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Abstract. We present a novel approach and implementation for ana-
lysing weighted timed automata (WTA) with respect to the weighted
metric temporal logic (WMTL≤). Based on a stochastic semantics of
WTAs, we apply statistical model checking (SMC) to estimate and test
probabilities of satisfaction with desired levels of confidence. Our ap-
proach consists in generation of deterministic monitors for formulas in
WMTL≤, allowing for efficient SMC by run-time evaluation of a given
formula. By necessity, the deterministic observers are in general approx-
imate (over- or under-approximations), but are most often exact and ex-
perimentally tight. The technique is implemented in the new tool Casaal
that we seamlessly connect to Uppaal-smc in a tool chain. We demon-
strate the applicability of our technique and the efficiency of our imple-
mentation through a number of case-studies.

1 Introduction

Model checking (MC) [14] is a widely used approach to guarantee correctness
of a system by checking that its model satisfies a given property. A typical
model checking algorithm explores a state space of a model and tries to prove
or disprove that the property holds on the model.
Despite a large and growing number of successful applications in industrial

case studies, the MC approach still suffers from the so-called state explosion
problem. This problem manifests itself in the form of unmanageably large state
spaces of models with large number of components (i.e. number of variables,
parallel components, etc). The situation is even worse when a system under
analysis is hybrid (i.e. it possesses both continuous and discrete behaviors), be-
cause a state space of such models may lack finite representation [2]. Another
challenge for MC is to analyze stochastic systems, i.e. systems with probabilistic
assumptions for their behavior.
One of the ways to avoid these complexity and undecidability issues is to use

statistical model checking (SMC) approach [19]. The main idea of the latter is to
observe a number of simulations of a model and then use results from statistics
(e.g. sequential analysis) to get an overall estimate of a system behavior.



In the present paper we consider a problem of computing the probability
that a random run of a given weighted timed automaton (WTA) satisfies a
given weighted metric temporal logic formula (WMTL≤). Solving this problem
is of great practical interest since WTA are as expressive as general linear hy-
brid automata [2], a formalism which has proved to be very useful for modeling
real-world hybrid and real-time systems. Moreover, WMTL≤ [7] is not only a
weighted extension of the well established LTL but can also be seen as an ex-
tension of MTL [15] to hybrid systems. However, the model checking problem
for WMTL≤ is known to be undecidable [7], and in our paper we propose an
approximate approach that computes a confidence interval for the probability.
In most of the cases this confidence interval can be made arbitrary small.
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Fig. 1: A model (left) and deterministic monitor (right) for the repair problem

As an example consider a never-ending process of repairing problems [7],
whose Weighted Timed Automata model are depicted at Fig. 1 (left). The repair
of a problem has a certain cost, captured in the model by the clock c1. As soon as
a problem occurs (modeled by the transition labeled by action problem) the value
of c grows with rate 3, until actual cheap (rate 2) or expensive (rate 4) repair
is taking place. Clock x grows with rate 1 (it’s default behavior unless other rate
is specified). Being a Weighted Timed Automata, this model is equipped with
a natural stochastic semantics [10] with a uniform choice on possible discrete
transitions and uniformly selected delays in locations.
Now consider that we want to express the property that a path goes from ok

back to itself in time less than 10 time units and cost less than 40. This can be
formalized by the following WMTL≤ formula:

okUτ≤9(problem∧ (¬ok ∨ Uτ≤10ok) ∧ (¬okUc≤40ok))

Here, the MITL≤-formula ϕ1U
c
≤dϕ2 is satisfied by a run if ϕ1 is satisfied on

the run until ϕ2 is satisfied, and this will happen before the value of the clock c
increases with more than d starting from the beginning of the run (τ is a special
clock that always grows with rate 1).

1 we will (mis)use the term “clock” from timed automata, though in the setting of
WTAs the clocks are really general real-valued variables



In order to estimate the probability that a random run of a model satis-
fies a given property, our approach will first construct deterministic monitoring
weighted timed automata for this property. In fact, it is not always possible
to construct an exact deterministic observer for a property2, thus our tool can
result in deterministic under- and over-approximations. For our example, the
tool constructed the exact deterministic monitor presented in Fig. 1 (right).
Here rates of a monitoring automaton are defined by the rates of the automaton
being monitored, i.e. the rate of c0 is equal to the rate of c.
The constructed monitoring WTA permits the SMC engine of Uppaal to use

run-time evaluation of the property in order to efficiently estimate the probability
that runs of the models satisfy the given property. In our example the Uppaal-
smc returns the 95% confidence interval [0.215, 0.225]. If none of the under- and
over-approximation monitors are exact, then we use both of them to compute
the confidence interval.
Our contribution is twofold. First, we are the first to extend statistical model

checking to the WMTL≤ logic. The closest logic that has been studied so far
is the strictly less expressive MITL≤, that does not allow to use energy clocks
in the U operator. Second, our monitor-based approach works on-the-fly and
can terminate a simulation as soon as it may conclude that a formula will be
satisfied (or violated) by the simulation. Other statistical model checking algo-
rithms that deal with linear-time properties (cf. [1,18,19,20]) require a posterior
(and expensive) check after a complete simulation of a fixed duration has been
generated.

2 Weighted Timed Automata & Metric Temporal Logic

In this section we describe weighted timed automata (WTA) and weighted metric
temporal logic (WMTL≤) as our modeling and specification formalisms. A notion
of monitoring weighted timed automata (MWTA) is used to define automatically
constructed (deterministic) observers for WMTL≤ properties.

2.1 Weighted Timed Automata

Let C be a set of clocks. A clock bound over C has the form c ∼ n where c ∈ C,
∼∈ {<,≤,≥, >}. We denote the set of all possible clock bounds over C by B(C).
A valuation over C is a function v : C → IR≥0, and a rate vector is a function
r : C → Q. We let V(C) (R(C), respectively) to be all clock valuations (rates)
over C.

Definition 1. A Weighted Timed Automaton3 (WTA) over alphabet A is a
tuple (L, �0, Ci, Co, E,W, I,R) where:
2 For instance, �τ

≤1(p ∧ �τ
≤1(¬r) ∧ �τ

≤1(q)) is a WMTL≤ property which can not be
determinized, as proved in Appendix A

3 In the classical notion of priced timed automata [6,4] cost-variables (e.g. clocks where
the rate may differ from 1) may not be referenced in guards, invariants or in resets,
thus making e.g. optimal reachability decidable. This is in contrast to our notion of
WTA, which is as expressive as linear hybrid systems [8].



– L is a finite set of locations,
– �0 ∈ L is the initial location,
– Ci and Co are finite set of real-valued variables called internal clocks and
observable clocks, respectively,
– E ⊆ L×A× 2B(Ci∪Co) × 2Ci × L is a finite set of edges,
– W : E → R(Ci ∪ Co) assigns weights to edges, weights of observable clocks
should be non-negative (i.e. W (e)(c) ≥ 0 for any e ∈ E and c ∈ Co),
– I : L→ 2B(Ci∪Co) assigns an invariant to each location,
– R : L → R(Ci ∪ Co) assigns rates to the clocks in each location, rates of
observable clocks should be non-negative.

If δ ∈ IR≥0, then we define v + δ to be equal to the valuation v′ such, that
for all c ∈ C we have v′(c) = v(c) + δ. If r is a rate vector, then v + r · δ is the
valuation v′ such that for all clocks c in C, v′(c) = v(c) + r(c) · δ. The valuation
that assigns zero to all clocks is denoted by �0. Given Y ⊆ C, v[Y = 0] is the
valuation equal to �0 over Y and equal to v over C \ Y . We say, that a valuation
v satisfies a clock bound b = c ∼ n (denoted v � b), iff v(c) ∼ n. A valuation
satisfies a set of clock bounds if it satisfies all of them or this set is empty. A
state (l, v) of a WTA consists of a location l ∈ L and a valuation v ∈ V(Ci∪Co).
In particular, the initial sate of the WTA is (�0,�0). From a state a WTA can
either delay for some time δ or it can perform a discrete action a, the rules are
given below:

– (�, v)
δ−→ (�, v′) if v′ = v +R(�) · δ and v′ � I(�).

– (�, v)
a−→ (�′, v′) if v � g and there exists an edge e ∈ E such that e =

(�, g, a, Y, r, �′), v′ = v[Y = 0] +W (e) · 1 and v′ � I(�′).
An (infinite) weighted word over actions A and clocks C is a sequence w =

(a0, v0)(a1, v1) . . . of pairs of actions ai ∈ A and valuations vi ∈ V(C). For i ≥ 0,
we denote by wi the weighted word wi = (ai, vi)(ai+1, vi+1) . . . .

A WTA A = (L, �0, Ci, Co, E,W, I,R) over A generates a weighted word
w = (a0, v0)(a1, v1) . . . over actions A and observable clocks Co, iff v0 = �0 and
there exists a sequence of transitions

(�0, v
′
0)

δ0−→ (�0, v
′′
0 )

a0−→ (�1, v
′
1)

δ1−→ . . .
an−−→ (�n+1, v

′
n+1) . . . ,

and for any i the valuation vi is a projection of v′i to Co, i.e. vi(c) is equal to
v′i(c) for any observable clock c ∈ Co.
Note, that since observable clocks are never reset and grow only with positive

rates, the values of observable clocks can not decrease in a word generated by a
WTA. In fact, we restrict ourselves to WTAs that generate cost-divergent words
(i.e. for any observable clock c and constant k ∈ IR≥0 there is vi such, that vi(c) >
k). If we consider that the WTA in Fig. 1(left) has only one observable clock c,
then this WTA can generate a weighted word (ok, {c �→ 2.0}), (problem, {c �→
3.1}), (cheap, {c �→ 4.2}), . . . .
We let L(A) denote the set of all weighted words generated by an WTA A

and refer to it as the language of A.



A network of Weighted Timed Automata is a parallel composition of several
WTA that have disjoint set of clocks and same set of actionsA. The automata are
synchronized regarding discrete transitions such that if one automata performs a
transition a−→ all other also must perform an a−→ transition. The notion of language
recognized by WTA is naturally extended to the networks of Weighted Timed
Automata.
In [10] we proposed a stochastic semantics for WTA, i.e. a probability measure

over the set of accepted weighted words L(A). The non-determinism regarding
discrete transitions for a single WTA is resolved using a uniform probabilistic
choice among the possible transitions. Non-determinism regarding delays from
a state (�, v) of a single WTA is resolved using a density function μ(�,v) over
delays in R≥0 being either a uniform or an exponential distribution depending
on whether the invariant of � is empty or not.
The stochastic semantics for networks of WTA is then given in terms of repeated
races between the component WTAs of the network: before a discrete transition
each WTA chooses a delay according to its delay density function; then the WTA
with a smallest delay wins the race and chooses probabilistically the action that
the network must perform.

2.2 Monitoring Weighted Timed Automata

A monitoring weighted timed automaton (MWTA) AM is a special kind of WTA
used to define allowed behavior of a given WTA A (or a network of WTAs): a
weighted word generated by A is fed as input to AM for acceptance. For this, the
actions of A and AM coincide and there is a correspondence between the mon-
itoring clocks of AM and the observable clocks A ensuring that corresponding
clocks grow with the same rate.

Definition 2. A Monitoring Weighted Timed Automaton (MWTA) over the
clocks C and the actions A is a tuple (L, �0, �a, �r, CM , E,m) where:

– L is a finite set of locations,
– �0 ∈ L is the initial location,
– �a ∈ L and �r ∈ L are the accepting and rejecting locations, correspondingly,
– CM is a finite set of local clocks,
– E ⊆ (L \ {la, lr})×A× 2B(CM) × 2CM × L is a finite set of edges,
– m : CM → C gives the correspondence of local clocks and C.

We assume, that MWTAs are complete, i.e. for any location l ∈ L \ {la, lr},
action a ∈ A and valuation v ∈ V(CM ) there exists an edge (l, a, g, Y, l′) ∈ E
such that v |= g. An MWTA is called deterministic if not more than one such
edge exists.
An MWTA AM = (L, �0, �a, �r, CM , E,m) over clocks C and actions A ac-

cepts a weighted word (a0, v0)(a1, v1) . . . over the same C and A, iff there exists
a finite sequence (l0, v′0), (l1, v

′
1), . . . , (ln, v

′
n) of states of AM such, that:

– v′0(c) = v0(m(c)) for any clock c ∈ CM ,



– for any i there exists an edge (li, ai, gi, Yi, li+1) ∈ E such, that:

• v′i |= gi and
• for every clock c ∈ CM , if c ∈ Yi then v′i+1(c) = 0, and otherwise
v′i+1(c) = v′i(c) + (vi+1(m(c))− vi(m(c))),

– ln = la is the accepting location of A.

Thus, after reading an element of an input weighted word, a local clock c the
MWTA either reset, or it grows with the same rate as the corresponding clock
m(c) in the input word.

2.3 Weighted Metric Temporal logic WMTL≤

Definition 3. [7] A WMTL≤ formula ϕ over atomic propositions P and clocks
C is defined by the grammar

ϕ ::= p | ¬ϕ |ϕ1 ∧ ϕ2 |Oϕ |ϕ1U
c
≤dϕ2

where p ∈ P , d ∈ N, and c ∈ C.

Let false be an abbreviation for (p ∧ ¬p), and true be an abbreviation for
¬false. The other commonly used operators in WMTL≤ can be defined by the
following abbreviations: (ϕ1 ∨ ϕ2) = ¬(¬ϕ1 ∧ ¬ϕ2), (ϕ1 → ϕ2) = (¬ϕ1) ∨ ϕ2,
�c

≤dϕ = trueUc≤dϕ, �
c
≤dϕ = ¬�c

≤d¬ϕ, and ϕ1R
c
≤dϕ2 = ¬(¬ϕ1U

c
≤d¬ϕ2), where

R is the “release” operator. We also assume, that there always exists a special
clock τ ∈ C (that grows with a rate 1 in an automaton being monitored).
Assuming that P are atomic propositions over actions A, WMTL≤ for-

mulas are interpreted over weighted words. For a given weighted word w =
(a0, v0)(a1, v1)(a2, v2) . . . over A and C and WMTL≤ formula ϕ over P and C,
the satisfaction relation wi |= ϕ is defined inductively:

1. wi |= p iff ai |= p

2. wi |= ¬ϕ iff wi � ϕ

3. wi |= Oϕ iff wi+1 |= ϕ

4. wi |= ϕ1 ∧ ϕ2 iff wi |= ϕ1 and wi |= ϕ2

5. wi |= ϕ1U
c
≤dϕ2 iff there exists j such that j ≥ i, wj |= ϕ2, vj(c)− vi(c) ≤ d,

and wk |= ϕ1 for all k with i ≤ k < j.

We say, that a weighted word w satisfies ϕ, iff w0 |= ϕ, and denote by L(ϕ)
the set of all weighted words that are satisfied by ϕ. ϕ1 and ϕ2 are equivalent if
they are satisfied by the same weighted words, in which case we write ϕ1 ≡ ϕ2.
Given the stochastic semantics of a WTA A, and semantics of WMTL≤

formula ϕ, we can define Pr[A |= ϕ] to be the probability that a random run of
A satisfies ϕ. This probability is well-defined because L(A)∩L(ϕ) is a countable
union and intersection of measurable sets and thus it is measurable itself.



3 From Formulas to Monitors

In this section we present a novel procedure for translating WMTL≤ formulas
into equivalent MWTA monitors, providing an essential and efficient component
of our tool-chain. However, to enable monitor-based, statistical model checking
it is essentially that the generated MWTA is deterministic. Unfortunately, this
might not always be possible as there are WMTL≤ formulas for which no equiv-
alent deterministic MWTA exist4. As a remedy, we describe how basic syntactic
transformations prior to translation allow us to obtain deterministic over- and
under-approximating MWTAs for any given formula ϕ. In Section 5, we shall
see that these approximations are tight and often exact.

3.1 Closures & Extended Formulas

In this section, we assume that ϕ is WMTL≤ formula over propositions P
and (observable) clocks C and has been transformed into negative normal form
(NNF), i.e. an equivalent formula in which negations are applied to the atomic
propositions only. We use Sub(ϕ) to denote all the sub-formulas of ϕ.
In order to further expand ϕ into a disjunctive normal form, we introduce for

each φ1U
c
≤dφ2 ∈ Sub(ϕ) and each φ1Rc≤dφ2 ∈ Sub(ϕ), one local clock x and two

timing constraints x ≤d and x >d to express some timing information related to
φ1U

c
≤dφ2 and φ1R

c
≤dφ2. Also, we introduce auxiliary formulas φ1U

c
≤d−xφ2 and

φ1R
c
≤d−xφ2 to express some requirements that should be satisfied in the future

when we try to guarantee φ1U
c
≤dφ2 ∈ Sub(ϕ) or φ1Rc≤dφ2 ∈ Sub(ϕ) is true in

the current state.
We define Xϕ = {xφ1Uc≤d

φ2 |φ1Uc≤dφ2 ∈ Sub(ϕ)} ∪ {xφ1Rc≤d
φ2 |φ1Rc≤dφ2 ∈

Sub(ϕ)} to be the set of all local clocks for ϕ, where xφ1Uc
≤d

φ2 is the clock assigned
to φ1U

c
≤dφ2 and xφ1Rc≤d

φ2 is the local clock assigned to φ1R
c
≤dφ2. We call xφ1Uc

≤d
φ2

a local clock of U≤-type, and xφ1Rc≤d
φ2 a local clock of R≤-type. The mapping

m from local clocks Xϕ to observable clocks C is defined by m(xφ1Uc
≤d

φ2) = c

and m(xφ1Rc≤d
φ2) = c. The closure of ϕ, write as CL(ϕ), is now defined by the

following rules:

1. true ∈ CL(ϕ), Sub(ϕ) ⊆ CL(ϕ)
2. If φ1U

c
≤dφ2 ∈ Sub(ϕ) and x is the local clock assigned to φ1Uc≤dφ2, then

x ≤d, x >d, φ1Uc≤d−xφ2 ∈ CL(ϕ)
3. If φ1R

c
≤dφ2 ∈ Sub(ϕ) and x is the local clock assigned to φ1Rc≤dφ2, then

x ≤d, x >d, φ1Rc≤d−xφ2 ∈ CL(ϕ)
4. If Φ1, Φ2 ∈ CL(ϕ), then Φ1 ∧ Φ2, Φ1 ∨ Φ2 ∈ CL(ϕ)
Obviously, CL(ϕ) has only finitely many different non-equivalent formulas.
For a local clock x, we use rst(x) to represent that x will be reset at current

step and unch(x) to represent that x will not be reset at current step. The set of
extended formulas for ϕ, write as Ext(ϕ), is now defined by the following rules:
4 As proved in Appendix A, �τ

≤1(p ∧ �τ
≤1(¬r) ∧ �τ

≤1(q)) is an example of a formula
not equivalent to any deterministic MWTA.



1. If Φ ∈ CL(ϕ), then Φ, OΦ ∈ Ext(ϕ)
2. If x ∈ Xϕ is a local clock of U≤-type, then unch(x) ∈ Ext(ϕ)
3. If x ∈ Xϕ is a local clock of R≤-type, then rst(x) ∈ Ext(ϕ)
4. If Φ1, Φ2 ∈ Ext(ϕ), then Φ1 ∧ Φ2, Φ1 ∨ Φ2 ∈ Ext(ϕ)
Extended formulas can be interpreted using extended weighted words. An

extended weighted word ω = (a0, v0, ν0)(a1, v1, ν1)(a2, v2, ν2) . . . is a sequence
where w = (a0, v0)(a1, v1)(a2, v2) . . . is a weighted word over 2P and C, and for
every i ∈ N, νi is a clock valuation over Xϕ such that for all x ∈ Xϕ, either
νi+1(x) = vi+1(m(x)) − vi(m(x)) or νi+1(x) = νi(x) + vi+1(m(x)) − vi(m(x)).
The semantics for extended formulas is naturally induced by the semantics

of WMTL≤ formulas:

Definition 4. Let ω = (a0, v0, ν0)(a1, v1, ν1)(a2, v2, ν2) . . . be an extended weigh-
ted word and Φ ∈ Ext(ϕ). The satisfaction relation ωi |=e Φ is inductively defined
as follows:

1. ωi |=e x ∼ d iff νi(x) ∼ d
2. ωi |=e rst(x) iff νi+1(x) = vi+1(m(x)) − vi(m(x))
3. ωi |=e unch(x) iff νi+1(x) = νi(x) + vi+1(m(x)) − vi(m(x))
4. ωi |=e φ iff wi |= φ, if φ ∈ Sub(ϕ)
5. ωi |=e ϕ1U

c
≤d−xϕ2 iff there exists j such that j ≥ i, wj |= ϕ2, vj(c)−vi(c) ≤

d− νi(x), and wk |= ϕ1 for all k with i ≤ k < j
6. ωi |=e ϕ1R

c
≤d−xϕ2 iff for all j ≥ i such that vj(c)− vi(c) ≤ d− νi(x), either

wj |= ϕ2 or there exists k with i ≤ k < j and wk |= ϕ1

7. ωi |=e Φ1 ∧ Φ2 iff ωi |=e Φ1 and ωi |=e Φ2

8. ωi |=e Φ1 ∨ Φ2 iff ωi |=e Φ1 or ωi |=e Φ2

9. ωi |=e OΦ iff ωi+1 |=e Φ

ωi is a model of Φ if ωi |=e Φ and two extended WMTL≤-formulas are said
equivalent if they have exactly the same models.

3.2 Constructing Non-deterministic Monitors

As in the construction of Büchi automata from LTL formulas, we will break
a formula into a disjunction of several conjunctions [9]. Each of the disjuncts
corresponds to a transition of a resulting observer automaton and specifies the
requirements to be satisfied in the current and in the next states. In the rest
of this section, we use rst({x1, x2, . . . , xn}) and unch({y1, y2, . . . , yn}) to denote
the formula of rst(x1) ∧ rst(x2) ∧ . . . ∧ rst(xn) and the formula of unch(y1) ∧
unch(y2)∧. . .∧unch(yn) respectively. A basic conjunction is an extended formula
of the form:

α ∧ g ∧ rst(X) ∧ unch(Y ) ∧O(Ψ),
where α is a conjunction of literals (a literal is a proposition or its negation), g is a
conjunction of clock constraints,X is a set of local clocks with R≤-type, Y is a set
of local clocks with U≤-type, and Ψ is a formula in CL(ϕ). α∧g∧rst(X)∧unch(Y )



specifies the requirements to be satisfied in the current state and Ψ specifies the
requirements in the next-state. The next Lemma 1 and main Theorem 1 provides
the construction of a monitor from a formula. A full proof is given in Appendix
D.

Lemma 1. Each formula in CL(ϕ) can be transformed into a disjunction of
several basic conjunctions by using the following rules and Boolean equivalences.

1. f Uc≤d g = g ∨ (f ∧O((x≤d) ∧ (f Uc≤d−xg))), where x is the clock assigned to
f Uc≤d g

2. f Uc≤d−x g = g ∨ (f ∧ unch(x) ∧O((x≤d) ∧ (f Uc≤d−xg)))
3. ] f Rc≤d g = g ∧ (f ∨ (rst(x) ∧O(((x≤d) ∧ (f Rc≤d−xg)) ∨ (x>d)))), where x
is the clock assigned to f Rc≤d g

4. f R≤d−x g = g ∧ (f ∨O(((x≤d) ∧ (f R≤d−xg)) ∨ (x>d)))
5. (Of) ∧ (Og) = O(f ∧ g)
6. (Of) ∨ (Og) = O(f ∨ g)

Theorem 1. Let ϕ be a WMTL≤-formula over the propositions P and the clocks
C and is in NNF. Let the MWTA Aϕ= (L, �0, �a, CM , E,m) over the clocks C
and the actions A = 2P be defined as follows:

– L = {{φ} |φ ∈ CL(ϕ) } is a finite set of locations, and �0 = {ϕ} is the initial
location;
– �a = {true} is the accepting location;
– CM = Xϕ is the set of all local clocks for ϕ;
– ({f1}, a, g, λ, {f2}) ∈ E iff α ∧ g ∧ rst(X) ∧ unch(Y ) ∧ O(f2) is a basic con-
junction of f1 and that a satisfies α, and for each x ∈ Xϕ of U≤-type, x ∈ λ
iff x /∈ Y , and for each x ∈ Xϕ of R≤-type, x ∈ λ iff x ∈ X;
– m is defined by m(xφ1Uc≤d

φ2) = c and m(xφ1Rc≤d
φ2) = c.

Then L(ϕ) = L(Aϕ).

Example 1. Fig.2a is a MWTA obtained with our approach for f = (�x
≤1p) ∨

(�c
≤2q) = (trueUx≤1p) ∨ (falseRc≤2q).

3.3 Constructing Deterministic Monitors

The construction of the section 3.2 might produce non-deterministic automata.
In fact, as stated earlier, there exist WMTL≤ formulas for which no equivalent
deterministic MWTA. To get deterministic MWTA for WMTL≤-formulas, we
further translate formulas in disjunctive into the following deterministic form by
repeated use of the logical equivalence p⇔ (p ∧ q) ∨ (p ∧ ¬q).

F =

n∨

i=1

(
αi ∧ gi ∧

ik∨

k=1

(rst(Xik) ∧ unch(Yik) ∧O(Ψik))
)
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(a) Non-deterministic monitor

f
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p
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!p&!q,  x0:=0 f1 |  f2
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p & ( x 0 < = 1 )
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(b) Deterministic under-approximation monitor

Fig. 2: Monitoring WTA for f ≡ (�x
≤1p) ∨ (�y

≤2q), with
f1 ≡ (x0 ≤ 1)∧(trueUx≤1−x0p) and f2 ≡ ((c0 ≤ 2)∧(falseRy≤2−y0q))∨(y0 > 2).

where Xik ⊆ Xϕ is a set of local clocks of type R≤ and Yik ⊆ Xϕ is a set of local
clocks of type U≤, and for all i �= j: αi ∧ gi ∧ αj ∧ gj is false.
Using the facts that O distributes over ∨, and rst(X) and unch(X) are mono-

tonic in X , the following formulas are obviously strengthened (Fu) respectively
weakened (F o) versions of F :

Fu =
n∨

i=1

(
αi ∧ gi ∧ rst(

ik⋃

k=1

Xik) ∧ unch(
ik⋃

k=1

Yik) ∧O(
ik∨

k=1

Ψik)
)

F o =

n∨

i=1

(
αi ∧ gi ∧ rst(

ik⋂

k=1

Xik) ∧ unch(
ik⋂

k=1

Yik) ∧O(
ik∨

k=1

Ψik)
)

Interestingly, by simply applying the construction of Theorem 1 to Fu (F o) we
immediately obtain a deterministic under-approximating (over-approximating)
MWTA Au

ϕ (A
o
ϕ) for ϕ.

Example 2. (continued) Fig.2b is the under-approximation deterministic MWTA
for f = (�x

≤1p) ∨ (�c
≤2q).

4 The Tool Chain

Figure 3 provides an architectural view of our tool chain. The tool chain takes as
input an MITL≤ formula ϕ, a WTA model M , as well as statistical parameters
ε, α for controlling precision and confidence level. As a result a confidence interval
for the probability Pr[M |= ϕ] with the desired precision and confidence level is
returned.
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ϕ
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ϕ
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Fig. 3: Tool chain architecture

Casaal The tool chain includes the new tool component Casaal for generating
monitors. The tool is implemented in C++ and is build on top of the Spot5 open-
source library for LTL to Büchi automata translation. We also use Buddy6 BDD
package to handle operations over Boolean formulas. Given a MITL≤ formula ϕ,
Casaal may construct an exact monitoring WTA Aϕ, as well as two – possibly
approximating – monitoring WTAs, Au

ϕ and A
o
ϕ. Table 1 demonstrates some

experimental results for Casaal. The formulas were also used in [13] and for
comparison we list their results as well. More experimental results are given in
Appendix C.

formula automaton states trans time(s)

pUτ
≤1(qU

τ
≤1(R

τ
≤1s))

nondet 5 14 0.02
under 9 58 0.02
over 9 56 0.04
Geilen 14 30

(p → �τ
≤5q)U

τ
≤100�

τ
≤5¬p

nondet 7 19 0.01
under 9 32 0.01
over 9 32 0.01
Geilen 21 64

(((pUτ
≤4q)U

τ
≤3r)U

τ
≤2s)U

τ
≤1t)

nondet 17 121 0.02
under 17 121 0.03
over 17 121 0.03
Geilen 60 271

Table 1: Experimental results for WMTL≤ formulas.

Uppaal-smc [10,11] is a tool that allows to estimate and test Pr[M |= φ], i.e.
the probability that a random run of a given WTA model M satisfies φ, where
φ is a WMTL≤ formula restricted to the form �c

≤dψ and ψ is a state predicate.
Estimation is performed by generating a number of random simulations of M ,
where each simulation stops when either it reaches a state when ψ is satisfied,
or c ≤ d is violated.

Combining Casaal and Uppaal-smc Let us describe how we use Uppaal-
smc together with the Casaal tool to estimate the probability that a random
run of a WTA modelM satisfies a general WMTL≤ property φ, i.e. Pr[M |= φ].

5 http://spot.lip6.fr/wiki/
6 http://sourceforge.net/projects/buddy/develop



Let us first assume, that one of two deterministic approximations for ϕ re-
turned by Casaal is exact. This means, that we have MWTA Adet

ϕ = (L, �0, �a,

�r, CM , E,m) such that L(Adet
ϕ ) = L(ϕ). First, we augment MWTA Adet

ϕ with
a clock c† that will grow with rate 1 in rejecting location �r, and with rate 0 in
all other locations. Additionally, for every clock c ∈ CM we duplicate all rates
and transition weights from the corresponding clock m(c) to make sure, that the
clocks ofAdet

ϕ grow with the same rate as the corresponding clocks of the automa-
ton M being monitored. Forming a parallel composition of M and Adet

ϕ , we may

now use Uppaal-smc to estimate the probability p = Pr[M ||Adet
ϕ |= �c†

≤1(�a)].
This can be done because of the following theorem:

Theorem 2. If M produces cost-divergent runs only, then each simulation of
M ||Adet

ϕ will end up in accepting or rejecting location of A
det
ϕ after finite number

of steps.

If none of the two MWTAs Ao
ϕ and A

u
ϕ are exact determinization of Aϕ (i.e.

L(Au
ϕ) � L(ϕ) � L(Ao

ϕ)), then we use both of them to compute upper (using
Ao

ϕ) and lower (using A
u
ϕ) bounds for Pr[M |= ϕ]. Indeed, if n1 (n2, correspond-

ingly) out of m random simulations of M ||Au
ϕ (M ||Ao

ϕ, correspondingly) ended
in accepting location lua (l

o
a, correspondingly), then with significance level of α we

can accept a hypothesis H1 (H2, correspondingly) that Pr[M |= ϕ] ≥ n1/m− ε
(Pr[M |= ϕ] ≤ n2/m+ ε). By combining hypothesis H1 and H2 we can obtain
a confidence interval [n1/m− ε, n2/m+ ε] for Pr[M |= ϕ] with significance level
of 1− (1− α)2 = 2α− α2.

5 Case Studies

We performed several case studies to demonstrate the applicability of our tool
chain. In the first case study we analyze the performance of Casaal on a set of
randomly generated WMTL≤ formulas. In the second case study we use a model
of a robot moving on a two-dimensional grid, this model was first analyzed in
[5] using the manually constructed monitoring timed automaton.
Finally, in the appendix B we demonstrate the scalability of our tool chain by

applying it to the analysis of a real-world IEEE 802.15.4 CSMA/CA protocol.

5.1 Automatically Generated Formulas

In the first case study we analyze the performance of Casaal on a set of ran-
domly generated WMTL≤ formulas. We generated 1000 formulas with 2, 3 and
4 actions, and created deterministic over and approximations for these formulas.
Each of the formulas have 15 connectives (release, until, conjunction or disjunc-
tion) and four clocks.
For the formulas where only one or none of the approximations was exact,

we measured the “stochastic difference” between approximations by generating
a number of random weighted words and estimating the probability that the over
approximation accepts a random word, when the under approximation does not.



Table 2 reports the amount of formulas for which the under or over approxi-
mation was exact and the amount of formulas where none of them was exact. It
also contains the average time spent for generating the monitors and the average
number of locations, and the stochastic difference.

5.2 Robot Control

x=0

x=0
fireice

normal

goalfire

normal

goalice

goal
Accept

x<=5x<=3

x<=3

x<=5

Fig. 4: Observer automaton
used in [5]

We consider the case of a robot moving on a two-
dimensional grid that was explored in e.g. [5].
Each field of the grid is either normal, on fire,
cold as ice or it is a wall which that cannot be
passed. Also, there is a goal field that the robot
must reach. The robot is moving in a random fash-
ion i.e. it stays in a field for some time, and then
randomly moves to one of the neighboring fields
(if it is not a wall). Fig. 5 shows a robot controller
implementing this along with the grid we use.
We are interested in the probability that the

robot reaches its goal location without staying on consecutive fire fields for more
than one time units and on consecutive ice fields for more than two time units.
In [5] the authors solved this problem by manually constructing a monitoring

automaton to operate in parallel with the model of the robot. The automaton
they used is depicted in Figure 4. Using WMTL≤ we can express the same
requirement more easily as ϕ ≡ (ϕ1 ∧ ϕ2)U

τ
≤10goal, where:

ϕ1 ≡ ice =⇒ �
τ
≤2(fire ∨ normal ∨ goal)

ϕ2 ≡ fire =⇒ �
τ
≤1(ice ∨ normal ∨ goal)

Casaal produces an MWTA (6 locations, 55 edges) that is an exact under-
approximation for ϕ. Based on this MWTA, our tool chain estimates the prob-
ability that the random behavior of the robot satisfies ϕ to lie in the interval
[0.373, 0.383] with a confidence of 95%. Fig. 5c shows how we can visualize and
compare the different distributions using the plot composer of Uppaal-smc.

Energy We extend the model by limiting the energy of the robot that will
stop moving when it runs out of energy. Furthermore, it can regain energy while
staying on fire fields and use additional energy while staying on ice fields. Let c
be the clock accumulating the amount of consumed energy. Now, we can express
the property ϕ ≡ (ϕ1 ∧ϕ2∧¬noEnergy)Uc≤10goal that the robot should not use

# exact Avg. time (s) Avg. size Stochastic difference
Actions under over none one under over under over no exact one exact

2 831 542 169 289 0.24 1.01 6.35 6.35 0.27 0.15
3 706 370 294 336 1.42 2.75 12.29 12.29 0.05 0.03
4 586 233 414 353 8.66 13.05 22.97 22.97 0.01 0.02
Table 2: Results for the random generated formula test.
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Fig. 5: (a) A 6 × 6 grid. The black fields are walls, the fields with vertical lines
are on fire and the fields with horizontal lines contain ice. The circle indicates
the robot’s starting position and the square the goal.
(b) WTA implementing the random movement of the robot.
(c) Cumulative distribution of the robot reaching the goal, staying too long in
the fire or too long on the ice.

more than 5 units of energy while obeying the requirements from before. The
tool chain estimates the probability that the robot satisfies this requirement to
lie in [0.142; 0.152] with a confidence of 95%.

6 Related and Future Work

To our knowledge, we are the first to propose and implement an algorithm for
translation of WMTL≤ formulas into monitoring automata. However, if we level
down to MITL≤, there are several translation procedures described in the lit-
erature that are dealing with this logic. First, Rajeev Alur in [3] presents a
procedure that is mostly theoretical and is not intended to be practically imple-
mented. Second, Oded Maler et al. [16] proposed a procedure to translate MITL
into temporal testers (not the classic timed automata), their procedure also has
not been implemented. Nir Piterman et al. [17] proposed an approach how to
translate MTL to deterministic timed automata under finite variability assump-
tion (this assumption is not valid for the WTA stochastic semantics that we
use). Finally, Marc Geilen[12] has implemented a procedure to translate MITL≤
to timed automata, but his approach works in continuous time semantics.
For future work we aim at extending our monitor- and approximate deter-

minization constructions toWMTL[a,b] with (non-singleton) cost interval-bounds
on the U modality in order to allow for SMC for this more expressive logic. Here
a challenge will be how to bound the length of the random runs to be generated.
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A WMTL≤ is Not Deterministic

In this section we show that there is no procedure that for a given WMTL≤
formula ϕ produces a deterministic MWTA Adet

ϕ such, that L(ϕ) = L(Adet
ϕ ).

We demonstrate this by proving that for a formula

ϕ ≡ �τ
≤1(p ∧ �τ

≤1(¬r) ∧�τ
≤1(q))

there does not exist exact and deterministic monitor. In fact, this formula also
belongs to MITL≤, so we also prove that MITL≤ is not deterministic.
Thus, we extend the result of [7], in which it has been shown that MITL[a,b]

is not deterministic. To give a formal proof that ϕ is not determinizable, one
can adapt the proof of [7] that �τ

≤1(p =⇒ �τ
[1,2](¬q)) MITL[a,b] formula is not

determinizable. Here we will provide a more simple proof that doesn’t use deep
results from the theory of Timed Automata.
Let’s assume, that there exists a deterministic MWTA Adet

ϕ with n clocks
such, that L(ϕ) = L(Adet

ϕ ). Now, let’s consider the set V of timed words of the
form (p, t1)(p, t2) . . . (p, tn+3) that are monotonic (i.e. ti+1 > ti), consist only of
p actions, have duration 1 (i.e. tn+3 = 1) and start from zero (i.e. t1 = 0). After
reading a word from the set V a value of each clock xi of Adet

ϕ is equal to 1− tai

for some index ai (remind, that the clocks can be reset only when a MWTA
reads a discrete action). Since Adet

ϕ is deterministic and in its guards we permit
only integer-valued bounds, after reading any word from V the MWTA Adet

ϕ will
be in the same location. Moreover, the values of indexes ai will be the same for
all words from V (i.e. Adet

ϕ “memorizes” the time of the events from the fixed
set of numbers). Since Adet

ϕ has only n clocks, there exists an index j ∈ [1..n+1]
such that the MWTA doesn’t memorize the moment when it read the discrete
action p number j. It means, that there doesn’t exist index ai such that ai = j
(and xai = 1− tj).
Let’s pick two timed words u and v from V that differ only at the j-th

position, i.e.:

u = (p, t1)(p, t2) . . . (p, tj) . . . (p, tn+3) ,

v = (p, t1)(p, t2) . . . (p, t
′
j) . . . (p, tn+3)

, and t′j > tj .
The MWTA Adet

ϕ can’t distinguish u and v, i.e. for any continuation w the
MWTA accepts the timed word u · w iff it accepts the timed word v · w. But it
can be easily seen, that this should not be the case for w = (q, tj + 1)(r, t′j + 1).
Indeed, ϕ is satisfied by a timed word u′ and is not satisfied by a timed word v′,
where:

u′ = (p, t1)(p, t2) . . . (p, tj) . . . (p, tn+3)(q, tj + 1)(r, t′j + 1) ,

v′ = (p, t1)(p, t2) . . . (p, t
′
j) . . . (p, tn+3)(q, tj + 1)(r, t′j + 1)

7 O. Maler, D. Nickovic, and A. Pnueli. Real time temporal logic: Past, present, future.
In FORMATS, pages 2-16, 2005.



Thus, the timed words u′ and v′ are distinguishable by the WMTL≤ formula
ϕ, and are not distinguishable by its monitor Adet

ϕ . This violates the initial
assumption, and thus ϕ is not determinizable.
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Fig. 6: Model of IEEE 802.15.4 CSMA/CA protocol

B Logical Decomposition of WMTL≤ Properties

Even though the size of monitors Au
ϕ and A

o
ϕ produced by our tool chain depends

exponentially on the size of ϕ, we observe in our experiments that in many
cases complex specifications are logically composed of smaller specifications (for
instance, a requirement of a complex system behavior may be a conjunction of
requirements over its components). This allows us to use (smaller) monitors for
logical sub-formulas of ϕ instead of using one (large) monitor for ϕ.
We illustrate this by the following example. Consider, that ϕ ≡ ϕ1∧(ϕ2∨ϕ3).

Then for computing the lower bound we can construct monitors Au
ϕ1
, Au

ϕ2
and

Au
ϕ3
and put them all in parallel with M . For this parallel composition, the

special clock c′ grows with rate 1 iff any continuation of a trace can’t satisfy
ϕ, i.e. if the location l1r ∨ (l2r ∧ l3r) has been reached. Then it’s easy to see that
Pr[M ||Au

ϕ1
||Au

ϕ2
||Au

ϕ3
|= �c′

≤1(l
1
a ∧ (l2a ∨ l3a))] bounds the probability Pr[M |= ϕ]

from bottom. Furthermore, we can apply similar construction for the upper
bound, and thus bound the probability from both sides.
We demonstrate the applicability of this approach by the following case study.

B.1 IEEE 802.15.4 CSMA/CA Protocol

IEEE 802.15.4 standard specifies the physical layer and media access control
layer for low-cost and low-rate wireless personal area networks. Devices in such
networks share the same wireless medium and thus they can possibly corrupt the
transmission of each other by sending data at the same time. We applied our tool



to the analysis of Multiple Access/Collision Avoidance (CSMA/CA) network
contention protocol that is used in IEEE 802.15.4 to minimize the number of
collisions.
Our model of IEEE 802.15.4 CSMA/CA protocol is given at Fig. 6.
Our goal was to estimate the probability that all the nodes can recover from

a collision within a given time bound. This requirement can be specified by a
WMTL≤ formula ∧i=1..Nϕi, where N is a number of network nodes and ϕi

specifies the behavior of a single node:

ϕi ≡ �τ
≤10000(collisioni =⇒ �τ

≤4000sendi)

We applied our tool chain to check this property for different values of N .
Casaal tool produced an exact monitoring automaton Au

ϕ for this formula.

Number of nodes 2 3 4 5
Time to produce Au

ϕ <1s 3s 57s 20m2s
Number of locations in Au

ϕ 18 66 258 1026
Number of transitions in Au

ϕ 230 2049 16306 123800
Time to perform SMC 16s 1m1s 3m36s 12m4s

(a) Without logical decomposition of the formula

Number of nodes 2 3 4 5 6 7 8
Time to produce Au

ϕ1
|| . . . ||Au

ϕN
<1s <1s <1s 1s 1s 1s 2s

Time to perform SMC 17s 43s 1m24s 2m28s 4m4s 6m8s 9m52s
SMC result 0.96 0.85 0.66 0.45 0.24 0.10 0.05

(b) With logical decomposition of the formula

Table 3: Results for IEEE CSMA/CA 802.15.4 protocol

Unfortunately, the size of ϕ grows linearly with N , resulting in the exponen-
tial growth of the size of a monitor Au

ϕ (and the time required to build it). This
slows down the overall tool chain, that is reflected on Fig. 3a (for this case study
we use ε = 0.01 and α = 0.95 statistical parameters). However, our formula de-
composition technique described below helped to overcome this problem. Indeed,
ϕ is a conjunction of simple formulas ϕi, such that they and their monitors are
constant in their size. This is illustrated by Fig. 3b that provides the results for
the case when we use logical decomposition.



C Additional Experimental Results

formula automaton states trans time(s)

¬ �τ≤5 p

nondet 3 4 0.02
under 3 4 0.00
over 3 4 0.02
Geilen 4 6

�τ
≤100 �τ≤5 p

nondet 5 12 0.02
under 5 12 0.01
over 5 12 0.02
Geilen 10 22

�τ≤5(�
τ
≤1p ∨ �τ

≤1q)

nondet 5 11 0.02
under 9 37 0.02
over 9 37 0.02
Geilen 11 21

p→ (�τ
≤5(q → �τ

≤1r))

nondet 5 14 0.02
under 5 14 0.01
over 5 14 0.01
Geilen 15 48

Table 4: Additional experimental results for WMTL≤ formulas for Section 4.



D Proof of Theorem 1

In this Appendix we provide a detailed proof for our main Theorem 1. The
following two Lemma’s proves the validity of the distribution laws of Lemma 1.

Lemma 2. Let ω be an extended weighted word.

1. If ω |=e g ∨ (f ∧O((x≤d) ∧ (f Uc≤d−xg))), then ω |=e f U
c
≤d g.

2. If ω |=e g ∨ (f ∧ unch(x) ∧O((x≤d) ∧ (f Uc≤d−xg))), then ω |=e f U
c
≤d−x g.

3. If ω |=e g ∧ (f ∨ (rst(x) ∧ O(((x≤ d) ∧ (f Rc≤d−xg)) ∨ (x>d)))), then ω |=e

f Rc≤d g.
4. If ω |=e g ∧ (f ∨O(((x≤d) ∧ (f Rc≤d−xg)) ∨ (x>d))), then ω |=e f R

c
≤d−x g.

Proof

1. Assume that ω |=e g ∨ (f ∧O((x≤d) ∧ (f Uc≤d−xg))).
If ω |=e g, then the conclusion is true.
If ω �e g, then ω |=e f ∧O((x≤d) ∧ (f Uc≤d−xg)).
Hence ω |=e f , and ω1 |=e (x≤d) ∧ (f Uc≤d−xg).
So ω |=e f U

c
≤d g.

2., 3., 4. Similar. �

Definition 5. Given a weighted word w = (a0, v0)(a1, v1)(a2, v2) . . ., and a clock
valuation ν0, an extended weighted word w = (a0, v0, ν0)(a1, v1, ν1)(a2, v2, ν2) . . .
can be defined as follows.

1. If x ∈ Xϕ is a local clock assigned to f Uc≤d g, then w
i |= unch(x) iff wi |=e

f Uc≤d−x g, and w
i � g.

2. If x ∈ Xϕ is a local clock assigned to f Rc≤d g, then w
i |= rst(x) iff wi |=e

f Rc≤d g, and w
i � f .

Lemma 3. Let w be a weighted word, and w be an extended weighted word
defined in Definition 5, then

1. If wi |=e f U
c
≤d g, then w

i |=e g ∨ (f ∧O((x≤d) ∧ (f Uc≤d−xg))).
2. If wi |=e f U

c
≤d−x g, then w

i |=e g ∨ (f ∧ unch(x) ∧O((x≤d) ∧ (f Uc≤d−xg)))

3. If wi |=e f R
c
≤d g, then w

i |=e g∧(f∨(rst(x)∧O(((x≤d)∧(f Rc≤d−xg))∨(x>
d))))

4. If wi |=e f R
c
≤d−x g, then w

i |=e g ∧ (f ∨O(((x≤d) ∧ (f Rc≤d−xg))∨ (x>d)))

Proof

1. Assume that wi |=e f U
c
≤d g.

(a) If wi |=e g, the conclusion is true.
(b) If wi �e g and wi |=e f U

c
≤d−x g,

then by Definition 5, wi |= unch(x),
From wi |=e f U

c
≤d−x g, we have w

i+1 |=e (x ≤ d) ∧ (f Uc≤d−x g).
Thus wi |=e f ∧O((x≤d) ∧ (f Uc≤d−xg)).



(c) If wi �e g and wi �e f U
c
≤d−x g,

then wi �e unch(x), and x will be reset at i.
From wi |=e f U

c
≤d g, we know that w

i+1 |=e (x ≤ d) ∧ (f Uc≤d−x g) and
wi |=e f .
So wi |=e f ∧O((x≤d) ∧ (f Uc≤d−xg)).

2. Assume that wi |=e f U
c
≤d−x g.

(a) If wi |=e g, the conclusion is true.
(b) If wi �e g, then by Definition 5, wi |= unch(x),
From wi |=e f Uc≤d−x g, we know that w

i |=e f and wi+1 |=e (x ≤
d) ∧ (f Uc≤d−xg).
So wi |=e f ∧ unch(x) ∧O((x≤d) ∧ (f Uc≤d−xg)).

3. Assume that wi |=e f R
c
≤d g.

(a) If wi |=e f , then wi |=e f ∧ g, and the conclusion is true.
(b) If wi �e f , then by Definition 5, wi |= rst(x).
From wi |=e f R

c
≤d g, we know that w

i+1 |=e ((x≤d)∧(f Rc≤d−xg))∨(x >
d).
Thus we get the conclusion that wi |=e g ∧ rst(x) ∧ O(((x ≤ d) ∧
(f Rc≤d−xg)) ∨ (x > d)).

4. Assume that wi |=e f R
c
≤d−x g.

(a) If wi |=e f , then wi |=e f ∧ g, and the conclusion is true.
(b) If wi �e f and wi |=e f R

c
≤d g,

then by Definition 5, wi |= rst(x),
From wi |=e f R

c
≤d g, we know that w

i+1 |=e ((x≤d)∧(f Rc≤d−xg))∨(x >
d).
Thus wi |=e g ∧O(((x≤d) ∧ (f Rc≤d−xg)) ∨ (x > d)).

(c) If wi �e f and wi �e f R
c
≤d g, then w

i �e rst(x).
By wi |=e f R

c
≤d−x g, we get that w

i+1 |=e ((x≤d)∧(f Rc≤d−xg))∨(x > d).
Thus wi |=e g ∧O(((x≤d) ∧ (f Rc≤d−xg)) ∨ (x > d)).

�

Using the equivalences of Lemma 1 any formula of MITL≤ may be trans-
formed into a disjunctive normal formal containing several basic conjunctions,
as stated and proved by the following Lemma.

Lemma 4. Let ϕ be a WMTL≤-formula in NNF, then each formula ψ ∈ CL(ϕ)
can be translated into a disjunction of basic conjunctions:

k∨

j=0

(
αj ∧ gj ∧ rst(Xj) ∧ unch(Yj) ∧O(ψj)

)

and

1. For every extended weighted word w, if w |=e αj ∧ gj ∧ rst(Xj) ∧ unch(Yj) ∧
O(ψj) for some j, then w |=e ψ.



2. For every weighted word w, if w |=e ψ, then there exists j such that w |=e

αj ∧ gj ∧ rst(Xj) ∧ unch(Yj) ∧O(ψj).

Proof

1. Define Length(ψ) for ψ ∈ CL(ϕ) as follows.
(a) Length(p)=Length(¬p)=Length(x≤d)=Length(x>d)=Length(Oφ)=1;
(b) Length(φ1 ∨ φ2 )=Length(φ1 ∧ φ2 ) = Length(φ1 Uc≤d φ2)
= Length(φ1 R

c
≤d φ2) = Length(φ1 U

c
≤d−x φ2) = Length(φ1 R

c
≤d−x φ2)

= Length(φ1)+ Length(φ2)+1.
2. By induction on Length(ψ) for ψ ∈ CL(ϕ).

�

Now let us recall the Main Theorem 1.

Theorem 1. Let ϕ be a WMTL≤-formula over the propositions P and the clocks
C and is in NNF. Let the MWTA Aϕ= (L, �0, �a, CM , E,m) over the clocks C
and the actions A = 2P be defined as follows:

– L = {{φ} |φ ∈ CL(ϕ) } is a finite set of locations, and �0 = {ϕ} is the initial
location;
– �a = {true} is the accepting location;
– CM = Xϕ is the set of all local clocks for ϕ;
– ({f1}, a, g, λ, {f2}) ∈ E iff α ∧ g ∧ rst(X) ∧ unch(Y ) ∧ O(f2) is a basic con-
junction of f1 and that a satisfies α, and for each x ∈ Xϕ of U≤-type, x ∈ λ
iff x /∈ Y , and for each x ∈ Xϕ of R≤-type, x ∈ λ iff x ∈ X;
– m is defined by m(xφ1Uc≤d

φ2) = c and m(xφ1Rc≤d
φ2) = c.

Then L(ϕ) = L(Aϕ).

Proof

L(Aϕ) ⊆ L(ϕ). Let w = (a0, v0)(a1, v1)(a2, v2) . . . be a weighted word in L(Aϕ),
then there are ψ0, ψ1, ψ2, . . . , ψn ∈ CL(ϕ) and clock valuations
ν0, ν1, ν2, . . . , νn such that ψ0 = ϕ, ψn = true, ψi

ai,gi,ri−−−−−→ ψi+1 is a transition
of Aϕ, and αi ∧ gi ∧ rst(Xi) ∧ unch(Yi) ∧ O(ψi+1) is a basic conjunction of
ψi, ai |= αi, νi |= gi and for each x ∈ Xϕ: if x ∈ ri then νi+1 = vi+1(m(x))−
vi(m(x)) else νi+1 = νi + vi+1(m(x)) − vi(m(x)).
Then we get an extended weighted word
ω = (a0, v0, ν0)(a1, v1, ν1)(a2, v2, ν2) . . ..
Now we prove by induction in n− i, that for all i ≤ n: ωi |= ψi.

(a) If i = n, then ψn = true and ωn |= ψn.
(b) Assume ωi |= ψi is true for all i >= k + 1, now we show that ωk |= ψk

is true.
From ψk

ak,gk,rk−−−−−→ ψk+1, we know that ωk |= αk∧gk∧rst(Xk)∧unch(Yk)∧
O(ψk+1), so from Lemma 4, ωk |= ψk.



L(ϕ) ⊆ L(Aϕ). Let w = (a0, v0)(a1, v1)(a2, v2) . . . be a weighted word in L(ϕ),
and ν0 is an initial valuation for clocks in Xϕ. Let
w = (a0, v0, ν0)(a1, v1, ν1)(a2, v2, ν2) . . . be the extended weighted word de-
fined in Definition 5.
From w ∈ L(ϕ), we know that w |= ϕ.
By Lemma 4, there is a basic conjunction α0∧g0∧rst(X0)∧unch(Y0)∧O(ϕ1)
of ϕ such that w |= α0 ∧ g0 ∧ rst(X0) ∧ unch(Y0) ∧O(ϕ1).
Then ϕ

a0,g0,r0−−−−−→ ϕ1 is a transition of Aϕ, w1 |= ϕ1, and for all x ∈ Xϕ: if
x ∈ r0 then ν1 = v1(m(x)) − v0(m(x)) else ν1 = ν0 + v1(m(x)) − v0(m(x)),
where r0 the reset set of local clocks defined by w at position 0 ( if w |=e

rst(x) and x is local clock of R≤-type, then x ∈ r0; if w �e unch(x) and x is
local clock of U≤-type, then x ∈ r0; otherwise x /∈ r0).

Similarly, we can get a sequence ϕ2, ϕ3, ϕ4, . . . of formulas from CL(ϕ) such
that ϕi

ai,gi,ri−−−−−→ ϕi+1 is a transition of Aϕ and wi |= αi ∧ gi ∧ rst(Xi) ∧
unch(Yi) ∧O(ϕi+1) for all i ∈ N.

Now if we can prove that some ϕi is in the accepting location, then w will
be accepted by Aϕ.
To do this, we define the depth dep(φ) for formulas in CL(ϕ).

(a) dep(p)=dep(¬p)=dep(x ≤ d)=dep(x > d)=0;
(b) dep(φ1 ∨ φ2 )=dep(φ1 ∧ φ2 )=max{dep(φ1), dep(φ2) };
(c) dep(Oφ )=dep(φ1)+1;
(d) dep(φ1 U

c
≤d φ2)=dep(φ1 R

c
≤d φ2)=max{dep(φ1), dep(φ2)}+2;

(e) dep(φ1 U
c
≤d−x φ2)=dep(φ1 R

c
≤d−x φ2)=max{dep(φ1), dep(φ2)}+1.

Then dep(ϕ) ≥ dep(ϕ1) ≥ dep(ϕ2) ≥ dep(ϕ3)≥ . . .
and there exists N such that for all i >= N : dep(ϕi) = dep(ϕN ).
If dep(ϕN ) > 0, then some φ1 U

c
≤d−x φ2 or φ1 R

c
≤d−x φ2 will remain in ϕi for

all i >= N , and x will not be reset and will not exceed d for all i > N .
This is not possible, because all infinite weighted words are assumed to be
cost-diverging.
Thus dep(ϕN ) must be zero, and ϕN+1 will be in the accepting location. So
w ∈ L(Aϕ).

�


