1, x2)

⊤ for x = (x1, x2, x3)
⊤ ∈ R3, separation of variables shows that

E(x) =
1

2π

∫

R2

exp
(

i
(

(x3 − h)
√

k2 − |ξ|2 + x̃ · ξ
))

F
(
E|Γh

)
(ξ) dξ, x3 > h, (2.4)

is a representation of the upwards radiating field E, where the square root in the latter expression
is defined by a branch cut in the complex plane along the negative imaginary axis. In particular,
for real k and k2 < |ξ|2, we have (k2 − |ξ|2)1/2 = i(|ξ|2 − k2)1/2.

The problem we aim to solve is hence the following: Find E : R3
+ → C that belongs to

H(curl, {0 < x3 < H}) for all H > 0 and that satisfies E×e3 = 0 on Γ0, curl curlE−k2εrE = g

in the sense of L2(R3
+)3, and the expansion (2.4).

3. Variational Formulation. Assuming that enough regularity holds, we formally multi-
ply (2.3) by the complex conjugate of a test function ψ. Partial integration leads to

∫

Ω

(
curlE · curlψ − k2εrE · ψ

)
dx+

∫

∂Ω

(ν × curlE) · ψ ds =

∫

Ω

g ·ψ dx. (3.1)

The task is now to replace the boundary term ν × curlE by a suitable operator that acts on
the tangential component of E|Γh

, and that takes into account the upwards radiation condition.
We shall construct for that purpose the so-called Calderón operator, the natural analogue of
the exterior Dirichlet-to-Neumann operator known from the variational theory for the Helmholtz
equation [17]. Formally taking the normal derivative of E from (2.4) on Γh, we obtain

∂E

∂x3

∣
∣
∣
∣
Γh

=
i

2π

∫

R2

√

k2 − |ξ|2 exp (ix̃ · ξ)F
(
E|Γh

)
(ξ)dξ, (3.2)

a formula which defines a Dirichlet-to-Neumann operator T+ on Γh,

(T+
k2φ)(x̃) =

i

2π

∫

R2

√

k2 − |ξ|2 exp (ix̃ · ξ)Fφ(ξ) dξ. (3.3)

It is obvious from Fourier expressions that T+
k2 : H1/2(Γh) → H−1/2(Γh) is bounded and, by

Parseval’s identity,

−Re
〈
T+

k2φ, φ
〉

=

∫

R2

Im
(√

k2 − |ξ|2
)

|Fφ(ξ)|2 dξ ≥ 0, (3.4)

Im
〈
T+

k2φ, φ
〉

=

∫

R2

Re
(√

k2 − |ξ|2
)

|Fφ(ξ)|2 dξ ≥ 0, φ ∈ H1/2(Γh), (3.5)
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where 〈 , 〉 denotes the H−1/2(Γh) − H1/2(Γh) duality product that extends the L2(Γh) scalar
product. These properties directly transfer to vector fields φ. For real k we have that

−Re
〈
T+

k2φ, φ
〉

=

∫

|ξ|>k

√

|ξ|2 − k2|Fφ(ξ)|2 dξ ≥ 0,

Im
〈
T+

k2φ, φ
〉

=

∫

|ξ|<k

√

k2 − |ξ|2|Fφ(ξ)|2 dξ ≥ 0, φ ∈ H1/2(Γh).

To avoid lengthy component-wise calculations we shall make use of surface differential op-
erators. We have in mind that x3 is the vertical coordinate and thus we denote the transverse
part of a vector field u = (u1, u2, u3)

⊤ by uT = (u1, u2, 0)⊤. For a scalar function v we set

∇T v := (∂v/∂x1, ∂v/∂x2, 0)⊤ and ~curlT v := (∇T v) × e3 =

(
∂v

∂x2
,− ∂v

∂x1
, 0

)⊤

.

For u = (u1, u2, 0)⊤ we set divTu := ∂u1/∂x1 + ∂u2/∂x2 and, again for a general vector field
u = (u1, u2, u3)

⊤, curlTu := divT (u× e3) = ∂u2/∂x1 − ∂u1/∂x2. Then there holds

curlu = (curlTuT )e3 + ~curlTu3 −
∂

∂x3
u× e3 for u : R

3 → R
3. (3.6)

We remark that divT
~curlT = 0 and curlT∇T = 0. Moreover, ~curlT and curlT are adjoint to each

other in the sense that, formally,
∫

R2 curlTu v dx̃ =
∫

R2 u ~curlT v dx̃ for scalar function v and a
vector field u. From (3.6) it follows that

e3 × curlE = ∇T (E · e3) −
∂ET

∂x3
on ∂Ω. (3.7)

Due to (3.3) we know that

∂ET

∂x3
= T+

k2(ET ) on Γh. (3.8)

To express ∇T (E3) we use the divergence condition satisfied by E in a neighborhood of Γh,

0 = divE = divTET +
∂E3

∂x3
on Γh. (3.9)

Taking the Fourier transform and using (3.2) shows that

i
√

k2 − |ξ|2F
(
E3|Γh

)
+ iξ · F

(
ET |Γh

)
= 0. (3.10)

By abuse of notation, we write ξ · F(ET |Γh
) instead of ξ · F(Ẽ|Γh

) and ignore that strictly
speaking F

(
ET |Γh

)
has three components, because the third one is anyway zero. Consequently,

iξF
(
E3|Γh

)
= − iξ

√

k2 − |ξ|2
(
ξ · F

(
ET |Γh

))
.

Let us then introduce the operator N+
k2 defined for a tangential vector field u by

N+
k2(u)(x̃) =

1

2π

∫

R2

iξ
√

k2 − |ξ|2
(ξ · Fu(ξ)) exp (ix̃ · ξ) dξ. (3.11)
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Then one can formally write

curlE × e3 = T+
k2(ET |Γh

) +N+
k2(ET |Γh

). (3.12)

Let us introduce a Hilbert subspace of TH1/2(Γh) (the space of tangential vector fields in
H1/2(Γh)),

T H̆1/2(Γh) =
{

u ∈ TH1/2(Γh), s.t. (ξ · Fu(ξ))/|k2 − |ξ|2|1/4 ∈ L2(R2)

and |k2 − |ξ|2|1/4Fu(ξ) ∈ L2(R2)2
}

, (3.13)

equipped with the norm

‖u‖2
TH̆1/2(Γh)

=

∫

R2

(
1

|k2 − |ξ|2|1/2
|ξ · F(uT |Γh

)(ξ)|2 + |k2 − |ξ|2|1/2|F(uT |Γh
)(ξ)|2

)

dξ.

For real k2 > 0 the weight in this norm has a singularity. As one can easily deduce from expres-
sion (3.11) and working in the Fourier domain, N+

k2 : T H̆1/2(Γh) → T H̆1/2(Γh)∗ is continuous
and satisfies

Re
〈
N+

k2u, u
〉

= −
∫

R2

Im

(

1
√

k2 − |ξ|2

)

|ξ · Fu(ξ)|2 dξ ≥ 0,

Im
〈
N+

k2u, u
〉

=

∫

R2

Re

(

1
√

k2 − |ξ|2

)

|ξ · Fu(ξ)|2 dξ ≥ 0 for u ∈ T H̆1/2(Γh).

For real k, it holds that

Re
〈
N+

k2u, u
〉

=

∫

|ξ|>k

1
√

|ξ|2 − k2
|ξ · Fu(ξ)|2 dξ ≥ 0,

Im
〈
N+

k2u, u
〉

=

∫

|ξ|<k

1
√

k2 − |ξ|2
|ξ · Fu(ξ)|2 dξ ≥ 0 for u ∈ T H̆1/2(Γh).

The variational problem associated with (2.3) is derived after substituting (3.12) in the
boundary term on Γh appearing in (3.1). Due to the continuity properties of T+

k2 and N+
k2 the

problem is set in the Hilbert space

Xk2 := {u ∈ L2(Ω)3, curlu ∈ L2(Ω)3, div εru = 0 in Ω,

u× e3 = 0 on Γ0 and uT |Γh
∈ T H̆1/2(Γh)}, (3.14)

equipped with the norm

‖u‖2
Xk2

= ‖u‖2
L2(Ω)3 + ‖ curlu‖2

L2(Ω)3

+

∫

R2

(
1

|k2 − |ξ|2|1/2
|ξ · F(uT |Γh

)(ξ)|2 + |k2 − |ξ|2|1/2|F(uT |Γh
)(ξ)|2

)

dξ.

The variational problem then reads as follows: Given

g ∈ L2
0(div0,Ω)3 :=

{
f ∈ L2(Ω)3, div f = 0 in Ω, f · e3 = 0 on Γh

}
,
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find E ∈ Xk2 such that

∫

Ω

(
curlE · curlψ − k2εrE · ψ

)
dx−

〈
T+

k2(ET ), ψT

〉
−
〈
N+

k2(ET ), ψT

〉
=

∫

Ω

g ·ψ dx (3.15)

for all ψ ∈ Xk2 . In the last equation we abbreviated T+
k2(ET ) and N+

k2(ET ) instead of writing
T+

k2(ET |Γh
) and N+

k2(ET |Γh
), respectively, and we will for notational simplicity continue to

do so in the sequel. We will consider problem (3.15) for εr ∈ W 1,∞(Ω) such that εr = 1
in a neighborhood of Γh. Even though we are interested in real wave numbers we consider
k2 ∈ {z ∈ C, Re(z) > 0, Im(z) ≥ 0} for mathematical reasons: the solution for real k2 will be
found by a limiting absorption argument.

After manipulating the variational form, we need to investigate the relation between the
variational and the original strong formulation of the problem. For that purpose we shall need
the following lemma, where we make use of the space

X̃k2 := {u ∈ L2(Ω)3, curlu ∈ L2(Ω)3, u× e3 = 0 on Γ0 and uT |Γh
∈ T H̆1/2(Γh)}.

Lemma 3.1. Assume that εr ∈ L∞(Ω) has a positive real part bounded away from zero and
that k ∈ {z ∈ C, Re(z) > 0, Im(z) ≥ 0}. Then any field ψ̃ ∈ X̃k2 can be decomposed in the form
ψ̃ = ψ + ∇p with ψ ∈ Xk2 and p ∈ H1

0 (Ω).

Proof. Let p ∈ H1
0 (Ω) be the unique solution to

∫

Ω

εr∇p · ∇ϕ dx =

∫

Ω

εrψ̃ · ∇ϕ dx for all ϕ ∈ H1
0 (Ω).

The function ψ = ψ̃ −∇p belongs to L2(Ω)3 and satisfies curlψ = curl ψ̃. On the other hand,
by construction of p, div(εrψ) = 0 and ψT = ψ̃T on ∂Ω. Consequently ψ ∈ Xk2 and the lemma
is proven.

Lemma 3.2. Assume that εr ∈ L∞(Ω) has a positive real part bounded away from zero and
that k ∈ {z ∈ C, Re(z) > 0, Im(z) ≥ 0}. A solution E ∈ Xk2 to (3.15) is a distributional
solution of

curl curlE − k2εrE = g in Ω, and E × e3 = 0 on Γ0. (3.16)

The partial differential equation holds in L2(Ω)3 and

curlE × e3|Γh
= T+

k2(ET |Γh
) +N+

k2(ET |Γh
) holds in H−1/2(Γh)3. (3.17)

Proof. Using Lemma 3.1 and the observation that equation (3.15) is satisfied for ψ = ∇p
with p ∈ H1

0 (Ω) one deduces that equation (3.15) is satisfies for all ψ ∈ X̃k2 , i.e. without the di-
vergence constraint. Then using ψ ∈ C∞

0 (Ω) the solution E to the variational formulation (3.15)
satisfies the differential equation in the distributional sense. Since the right-hand side and the
zeroth order term in (3.16) belong to L2(Ω)3, curl curlE is also in L2(Ω)3 and hence the equation
holds in L2(Ω)3. To obtain the boundary equation in (3.17) one can take arbitrary C∞

0 (R3) func-
tions ψ1 and ψ2 such ψ1 = ψ2 = 0 on Γ0 and consider the test function (without the divergence
free condition) ψη such that ψη

3 = 0 in Ω and the two other components are constructed in the
Fourier domain as follows

F(ψη
i )(ξ, x3) = χ((|ξ| − k)/η)F(ψi)(ξ, x3), i = 1, 2,

7



where χ is a C∞(R) function vanishing in a neighborhood of 0 and equals 1 outside a bounded
neighborhood of 0. Application of the Stokes formula, together with the equation satisfied by E
inside Ω, shows that

〈curlE × e3, ψ
η
T 〉 −

〈
T+

k2(ET ) +N+
k2(ET ), ψη

T

〉
= 0.

Then one concludes by letting η → 0, since ψη
T |Γh

→ ψT |Γh
in any Sobolev norm.

The next lemma shows that a solution to the variational problem (3.15) is not only a weak
solution of Maxwell’s equations (2.3) but also satisfies the upwards radiation condition (2.4).

Corollary 3.3. Assume that εr ∈ L∞(Ω) has a positive real part bounded away from zero,
that k2 ∈ {z ∈ C, Re(z) > 0, Im(z) ≥ 0}, and let E ∈ Xk2 be a solution to (3.15). Then E
extended to {x ∈ R3, x3 > h} by







E+
T (x) =

∫

R2

e
i
“

(x3−h)
√

k2−|ξ|2+x̃·ξ
”

F
(
ET |Γh

)
(ξ) dξ

E+
3 (x) =

∫

R2

e
i
“

(x3−h)
√

k2−|ξ|2+x̃·ξ
”

(
ξ · F

(
ET |Γh

)
(ξ)
)
/
√

k2 − |ξ|2 dξ

(3.18)

is in Xk2 ∩H1({h− η < x3 < H})3 for all H > h and satisfies

curl curlE − k2εrE = g in R
3
+, and E × e3 = 0 on Γ0. (3.19)

Proof. Let us first check that E+ is well defined and belongs to H1({h < x3 < H})3 for all
H > h. SinceET ∈ TH1/2(Γh), using [8, Lemma 2.2] one obtains thatE+

T ∈ H1({h < x3 < H})2
for all H > h. Let χM be the characteristic function of a set M and let us set

f1(ξ) :=
(
ξ · F

(
ET |Γh

)
(ξ)
)
/
√

k2 − |ξ|2χ|ξ|≤2k,

f2(ξ) :=
(
ξ · F

(
ET |Γh

)
(ξ)
)
/
√

k2 − |ξ|2χ|ξ|≥2k,

so that

E+
3 (x) =

∫

R2

exp
(

i
(

(x3 − h)
√

k2 − |ξ|2 + x̃ · ξ
))

(f1(ξ) + f2(ξ)) dξ =: E+,1
3 (x) + E+,2

3 (x).

One can easily check, using the Cauchy-Schwartz inequality, that |ξ|mf1(ξ) is in L1(R2) for any
integer m and therefore E+,1

3 ∈ C∞({x3 ≥ h}). On the other hand (1+|ξ|1/2)f2(ξ) ∈ L2(R2) and
therefore E+,1

3 ∈ H1({h < x3 < H}), H > h. We then conclude that E+
3 ∈ H1({h < x3 < H}).

By taking the Fourier transform with respect to x̃ one checks that

{
curl curlE+ − k2E+ = 0 in {x3 > h}
E+|Γh

× e3 = E|Γh
× e3.

(3.20)

Using (3.17) one also checks (in the Fourier domain) that

curlE+
∣
∣
Γh

× e3 = curlE|Γh
× e3. (3.21)

It is then the a classical exercise (using the Stokes formula) to verify that (3.16), (3.20) and (3.21)
combined with the local H(curl) regularity imply that (3.19) is verified. In turn, (3.19) implies
that divE = 0 in {x3 > h− η} for H > h and E ∈ H1({h− η < x3 < H})3.
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Remark 3.4. The corollary’s statement that the extension by (3.18) belongs to H1({h−η <
x3 < H}) for H > h implies that

(
ξ · F

(
ET |Γh

)
(ξ)
)
/
√

k2 − |ξ|2 is the inverse Fourier transform
of E3, due to the second equation in (3.18). This shows that a solution E to (3.15) indeed satisfies
the angular spectrum representation (2.4).

In particular, if the variational problem (3.15) has a unique solution, then this solution
is independent of the truncation parameter h (chosen large enough for not touching the rough
layer).

The central technique to prove solvability of the variational problem (3.15) is a suitable
Rellich identity for a solution of Maxwell’s equations. This tool uses integrations by parts
requiring additional regularity.

Lemma 3.5. Assume that εr ∈ W 1,∞(Ω) has a positive real part bounded away from zero
and let E ∈ Xk2 be a solution to (3.15). Then E ∈ H1(Ω)3 ∩ H2({h − η/2 < x3 < h})3. If
εr ∈ W 2,∞(Ω), then E ∈ H2(Ω)3.

Proof. Assume that εr ∈W 1,∞(Ω). We shall first prove that E ∈ H1(Ω)3.
Let j ∈ Z2 and set Ω1

j := {x ∈ Ω, |x1 − j1| ≤ 1, |x2 − j2| ≤ 1} and Ω2
j := {x ∈ Ω, |x1 − j1| ≤

2, |x2 − j2| ≤ 2}. Let χ be a C∞(Ω) function such that χ = 1 in Ω1
0

and χ = 0 outside Ω2
0
.

Considering the function Ej = χ(x̃ − j)E and the fact that div εrE = 0 in Ω and that the
tangential components EjT of Ej belong to H1/2(∂Ω2

j) we get from standard results on H(curl)

spaces that Ej ∈ H1(Ω2
j) and that there exists a constant C such that

‖Ej‖2
H1(Ω2

j
) ≤ C(‖Ej‖2

L2(Ω2
j
) + ‖ curlEj‖2

L2(Ω2
j
) + ‖EjT ‖2

H1/2(∂Ω2
j
)).

The constant C depends only on χ and ‖εr‖W 1,∞ and is independent from j due to the invariance

by translation of the norms. Setting Γj
h := Γh ∩ ∂Ω2

j we have that EjT = 0 on ∂Ω2
j \ Γj

h. Using
the definition of Ej as well as the differentiation rule curlχu = ∇χ × u + χ curlu we deduce
that

‖E‖2
H1(Ω1

j
) ≤ C̃(‖E‖2

L2(Ω2
j
) + ‖ curlE‖2

L2(Ω2
j
) + ‖ET ‖2

H1/2(Γj

h)
).

where the again constant C̃ is independent from j. Summing over j ∈ Z2 shows that

‖E‖2
H1(Ω) ≤ 4C̃(‖E‖2

L2(Ω) + ‖ curlE‖2
L2(Ω) + ‖ET ‖2

H1/2(Γh)).

We now prove that E ∈ H2({h − η/2 < x3 < h}). Set U1 = {h − η/2 < x3 < h}. and
U2 = {h − η < x3 < h + η/2}. We extend E ∈ H1(Ω)3 to U2 as in Corollary 3.3 and we
denote the extension still by E. We first remark that according to that Lemma the extension is
continuous across Γh. We therefore deduce that E can also be represented in {x3 ≥ h} by (2.4).
From the first part one has that E|Γh

∈ H1/2(Γh)3. Consequently, using [8, Equation (2.19)]
implies that E ∈ H1(U2)

3. Define further

U j
1 = {x ∈ U1, |x1 − j1| < 1, |x2 − j2| < 1}, and

U j
2 = {x ∈ U2, |x1 − j1| < 2, |x2 − j2| < 2}, j ∈ Z

2.

Since E ∈ H1(U2) solves an inhomogeneous vector Helmholtz equation ∆E + k2
+E = g with

constant coefficients, elliptic regularity results [16] yield

‖E‖2
H2(Uj

1
)
≤ C

(

‖E‖2
H1(Uj

2
)
+ ‖g‖2

L2(Uj
2
)

)

, j ∈ Z, (3.22)

with a constant C independent of j since the geometry of U j
1,2 is independent of j. Summation

over j ∈ Z2 shows that ‖E‖H2(U1) is bounded.
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Assume now that εr ∈ W 2,∞(Ω). We proceed as above with U1 = {η/2 < x3 < h − η/2}
and U2 = Ω. Elliptic regularity implies that there exists a constant C that only depends on h, η
and ‖εr‖W 2,∞ such that (3.22) still holds. We then conclude, using part (a), that ‖E‖H2(U1) is
finite. Combining with part (a) we obtain that E ∈ H2(Ω)3.

4. Technical Lemmas. We first prove some auxiliary lemmas that will be useful in estab-
lishing integral identities for Maxwell’s equations. The next lemma recalls integration by parts
formulas in the unbounded domain Ω.

Lemma 4.1.

(a) For u,v ∈ H(curl,Ω) there holds
∫

Ω curlu · v dx =
∫

Ω u · curlv dx+
∫

∂Ω(ν × u)vT ds.
(b) For φ, ψ ∈ H1(Ω) there holds

∫

Ω
φ∂ψ/∂xj dx = −

∫

Ω
∂φ/∂xjψ dx +

∫

∂Ω
νjφψ ds, j =

1, 2, 3.
(c) For φ ∈W 1,∞(Ω) and ψ ∈ H1(Ω) there holds

∫

Ω
φ∂|ψ|2/∂x3 dx = −

∫

Ω
∂φ/∂x3|ψ|2 dx+

∫

∂Ω
ν3φ |ψ|2 ds.

(d) For φ, ψ ∈ H1/2(Γh) there holds 〈φ, ∂ψ/∂xj〉 = −〈∂φ/∂xj, ψ〉, j = 1, 2.
Proof. (a) We introduce a smooth cut-off function χA in the x̃ variables such that χ(x̃) = 1

for |x̃| < A, χ(x̃) = 0 for |x̃| > A+ 1 and 0 ≤ x̃ ≤ 1. By choosing for instance a radial function
χA(x) = χA(|x̃|), one observes that we can furthermore impose that the maximum norm of the
gradient of χA is uniformly bounded in A > 0. The integration by parts formula in Lipschitz
domains [17, Theorem 3.31] implies

∫

Ω

χA curlu · v dx =

∫

Ω

u · curlχAv dx+

∫

∂Ω

χA(ν × u) · vT ds

=

∫

Ω

χAu · curlv dx+

∫

Ω

u · (∇χA × v) dx +

∫

∂Ω

χA(ν × u) · vT ds.

By Lebesgue’s dominated convergence theorem,
∫

Ω χAu · curlv dx →
∫

Ω u · curlv dx as A→ ∞
and

∫

∂Ω
χA(ν × u) · vT ds →

∫

∂Ω
(ν × u) · vT ds as A → ∞ by continuity of the linear form

H(curl,Ω) ∋ ψ 7→
∫

∂Ω(ν × u) · ψT ds. Moreover,

∣
∣
∣
∣

∫

Ω

u · (∇χA × v) dx

∣
∣
∣
∣
≤ 2‖∇χA‖L∞(Ω)

∫

A<|x|<A+1

|u| |v| dx→ 0 (A→ ∞)

since u,v ∈ L2(Ω)3. Parts (b) and (c) follow in a similar way and (d) can, for instance, be shown
using Plancherel’s theorem.

Lemma 4.2. Assume that εr ∈ W 1,∞(Ω) has a positive real part bounded away from zero.
Then the following identity holds for all E ∈ H2(Ω)3:

2 Re

∫

Ω

(

e3 ×
∂E

∂x3

)

· curlE dx = 2

∫

Ω

∣
∣
∣
∣

∂E

∂x3

∣
∣
∣
∣

2

dx+ 2 Re

∫

Ω

∇T εr
εr

·ET
∂E3

∂x3
dx

+

∫

Ω

∂ log(|εr|)
∂x3

∂|E3|2
∂x3

dx− 2

∫

Ω

Im

(
∂ log(εr)

∂x3

)

Im

(
∂E3

∂x3
E3

)

dx− 2 Re

∫

Ω

div(εrE)

εr

∂E3

∂x3
dx

− 2 Re

∫

Γh

(
∂E3

∂x3
− divE

)

E3 ds− 2 Re

∫

Γ0

divT ETE3 ds. (4.1)

Proof. Using (3.6) one has

2 Re

∫

Ω

(

e3 ×
∂E

∂x3

)

· curlE dx = 2

∫

Ω

∣
∣
∣
∣

∂ET

∂x3

∣
∣
∣
∣

2

dx− 2 Re

∫

Ω

∂ET

∂x3
· ∇TE3 dx.
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We observe that

− 2 Re

∫

Ω

∂ET

∂x3
· ∇TE3 dx = 2 Re

∫

Ω

(
∂

∂x3
divTET

)

E3 dx

= −2 Re

∫

Ω

divTET
∂E3

∂x3
dx+ 2 Re

∫

Γh

divTETE3 ds− 2 Re

∫

Γ0

divTETE3 ds.

Using the identity

divTET = −∂E3/∂x3 −∇(εr)/εr ·E +
div(εrE)

εr

in combination with the fact that εr is constant in a neighborhood of Γh, we find that

∫

Γh

divTETE3 ds = −
∫

Γh

(
∂E3

∂x3
− divE

)

E3 ds.

We also get

− 2 Re

∫

Ω

divTET
∂E3

∂x3
dx = 2 Re

∫

Ω

(∣
∣
∣
∣

∂E3

∂x3

∣
∣
∣
∣

2

+
∇εr
εr

·E ∂E3

∂x3
dx− div(εrE)

εr

∂E3

∂x3

)

dx.

Furthermore,

Re

(
∂ log(εr)

∂x3
E3

∂E3

∂x3

)

=
∂ log(|εr|)
∂x3

Re

(
∂E3

∂x3
E3

)

− Im

(
∂ log(εr)

∂x3

)

Im

(
∂E3

∂x3
E3

)

and we conclude the proof by noting that

2 Re

∫

Ω

∇εr
εr

·E ∂E3

∂x3
dx = 2 Re

∫

Ω

∇T εr
εr

·ET
∂E3

∂x3
dx+ 2 Re

∫

Ω

∂ log(εr)

∂x3
E3

∂E3

∂x3
dx =

2 Re

∫

Ω

∇T εr
εr

·ET
∂E3

∂x3
dx+

∫

Ω

∂ log(|εr|)
∂x3

∂|E3|2
∂x3

dx− 2

∫

Ω

Im

(
∂ log(εr)

∂x3

)

Im

(
∂E3

∂x3
E3

)

dx.

Lemma 4.3. Assume that E ∈ H2(Ω)3. Then

2 Re

∫

Ω

x3
∂E

∂x3
· curl curlE dx = −

∫

Ω

|curlE|2 dx+ h

∫

Γh

|curlE|2 ds

+ 2 Re

∫

Ω

(

e3 ×
∂E

∂x3

)

· curlE dx+ 2hRe

∫

Γh

∂ET

∂x3
· (e3 × curlE) ds. (4.2)
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Proof. Denote by ν the outward unit normal to Ω. Two integrations by parts imply that

2 Re

∫

Ω

x3
∂E

∂x3
· curl curlE dx

=2 Re

∫

Ω

curl

(

x3
∂E

∂x3

)

· curlE dx+ 2 Re

∫

∂Ω

x3
∂E

∂x3
· (ν × curlE) ds

=

∫

Ω

x3
∂

∂x3
|curlE|2 dx+ 2 Re

∫

Ω

(

e3 ×
∂E

∂x3

)

· curlE dx

+ 2 Re

∫

∂Ω

x3
∂E

∂x3
· (ν × curlE) ds

= −
∫

Ω

|curlE|2 dx+

∫

∂Ω

x3 |curlE|2 (ν · e3) ds

+ 2 Re

∫

Ω

(

e3 ×
∂E

∂x3

)

· curlE dx+ 2 Re

∫

∂Ω

x3
∂ET

∂x3
· (ν × curlE) ds.

One then concludes by noticing that x3 = 0 on Γ0 and x3 = h and ν = e3 on Γh.
Lemma 4.4. Assume that εr ∈ W 1,∞(Ω) has a positive real part bounded away from zero.

Then any solution E ∈ Xk2 to (3.15) satisfies the identity (4.2) and, moreover,

2 Re

∫

Ω

(

e3 ×
∂E

∂x3

)

· curlE dx = 2

∫

Ω

∣
∣
∣
∣

∂E

∂x3

∣
∣
∣
∣

2

dx+ 2 Re

∫

Ω

∇T εr
εr

·ET
∂E3

∂x3
dx (4.3)

+

∫

Ω

∂ log(|εr|)
∂x3

∂|E3|2
∂x3

dx− 2

∫

Ω

Im

(
∂ log(εr)

∂x3

)

Im

(
∂E3

∂x3
E3

)

dx− 2 Re

∫

Γh

∂E3

∂x3
E3 ds.

Proof. Let θ ∈ C∞(R3) be a smooth and non-negative function with support in the unit ball
and

∫

R3 θ dx = 1. For δ > 0 and x ∈ R3 let θδ(x) := δ−3θ(x/δ). Let E ∈ Xk2 be a solution
to (3.15) and note that Lemma 3.5 states thatE ∈ H1(Ω)3∩H2({h−η/2 < x3 < h})3. We extend
E to a function defined in all of R

3 so that the extension belongs toH1({x3 < h})3∩H2({x3 > h−
η/2})3 (see, e.g., [20] for a suitable extension operator for the half-space). By abuse of notation,
the extended function is still denoted by E. The convolution Eδ := θδ ∗E belongs to H2(Ω) and
therefore satisfies identity (4.2). Moreover, Eδ → E in H1(Ω)3 ∩H2({h− η/2 < x3 < h})3 and
curl curlEδ → curl curlE in L2(Ω)3 due to Lemma 3.2. Convergence in H2({h−η/2 < x3 < h})3
in particular implies that curlEδ → curlE in L2(Γh)3. Consequently, taking the limit as δ → 0
implies that E also satisfies (4.2).

The smoothed function Eδ also satisfies the identity (4.1) and again we consider the limit
of this identity as δ → 0. Since εr ∈W 1,∞(Ω) it holds that div(εrE

δ) → div(εrE) = 0 in L2(Ω).
Moreover, divT E

δ
T → divT ET = 0 in H−1/2(Γ0) holds due to the convergence in H1(Ω)3 of Eδ

to E and since ET = 0 on Γ0. Convergence of Eδ to E in H2({h − η/2 < x3 < h})3 implies
that ∂Eδ/∂x3 → ∂E/∂x3 in H1/2(Γh). Taking the limit as δ → 0 yields (4.3).

5. Inequalities Resulting from Rellich Identities. Various Rellich identities for the
Helmholtz equation [3, 8, 15] motivate to multiply the Maxwell’s equations (2.3) by x3 ∂E/∂x3

and to integrate by parts to obtain an integral identity linking |∂E/∂x3|2 with the right-hand
side of the variational formulation. For a limiting absorption argument we need to establish this
identity for solutions to a scattering problem with (artificial) complex wave number kα ∈ {z ∈
C, Re(z) > 0, Im(z) ≥ 0}. For simplicity, we set

k2
α := k2 + iα for α ∈ [0, 1].
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It is crucial that the estimates resulting from the Rellich identity are uniform in α ∈ [0, 1]. Note
that Proposition 5.1 below only contains the estimate resulting from the Rellich identity. The
identity itself appears in equation (5.7) in the proposition’s proof.

We consider E ∈ Xk2
α
, a solution to

∫

Ω

(
curlE · curlψ − k2

αεrE · ψ
)

dx −
〈

T+
k2

α
(ET ), ψT

〉

−
〈

N+
k2

α
(ET ), ψT

〉

=

∫

Ω

g · ψ dx (5.1)

for all ψ ∈ Xk2
α
.

Proposition 5.1. Assume that εr ∈ W 1,∞(Ω) has a positive real part bounded away from
zero and a non negative imaginary part and that g ∈ L2

0(div0,Ω)3. Let k > 0 and α ≥ 0, and set
k2

α = k2 + iα. Assume that E ∈ Xk2
α

is a solution to (5.1). Then it holds

∫

Ω

(

2

∣
∣
∣
∣

∂E

∂x3

∣
∣
∣
∣

2

+ k2x3
∂Re(εr)

∂x3
|E|2 +

∂ log(|εr|)
∂x3

∂|E3|2
∂x3

− 2 Im

(
∂ log(εr)

∂x3

)

Im

(
∂E3

∂x3
E3

))

dx

+ 2 Re

∫

Ω

∇T εr
εr

·ET
∂E3

∂x3
dx+

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

≤
(

2h

∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

L2(Ω)3
+ (1 + 2

√
2kh)‖E‖L2(Ω)3

)

‖g̃‖L2(Ω)3 +
√

2αh‖E‖L2(Ω)3‖g‖L2(Ω)3 (5.2)

where we have set g̃ := g + iαεrE + k2
α Im(εr)E. Moreover,

∫

Ω

k2 Im(εr)|E|2 dx ≤ ‖g‖L2(Ω)3‖E‖L2(Ω)3 . (5.3)

Proof. From the variational formulation (5.1) we infer that

∫

Ω

(
curlE · curlψ − k2 Re(εr)E · ψ

)
dx−

〈

T+
k2

α
(ET ), ψT

〉

−
〈

N+
k2

α
(ET ), ψT

〉

=

∫

Ω

g̃ ·ψ dx

(5.4)

for all ψ ∈ Xk2
α
. Since E ∈ Xk2

α
solves (5.1) we can apply Lemma 3.5 to obtain that E ∈

H1(Ω)3 ∩H2({h− η < x3 < h}). Moreover, Lemmas 4.3 and 4.4 state that

2 Re

∫

Ω

x3
∂E

∂x3
· curl curlE dx = −

∫

Ω

|curlE|2 dx+ h

∫

Γh

|curlE|2 ds

+ 2 Re

∫

Ω

(

e3 ×
∂E

∂x3

)

· curlE dx+ 2hRe

∫

Γh

∂ET

∂x3
· (e3 × curlE) ds.

In Lemma 4.4 we have already treated the term 2 Re
∫

Ω
(e3 × ∂E/∂x3) · curlE dx, see (4.3). Due

to identity (3.6), it holds that e3 × curlE = ∇TE3 − ∂ET /∂x3 and therefore

2hRe

∫

Γh

∂ET

∂x3
· (e3 × curlE) ds = −2h

∫

Γh

|∂ET /∂x3|2 ds+ 2hRe

∫

Γh

∂ET

∂x3
· ∇TE3 ds.
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We then obtain

2 Re

∫

Ω

x3
∂E

∂x3
· curl curlE dx = −

∫

Ω

|curlE|2 dx+ h

∫

Γh

|curlE|2 ds+ 2

∫

Ω

∣
∣
∣
∣

∂E

∂x3

∣
∣
∣
∣

2

dx

+ 2 Re

∫

Ω

∇T εr
εr

·ET
∂E3

∂x3
dx+

∫

Ω

(
∂ log(|εr|)
∂x3

∂|E3|2
∂x3

− 2 Im

(
∂ log(εr)

∂x3

)

Im

(
∂E3

∂x3
E3

))

dx

− 2 Re

∫

Γh

∂E3

∂x3
E3 ds− 2h

∫

Γh

|∂ET /∂x3|2 ds+ 2hRe

∫

Γh

∂ET

∂x3
· ∇TE3 ds.

Now we exploit that E satisfies Maxwell’s equations (2.3) in the L2 sense,

2 Re

∫

Ω

x3
∂E

∂x3
· curl curlE dx = 2k2 Re

∫

Ω

x3 Re(εr)
∂E

∂x3
·E dx+ 2 Re

∫

Ω

x3
∂E

∂x3
· g̃ dx

= k2

∫

Ω

x3 Re(εr)
∂

∂x3
|E|2 dx+ 2 Re

∫

Ω

x3
∂E

∂x3
· g̃ dx

= −k2

∫

Ω

∂(x3 Re(εr))

∂x3
|E|2 dx+ k2h

∫

Γh

|E|2 ds+ 2 Re

∫

Ω

x3
∂E

∂x3
· g̃ dx.

Together, the last two equations imply

−
∫

Ω

(

|curlE|2 − k2 ∂(x3 Re(εr))

∂x3
|E|2

)

dx+ 2

∫

Ω

∣
∣
∣
∣

∂E

∂x3

∣
∣
∣
∣

2

dx

+2 Re

∫

Ω

∇T εr
εr

·ET
∂E3

∂x3
dx+

∫

Ω

(
∂ log(|εr|)
∂x3

∂|E3|2
∂x3

dx− 2 Im

(
∂ log(εr)

∂x3

)

Im

(
∂E3

∂x3
E3

))

dx

− 2 Re

∫

Γh

∂E3

∂x3
E3 ds− 2h

∫

Γh

|∂ET /∂x3|2 ds+ 2hRe

∫

Γh

∂ET

∂x3
· ∇TE3 ds

+ h

∫

Γh

(

|curlE|2 − k2|E|2
)

ds = 2 Re

∫

Ω

x3
∂E

∂x3
· g̃ dx. (5.5)

Taking the real part of the variational formulation (5.4) with ψ = E yields

∫

Ω

(

|curlE|2 − k2 Re(εr) |E|2
)

dx− Re
〈

T+
k2

α
(ET ), ET

〉

− Re
〈

N+
k2

α
(ET ), ET

〉

= Re

∫

Ω

g̃ ·E dx. (5.6)

By adding (5.5) and (5.6) and ordering volumetric and boundary terms, we obtain

∫

Ω

(

2

∣
∣
∣
∣

∂E

∂x3

∣
∣
∣
∣

2

+ k2x3
∂ Re(εr)

∂x3
|E|2 +

∂ log(|εr|)
∂x3

∂|E3|2
∂x3

dx

)

+ 2 Re

∫

Ω

∇T εr
εr

·ET
∂E3

∂x3
dx−

∫

Ω

2 Im

(
∂ log(εr)

∂x3

)

Im

(
∂E3

∂x3
E3

)

dx

+ h

∫

Γh

(

|curlE|2 − k2|E|2 − 2|∂ET/∂x3|2
)

ds+ 2hRe

∫

Γh

∂ET

∂x3
· ∇TE3 ds

− 2 Re

∫

Γh

∂E3

∂x3
E3 ds− Re

〈

T+
k2

α
(ET ), ET

〉

− Re
〈

N+
k2

α
(ET ), ET

〉

= 2 Re

∫

Ω

x3
∂E

∂x3
· g̃ dx+ Re

∫

Ω

g̃ ·E dx. (5.7)
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In the sequel of this proof we abbreviate by A(E) all the volumetric terms appearing on the
left-hand side of the last equation. From the decomposition (3.6) of the curl operator we see that

|curlE|2 = |curlT ET |2 +
∣
∣
∣ ~curlTE3

∣
∣
∣

2

+

∣
∣
∣
∣

∂ET

∂x3

∣
∣
∣
∣

2

− 2 Re

(

~curlTE3 ·
∂(E × e3)

∂x3

)

= |curlT ET |2 +
∣
∣
∣ ~curlTE3

∣
∣
∣

2

+

∣
∣
∣
∣

∂ET

∂x3

∣
∣
∣
∣

2

− 2 Re

(

∇TE3 ·
∂ET

∂x3

)

.

We use this relation to substitute the term |curlE|2 in the boundary integral over Γh in (5.7),

A(E) − h

∫

Γh

(∣
∣
∣
∣

∂ET

∂x3

∣
∣
∣
∣

2

+ k2|E|2 − |curlT ET |2 −
∣
∣
∣ ~curlTE3

∣
∣
∣

2
)

ds

− Re
〈

T+
k2

α
(ET ), ET

〉

− Re
〈

N+
k2

α
(ET ), ET

〉

− 2 Re

∫

Γh

∂E3

∂x3
E3 ds

= 2 Re

∫

Ω

x3
∂E

∂x3
· g̃ dx+ Re

∫

Ω

g̃ ·E dx. (5.8)

We consider now the boundary terms appearing in the second line by computing their sum in
the Fourier domain. Plancherel’s theorem implies

∫

Γh

(

k2|E|2 +

∣
∣
∣
∣

∂ET

∂x3

∣
∣
∣
∣

2

− |curlT ET |2 −
∣
∣
∣ ~curlTE3

∣
∣
∣

2
)

ds

=

∫

R2

[

k2|Ê|2 +
∣
∣
∣

√

k2
α − |ξ|2ÊT

∣
∣
∣

2

− |ξ1Ê2 − ξ2Ê1|2 − ξ21 |Ê3|2 − ξ22 |Ê3|2
]

dξ

=

∫

R2

[
(
k2 − |ξ|2 + |k2

α − |ξ|2|
)
|ÊT |2 + (k2 − |ξ|2)|Ê3|2 +

∣
∣
∣ξ1Ê1 + ξ2Ê2

∣
∣
∣

2
]

dξ

=

∫

R2

[
(
k2 − |ξ|2 + |k2 − |ξ|2| + ζα(ξ)

)
|ÊT |2 + (k2 − |ξ|2)|Ê3|2 +

∣
∣
∣ξ1Ê1 + ξ2Ê2

∣
∣
∣

2
]

dξ,

where ζα(ξ) := α2/(|k2
α − |ξ|2| + |k2 − |ξ|2|), ξ ∈ R2. The identity

∫

R2

∣
∣ξ1Ê1 + ξ2Ê2

∣
∣
2
dξ = ‖divTET ‖2

L2(Γh) = ‖∂E3/∂x3‖2
L2(Γh) =

∫

R2

|k2
α − |ξ|2||Ê3|2 dξ

and the radiation condition yield

∫

Γh

(

k2|E|2 +

∣
∣
∣
∣

∂ET

∂x3

∣
∣
∣
∣

2

− |curlT ET |2 −
∣
∣
∣ ~curlTE3

∣
∣
∣

2
)

ds

≤
∫

R2

ζα(ξ)|E|2 dξ + 2

∫

|ξ|<k

(k2 − |ξ|2)|ÊT |2 dξ + 2

∫

|ξ|<k

(k2 − |ξ|2)|Ê3|2 dξ

≤
∫

R2

ζα(ξ)|E|2 dξ + 2k

∫

|ξ|<k

√

k2 − |ξ|2|Ê|2 dξ.

Further, Corollary 3.3 implies that ∂E3/∂x3|Γh
= T+

k2
α
(E3) and that

〈

N+
k2

α
(ET ), ET

〉

= i

∫

R2

|ξ · ÊT |2
√

k2
α − |ξ|2

dξ = i

∫

R2

√

k2
α − |ξ|2|Ê3|2 dξ.
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Hence,

− Re
〈

T+
k2

α
(ET ), ET

〉

− Re
〈

N+
k2

α
(ET ), ET

〉

− 2 Re

∫

Γh

∂E3

∂x3
E3 ds

=

∫

R2

Im
(√

k2
α − |ξ|2

)

|ÊT |2 dξ+

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê3|2 dξ+2

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê3|2 dξ

=

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ ≥ 0.

Returning to (5.8), we find

A(E) − 2kh

∫

|ξ|<k

√

k2 − |ξ|2 |Ê|2 dξ − h

∫

R2

ζα(ξ)|E|2 dξ +

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

≤ 2 Re

∫

Ω

x3
∂E

∂x3
· g̃ dx+ Re

∫

Ω

g̃ ·E dx. (5.9)

The two negative terms from the last expression can be estimated a-priori by taking the imaginary
part of the variational formulation (3.15) with ψ = E, yielding
∫

Ω

(αRe(εr) + k2 Im(εr))|E|2 dx+ Im
〈

T+
k2

α
(ET ), ET

〉

+ Im
〈

N+
k2

α
(ET ), ET

〉

= − Im

∫

Ω

g ·E dx.

(5.10)
All quantities on the left of (5.10) are non-negative. We recall that

Im
〈

T+
k2

α
(ET ), ET

〉

=

∫

R2

Re
(√

k2
α − |ξ|2

)

|ÊT |2 dξ and

Im
〈

N+
k2

α
(ET ), ET

〉

=

∫

R2

Re(
√

k2
α − |ξ|2)|Ê3|2 dξ. (5.11)

From Lemma 5.2 below it follows that ζα(ξ) ≤
√

2αRe
(√

k2
α − |ξ|2

)

. Therefore, using (5.10)

and (5.11),

∫

R2

ζα(ξ)|E|2 dξ ≤
∫

R2

√
2αRe

(√

k2
α − |ξ|2

)

|E|2 dξ

=
√

2α
(

Im
〈

T+
k2

α
(ET ), ET

〉

+ Im
〈

N+
k2

α
(ET ), ET

〉)

≤
√

2α‖g‖L2(Ω)3‖E‖L2(Ω)3 . (5.12)

Inserting the last two estimates into (5.9), we obtain (5.2). Estimate (5.3) is a direct consequence
of (5.10).

Lemma 5.2. For k > 0, α ≥ 0 and ξ ∈ R2,

ζα(ξ) =
α2

|k2
α − |ξ|2| + |k2 − |ξ|2| ≤

√
2αRe

(√

k2
α − |ξ|2

)

.

Proof. We recall that k2
α = k2+iα and therefore

∣
∣k2

α − |ξ|2
∣
∣
2

= |k2−|ξ|2|2+α2. For |ξ|2 > k2

it holds

√
2Re

√

k2
α − |ξ|2 =

√

|k2
α − |ξ|2| + k2 − |ξ|2

=
√

|k2
α − |ξ|2| − |k2 − |ξ|2| =

α

(|k2
α − |ξ|2| + |k2 − |ξ|2|)1/2

.
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Hence,

√
2αRe

√

k2
α − |ξ|2 = α

√
α

(|k2
α − |ξ|2| + |k2 − |ξ|2|)1/2

︸ ︷︷ ︸

≤1

≥ α2

|k2
α − |ξ|2| + |k2 − |ξ|2| , |ξ|2 > k2.

Let now |ξ|2 ≤ k2. Then
√

2αRe
√

k2
α − |ξ|2 ≥

√
2α
√

α/2 ≥ α2/(
∣
∣k2

α − |ξ|2
∣
∣+
∣
∣k2 − |ξ|2

∣
∣).

6. A-priori Bounds for 1D Structures. The simplest situation to prove an a-priori
estimate for solutions to the electromagnetic rough layer scattering problem is when εr only
depends on x3. One might argue whether such a material parameter still corresponds to a rough
layer. Nevertheless, in this section we investigate this simplified setting, because we rely on the
corresponding a-priori estimates when considering more general situations in the next section.
The following lemma is a direct consequence of Proposition 5.1.

Lemma 6.1. Let εr, g and k2
α be as in Proposition 5.1 and further assume that εr does only

depend on x3. Then any variational solution E ∈ Xk2
α

of (5.1) satisfies the a-priori estimate

∫

Ω

(

2

∣
∣
∣
∣

∂E

∂x3

∣
∣
∣
∣

2

+ k2x3
∂Re(εr)

∂x3
|E|2 +

∂ log(|εr|)
∂x3

∂|E3|2
∂x3

)

dx+

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

≤
(

2(h+ 1)

∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

L2(Ω)3
+ (1 + 2

√
2hk +

√
2αh)‖E‖L2(Ω)3

)[

‖g‖L2(Ω)3 + α‖εr‖L∞‖E‖L2(Ω)3

+

(
(k2 + α)2

k2
‖ Im(εr)‖L∞‖g‖L2(Ω)3‖E‖L2(Ω)3

)1/2

+

∥
∥
∥
∥
Im

(
∂ log(εr)

∂x3

)

E

∥
∥
∥
∥

L2(Ω)3

]

. (6.1)

Remark 6.2. Let δ be a positive constant such that 0 < δ < h/2. We denote by a “tubular
domain of thickness δ” of Ω any open domain Dδ := {x ∈ Ω, r(x̃) − δ/2 < x3 < r(x̃) + δ/2}
where r : R2 → R is a piecewise Lipschitz continuous function that satisfies δ < r(x̃) < h− δ.

The following Poincaré-like result is well-known (see [15, Lemma 4.3] and [8, Lemma 3.4]).
Lemma 6.3. Let δ be a positive constant and let Dδ be a tubular domain of thickness δ of

Ω. Then

δ‖u‖2
L2(Ω) ≤ 4h‖u‖2

L2(Dδ) + 8h3

∥
∥
∥
∥

∂u

∂x3

∥
∥
∥
∥

2

L2(Ω)

for all u ∈ H1(Ω).

Lemma 6.4. For u ∈ {v ∈ H1(Ω), v|Γ0
= 0} there holds ‖u‖L2(Ω) ≤ h/

√
2 ‖∂u/∂x3‖L2(Ω).

Our assumptions on εr are as follows:






(a) εr ∈ W 1,∞(Ω) only depends on x3.

(b) Re(εr) is positive and bounded away from zero,
∂ Re(εr)/∂x3 ≥ 0, and Im(εr) ≥ 0 in Ω.

(c) There exists a tubular domain Dδ ⊂ Ω of thickness δ > 0
and constants γ > 1 and c > 0 with

k2x3
∂ Re(εr)

∂x3
− γ2

(
∂ log(|εr|)
∂x3

)2

≥
{

0 in Ω,

c > 0 in Dδ.

(d) There exist constants β ≥ 0 and θ ≥ 1/2 such that
∣
∣
∣
∣
Im

(
∂ log(εr)

∂x3

)∣
∣
∣
∣
≤ β Im(εr)

θ in Ω.

(6.2)
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Two remarks are in order.
Remark 6.5. Assumption (d) in (6.2) is not too restrictive compared to the conditions

(a)-(c), since it can be written as

1

|εr|2
∣
∣
∣
∣
Im(εr)

∂ Re(εr)

∂x3
− Re(εr)

∂ Im(εr)

∂x3

∣
∣
∣
∣
≤ β Im(εr)

θ

and therefore roughly means that the imaginary part of εr should not vary more than exponen-
tially. This condition is for instance verified if Im(εr) = 0.

Remark 6.6. To show that there are material parameters that satisfy (6.2) we construct a
real-valued example. For real-valued εr = εr(x3), we reformulate (6.2)(c) as

k2x3 ε
2
r ≥ γ2ε′r in Ω and (k2x3 − c)ε2r ≥ γ2ε′r in Dδ. (6.3)

We construct in the following a piecewise linear function that satisfies these conditions. For
parameters 0 < h1 < h2 < h and 0 < ε− < 1, we define εr(x3) = ε− in (0, h1), εr(x3) = ε− +
(x3−h1) (1−ε−)/(h2−h1) in (h1, h2), and εr(x3) = 1 in (h2, h). Then εr is an increasing function
in (h1, h2), it possesses a bounded weak derivative, and it satisfies (6.3) for Dδ = {h1 < x3 < h2}
and δ = 1/2 and if and only if

k2h1 ε
2
− ≥ γ2 1 − ε−

h2 − h1
and (k2h1 − c)ε2− ≥ γ2 1 − ε−

h2 − h1
.

The latter conditions hold, e.g., for ε− = 0.5, h1 = 0.25, h2 = 0.75, k = 6, γ = 3/
√

8, and
c = k2/8. Condition (6.3) can be interpreted as a bound on the growth of εr. Indeed, dividing the
left inequality of (6.3) by ε2r and integrating between 0 and x3 we obtain the necessary condition

εr(0)

[

1 +
k2

2γ2
x2

3εr(x3)

]

≥ εr(x3) ≥ εr(0), x3 ∈ (0, h).

Next we use the assumptions (6.2) on the material parameter εr to prove a-priori bounds on
a solution to (5.1).

Lemma 6.7. Let g ∈ L2
0(div0,Ω)3 and k > 0. Assume that εr satisfies (6.2) and set

k2
α = k2 + iα for α ∈ [0, 1]. Then any variational solution E ∈ Xk2

α
of (5.1) satisfies the a-priori

estimate

(∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

2

L2(Ω)3
+ ‖E‖2

L2(Ω)3 +

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

)1/2

≤ C Lα(g,E), (6.4)

with C = (3 +
√

2h+ 2h+ 2
√

2hk)[1 + (γ(4hc+ h2δc)/(γ2 − 1) + 8h3)/(δc)] and where

Lα(g,E) = ‖g‖L2(Ω)3 + α‖εr‖L∞‖E‖L2(Ω)3

+

(
2(k2 + 1)2‖ Im(εr)‖L∞ + 2β2‖ Im εr‖2θ−1

k2
‖g‖L2(Ω)3‖E‖L2(Ω)3

)1/2

. (6.5)

Proof. From Assumption (6.2)(d) and (5.3) we infer that

∥
∥
∥
∥
Im

(
∂ log(εr)

∂x3

)

E

∥
∥
∥
∥

L2(Ω)3
≤ β‖ Im εr‖θ−1/2

L∞

k

√

‖g‖L2(Ω)3‖E‖L2(Ω)3 .
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Therefore (6.1) implies

∫

Ω

(∣
∣
∣
∣

∂E

∂x3

∣
∣
∣
∣

2

+ k2x3
∂ Re(εr)

∂x3
|E|2 +

∂ log(|εr|)
∂x3

∂|E3|2
∂x3

)

dx+

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

≤
(

2(h+ 1)

∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

L2(Ω)3
+ (1 + 2

√
2hk +

√
2αh)‖E‖L2(Ω)3

)

Lα(g,E). (6.6)

The term ∂|E3|2/∂x3 can be rewritten as 2 Re(E3∂E3/∂x3). Hence, setting γ̃ = 1−γ−2 > 0 and
complementing the square, the first integral of (6.6) equals

∫

Ω

(

2

∣
∣
∣
∣

∂ET

∂x3

∣
∣
∣
∣

2

+ k2x3
∂ Re(εr)

∂x3
|ET |2 + γ̃

∣
∣
∣
∣

∂E3

∂x3

∣
∣
∣
∣

2

+

∣
∣
∣
∣
γ−1∂E3

∂x3
+ γ

∂ log(|εr|)
∂x3

E3

∣
∣
∣
∣

2

+

(

k2x3
∂ Re(εr)

∂x3
− γ2

(
∂ log(|εr|)
∂x3

)2
)

|E3|2
)

dx

Now we exploit assumption (6.2)(c) to estimate the latter term from below, and thereby we
obtain from (6.6) that

γ̃

∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

2

L2(Ω)3
+ c‖E3‖2

L2(Dδ) +

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

≤ (3 +
√

2h+ 2h+ 2
√

2hk)

(∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

L2(Ω)3
+ ‖E‖L2(Ω)3

)

Lα(g,E). (6.7)

From Lemma 6.3 we see that

‖E3‖2
L2(Ω) ≤

4hc+ 8h3γ̃

δcγ̃

(

γ̃

∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

2

L2(Ω)3
+ c‖E3‖2

L2(Dδ)

)

and Lemma 6.4 states that ‖ET ‖2
L2(Ω) ≤ h2/2‖∂E/∂x3‖2

L2(Ω)3 , since E ∈ Xk2
α
. Combining the

last two inequalities for ET and E3 shows that

‖E‖2
L2(Ω) ≤

4hc+ 8h3γ̃ + h2δc

δcγ̃

(

γ̃

∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

2

L2(Ω)3
+ c‖E3‖2

L2(Dδ)

)

.

Using again (6.7) we obtain

‖E‖2
L2(Ω) ≤

4hc+ 8h3γ̃ + h2δc

δcγ̃
(3 +

√
2h+ 2h+ 2

√
2hk)

(∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

L2(Ω)3
+ ‖E‖L2(Ω)3

)

Lα(g,E)

and, additionally, (6.6) trivially implies that ‖∂E/∂x3‖2
L2(Ω) +

∫

R2 Im(
√

k2
α − |ξ|2)|Ê|2 dξ is

bounded by the left hand side of (6.6). Adding the last two inequalities finally yields (6.4).

An immediate consequence of the last lemma is the following uniqueness result.
Corollary 6.8. Let g ∈ L2

0(div0,Ω)3, k > 0, and assume that εr satisfies (6.2). Then prob-
lem (3.15) (or, equivalently, problem (5.1) with real wave number, that is, for α = 0) possesses
at most one solution E ∈ Xk2 .
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A further consequence of Lemma 6.7 is an a-priori estimate in H(curl,Ω).

Lemma 6.9. Let g ∈ L2
0(div0,Ω)3 and k > 0. Assume that εr satisfies (6.2) and set

k2
α = k2 + iα for α ∈ [0, 1]. Then any variational solution E ∈ Xk2

α
of (5.1) satisfies the a-priori

estimate

(

‖E‖2
H(curl,Ω) +

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

)1/2

≤
√

((k2 + 1)‖εr‖L∞ + 1)C2 + C Lα(g,E), (6.8)

where C is the constant from Lemma 6.7 and Lα(g,E) is given by (6.5).

Proof. From the real part of the variational formulation (5.1) with ψ = E we infer that

∫

Ω

|curlE|2 − Re
〈

T+
k2

α
(ET ), ET

〉

≤
〈

N+
k2

α
(ET ), ET

〉

+ |k2
α|‖εr‖L∞‖E‖2

L2(Ω)3 + ‖g‖L2(Ω)3‖E‖L2(Ω)3 .

Since E solves (5.1) and exploiting Corollary 3.3 we obtain that divT ET = −∂E3/∂x3. Thus,
the radiation condition implies

Re
〈

N+
k2

α
(ET ), ET

〉

= −
∫

R2

Im

(

|ξ · ÊT |2
√

k2
α − |ξ|2

)

dξ =

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê3|2 dξ.

Since Re
〈

T+
k2

α
(ET ), ET

〉

≤ 0, using (6.4), we arrive at

‖ curlE‖2
L2(Ω)3 + ‖E‖2

L2(Ω)3 +

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

≤ ((k2 + 1)‖εr‖L∞ + 1)‖E‖2
L2(Ω)3 + ‖g‖L2(Ω)3‖E‖L2(Ω)3 + 2

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

≤ (((k2 + 1)‖εr‖L∞ + 1)C2 + C)Lα(g,E)2

where C is the constant from Lemma 6.7.

7. A-Priori Bounds for Rough Structures. In this section we formulate a-priori esti-
mates for solutions to the scattering problem (3.15) for dielectrics εr that are allowed to depend
on all three variables x1, x2, and x3. Using a perturbation approach we bound the dependence of
εr on the transverse variables x̃ to preserve the a-priori estimate gained from the Rellich identity.
To this end, we shall impose that the term

∣
∣
∣
∣

∫

Ω

∇T εr
εr

·ET
∂E3

∂x3
dx

∣
∣
∣
∣
≤
∥
∥
∥
∥

∇T εr
εr

∥
∥
∥
∥

L∞(Ω)2
‖ET ‖L2(Ω)2

∥
∥
∥
∥

∂E3

∂x3

∥
∥
∥
∥

L2(Ω)

(7.1)

is small. Here, the L∞ vector norm is defined as the square root of the sum of all squares of the
maximum norm of the components.
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Analogously to Assumption (6.2) we suppose that εr satisfies the following assumptions:






(a) εr ∈W 1,∞(Ω), Re(εr) is positive and bounded away from zero,

∂Re(εr)

∂x3
≥ 0 and Im(εr) ≥ 0 in Ω.

(b) There exists a tubular domain Dδ ⊂ Ω of thickness δ > 0
and constants γ > 1 and c > 0 with

k2x3
∂ Re(εr)

∂x3
− γ2

(
∂ log(|εr|)
∂x3

)2

≥
{

0 in Ω,

c > 0 in Dδ.

(c) There exist constants β ≥ 0 and θ ≥ 1/2 such that
∣
∣
∣
∣
Im

(
∂ log(εr)

∂x3

)∣
∣
∣
∣
≤ β Im(εr)

θ in Ω.

(d) ‖∇T εr/εr‖L∞(Ω)2 ≤
√

2/h.

(7.2)

Remark 7.1. It is possible to construct examples of contrasts that satisfy these requirements.
For instance, one can take the piecewise linear profile constructed in Remark 6.6 for parameters
0 < h1 < h2 < h and 0 < ε− < 1, and add a sufficiently small function that vanishes for
x3 6∈ (h1, h2): εr(x) = ε− for x3 ∈ (0, h1), εr(x) = 1 for x3 ∈ (0, h1), and

εr(x) = ε− + (x3 − h1)
1 − ε−
h2 − h1

+ δf1(x1, x2)f2(x3) for x3 ∈ (h1, h2),

where δ > 0 is a (small) parameter, f1 : R2 → R possesses bounded weak partial derivatives, and
f2 : (0, h) → R possesses one bounded weak derivative and vanishes in (0, h1)∪(h2, h3). For δ > 0
small enough, εr is positive and increasing in (h1, h2) with respect to x3 and ‖∇T εr/εr‖L∞(Ω)2 ≤√

2/h. Condition (b) from (7.2) is also satisfied if δ > 0 is chosen small enough.
Lemma 7.2. Let g ∈ L2

0(div0,Ω)3 and k > 0. Assume that εr satisfies (7.2) and set
k2

α = k2 + iα for α ∈ [0, 1]. Then any variational solution E ∈ Xk2
α

of (5.1) satisfies the a-priori
estimate

(∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

2

L2(Ω)3
+ ‖E‖2

L2(Ω)3 +

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

)1/2

≤ C Lα(g,E), (7.3)

where Lα(g,E) is given by (6.5) and C is the constant from Lemma 6.7.
Proof. By complementing the square, we note that Lemma 6.4 implies that

∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

2

L2(Ω)3
− 2

∥
∥
∥
∥

∇T εr
εr

∥
∥
∥
∥

L∞(Ω)2
‖ET ‖L2(Ω)2

∥
∥
∥
∥

∂E3

∂x3

∥
∥
∥
∥

L2(Ω)

≥
∥
∥
∥
∥

∂E3

∂x3

∥
∥
∥
∥

2

L2(Ω)3
+

2

h2
‖ET ‖2

L2(Ω)2 − 2

∥
∥
∥
∥

∇T εr
εr

∥
∥
∥
∥

L∞(Ω)2
‖ET ‖L2(Ω)2

∥
∥
∥
∥

∂E3

∂x3

∥
∥
∥
∥

L2(Ω)

=

(∥
∥
∥
∥

∂E3

∂x3

∥
∥
∥
∥

L2(Ω)3
−
∥
∥
∥
∥

∇T εr
εr

∥
∥
∥
∥

L∞(Ω)2
‖ET ‖L2(Ω)2

)2

+

(

2

h2
−
∥
∥
∥
∥

∇T εr
εr

∥
∥
∥
∥

2

L∞(Ω)2

)

‖ET ‖2
L2(Ω)2 .

If ‖∇T εr/εr‖L∞(Ω)2 ≤
√

2/h, then

∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

2

L2(Ω)3
≥ 2

∥
∥
∥
∥

∇T εr
εr

∥
∥
∥
∥

L∞(Ω)2
‖ET ‖L2(Ω)2

∥
∥
∥
∥

∂E3

∂x3

∥
∥
∥
∥

L2(Ω)

. (7.4)
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In consequence, inequality (5.2) implies that

∫

Ω

(∣
∣
∣
∣

∂E

∂x3

∣
∣
∣
∣

2

+ k2x3
∂ Re(εr)

∂x3
|E|2 +

∂ log(|εr|)
∂x3

∂|E3|2
∂x3

)

dx+

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

≤
(

2(h+ 1)

∥
∥
∥
∥

∂E

∂x3

∥
∥
∥
∥

L2(Ω)3
+ (1 + 2hk +

√
2α)‖E‖L2(Ω)3

)

Lα(g,E) (7.5)

where Lα(g,E) is given by (6.5). The last estimate corresponds to (6.6), and the rest of the
proof follows as in proof of Lemma (6.7).

As in the last section, we deduce a uniqueness result and an a-priori estimate in H(curl,Ω).
Corollary 7.3. Let g ∈ L2

0(div0,Ω)3, k > 0, and assume that εr satisfies (7.2). Then prob-
lem (5.1) (or, equivalently, problem (3.15) with real wave number, that is, for α = 0) possesses
at most one solution E ∈ Xk2 .

Lemma 7.4. Let g ∈ L2
0(div0,Ω)3 and k > 0. Assume that εr satisfies (7.2) and set

k2
α = k2 + iα for α ∈ [0, 1]. Then any variational solution E ∈ Xk2

α
of (5.1) satisfies the a-priori

estimate

(

‖E‖2
H(curl,Ω) +

∫

R2

Im
(√

k2
α − |ξ|2

)

|Ê|2 dξ

)1/2

≤
√

((k2 + 1)‖εr‖L∞ + 1)C2 + C Lα(g,E), (7.6)

where C is the constant from Lemma 6.7 and Lα(g,E) is given by (6.5).

The proof is analogous to the proof of Lemma 6.9, it suffices to replace estimate (6.4) by (7.3).

8. Solvability of the Variational Formulation in Xk2. In this section we show solv-
ability of the variational problem (3.15) for real wave number k > 0 and right-hand sides in
L2

0(div0,Ω)3 by combining the a-priori estimate from Sections 6 and 7 with a limiting absorption
approach. This approach consists in considering the scattering problem first for complex wave
number, say, k2

α = k2 +iα. The corresponding variational problem in the entire upper half-space
is easily seen to be coercive. As α → 0 we exploit the a-priori estimates from the last two
sections to conclude that the solutions Eα ∈ Xk2

α
remain bounded in H(curl,Ω), thus, we can

extract a weakly convergent subsequence and a weak limit E ∈ H(curl,Ω). This limit satisfies
the differential equation curl2E−k2εrE = g. Finally, we show that E belongs to Xk2 and solves
the variational formulation (3.15).

Lemma 8.1. Assume that εr ∈ W 1,∞(Ω) satisfies (6.2) or (7.2). Let k > 0, α ∈ (0, 1] and
set k2

α = k2 + iα. Then there is a unique solution Eα ∈ Xk2
α

to the variational problem (3.15)
with complex wave number k2

α for any right-hand side g ∈ L2
0(div0,Ω)3. This solution belongs to

H1(Ω)3 and it satisfies

‖Eα‖2
H(curl,Ω) +

∫

R2

Im(
√

k2
α − |ξ|2)|Eα|2 dξ ≤ C‖g‖2

L2(Ω)3

with a constant C independent of α ∈ (0, α∗] for some α∗ > 0. For any sequence αn → 0
as n → ∞ there exists a subsequence, also denoted by αn, such that Eαn converges weakly in
H(curl,Ω) and Eαn |Γh

converges weakly in H1/2(Γh)3. The limit element E ∈ H(curl,Ω) belongs
to Xk2 and is the unique solution of the variational problem (3.15) with wave number k > 0.

Proof. Problem (3.15) with complex wave number k2
α is equivalent to the following problem in

the upper half-space R3
+ = {x ∈ R3, x3 > 0}: Find E ∈ H0(curl,R3

+) = {u ∈ H0(curl,R3
+), u×
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e3 = 0 on Γ0} such that

∫

R
3
+

(
curlE · curlψ − k2

αεrE ·ψ
)

dx =

∫

R
3
+

g ·ψ dx (8.1)

for all ψ ∈ H0(curl,R3
+). Indeed, the restriction of a solution of (8.1) to Ω solves (3.15) and

the extension of a solution of (3.15) by means of (3.18) solves (8.1). Note that the complex
wave number k2

α implies that the extension by means of (3.18) is exponentially decaying in the
x3 direction. Problem (8.1) is coercive, thus, there exists a unique solution Eα ∈ H(curl,R3

+).
By abuse of notation, we also denote the restriction of this solution to Ω by Eα and note that
the differential equation curl2Eα − k2

αεrEα = g, together with g ∈ L2
0(div0,Ω)3 yields that

Eα ∈ Xk2
α
. Lemma 3.5 yields that Eα ∈ H1(Ω)3. The Rellich identity from Proposition 5.1 is

applicable and yields, by means of Lemma 6.9 or Lemma 7.4, the existence of three constants
C1, C2 and C3, each independent of α, such that

‖Eα‖2
H(curl,Ω) +

∫

R2

Im
(√

k2
α − |ξ|2

)

|Êα|2 dξ

≤ C1‖g‖2
L2(Ω)3 + C2‖g‖L2(Ω)3‖Eα‖L2(Ω)3 + C3α‖Eα‖2

L2(Ω).

Thus, for C3α < 1/2 one deduces the existence of a constant C independent of α such that

‖Eα‖H(curl,Ω) +

∫

R2

Im
(√

k2
α − |ξ|2

)

|Êα|2 dξ ≤ C‖g‖L2(Ω)3 .

In particular, the norms ‖Eα‖H(curl,Ω) are uniformly bounded with respect to α and each
subsequence Eαn , αn → 0 as n → ∞, contains a weakly convergent subsequence. Let E denote
the weak limit of such a subsequence. Since div(εrEα) = 0 in Ω we also have div(εrE) = 0 in Ω.
On the other hand,

‖(Eαn)T ‖2
H1/2(Γh)2 =

∫

R2

(1 + |ξ|2)1/2|(Êαn)T |2 dξ

≤ max(1, 1/k2)√
2

∫

||ξ|−k|>2k

Im(
√

k2
α − |ξ|2)|(Êαn)T |2 dξ

+ (1 + 9k2)−1

∫

||ξ|−k|<2k

(1 + |ξ|2)−1/2|(Êαn)T |2 dξ.

This estimate combined with the trace theorem for the tangential component from H(curl,Ω)
into H−1/2(Γh)2 implies that (Eαn)T is uniformly bounded in H1/2(Γh)2. Thus, eventually
extracting a further subsequence, (Eαn)T converges weakly in H1/2(Γh)2 to ET . Further, the
trace theorem for the normal component from H(div,Ω) into H−1/2(Γh) yields in the same way
that, eventually extracting a further subsequence, also (Eαn)3 converges weakly in H1/2(Γh).

From the partial differential equation satisfied by Eα we infer that curl2E − k2εrE = g

in Ω. The same trace argument shows that Γ0, E × e3 = 0 on Γ0. However, we still need to
check whether E satisfies the radiation condition (2.4), or, in other words, whether E ∈ Xk2 and
whether curlE × e3|Γh

= T+
k2(ET |Γh

) +N+
k2(ET |Γh

).

We also know that the third component (Eα)3 converges weakly in H1/2(Γh), that is, by
means of (3.18), the inverse Fourier transform of

ξ · F((Eα)T )
√

k2
α − |ξ|2

= −F((Eα)3) (8.2)
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converges weakly in H1/2(Γh) to −E3. Let χ ∈ C∞(R) be a smooth cut-off function that equals
one in a neighborhood of k and vanishes outside a bounded neighborhood of k. On the one
hand, the inverse Fourier transform of (1 − χ(|ξ|))(ξ · F((Eα)T ))/

√

k2
α − |ξ|2 converges weakly

to the inverse Fourier transform of (1−χ(|ξ|))(ξ ·F(ET ))/
√

k2 − |ξ|2 in H1/2(R2). On the other

hand, using Lebesgue’s dominated convergence theorem one can check that 1/
√

k2
α − |ξ|2 =

1/
√

k2 + iα− |ξ|2 converges in L1(R2) to 1/
√

k2 − |ξ|2. Hence, χ(|ξ|)(ξ ·F((Eα)T ))/
√

k2
α − |ξ|2

converges in the distributional sense to χ(|ξ|)(ξ·F(ET ))/
√

k2 − |ξ|2. Combined with the previous

statement we obtain that the inverse Fourier transform of (ξ ·F((Eα)T ))/
√

k2
α − |ξ|2 converges in

the distributional sense to the inverse Fourier transform of (ξ·F(ET ))/
√

k2 − |ξ|2. By uniqueness
of the limit, this convergence holds also weakly in H1/2(R2). We conclude that E belongs to Xk2 .

Concerning the boundary condition satisfied by E, we note that

curlEα × e3|Γh
= T+

k2
α
( (Eα)T |Γh

) +N+
k2

α
( (Eα)T |Γh

) (8.3)

holds in H−1/2(Γh)3. Since curl2Eα is bounded in L2(Ω)3 we can assume that up to extracting a
subsequence curlEα×e3 converges weakly to curlE×e3 in H−1/2(Γh)3. Using weak convergence
of the trace (Eα)T in H1/2(Γh)3 and the previous results one can check by working in the Fourier
domain that the right-hand side in (8.3) converges in H−1/2(Γh)3 to T+

k2(ET |Γh
) +N+

k2(ET |Γh
).

A simple corollary of the last convergence result and the a-priori estimate (7.6) is the following
existence and uniqueness result for the variational problem (3.15).

Theorem 8.2. Assume that εr satisfies (6.2) or (7.2) and let k > 0. Then there is a unique
solution E ∈ Xk2 to the variational problem (3.15) for any right-hand side g ∈ L2

0(div0,Ω)3.
This solution satisfies the a-priori estimate given in (6.8) or (7.6) for α = 0, depending on which
of the assumptions (6.2) or (7.2) is supposed.
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