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Abstract: According to clinical protocols, skin diseases are quanti�ed by dermatologists
throughout a treatment period, and then a statistical test on these measures allows to evalu-
ate a treatment e�cacy. The �rst step of this process it to classify pathological interest areas.
This task is challenging due to the high variability of the images in one clinical data set. In this
report, we �rst review algorithms that exist in the literature and adapt them to our problem. Then
we choose the more appropriate algorithm to design a classi�cation strategy. Thereby, we propose
to use data reduction combined with SVM to do a �rst classi�cation of the disease. Then we
associate the obtained classi�cation map with a segmentation map in an �interactive classi�cation
tool� in order to compromise between operator dependency and algorithm robustness.
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Classi�cation de lésions d'hyper-pigmentation cutanée à

partir d'images multi-spectrales.

Résumé : Lors des protocoles cliniques actuels, les maladies de peau sont quanti�ées par
les dermatologues tout au long d'une période de traitement. Puis un test statistique sur ces
diagnostiques permet d'évaluer l'e�cacité d'un traitement. A�n d'automatiser un tel processus
à l'aide de l'imagerie spectrale, la première étape est d'extraire les zones pathologiques d'intérêt.
Cette tache est di�cile en raison de la grande variabilité des images dans un ensemble de don-
nées cliniques. Dans ce rapport, nous examinons d'abord les algorithmes qui existent dans la
littérature et qui peuvent être adaptés à notre problème. Puis, nous choisissons l'algorithme le
plus approprié a�n de concevoir une stratégie de classi�cation. Ainsi, nous proposons d'utiliser
la réduction de données combinée avec un séparateur à vaste marge (SVM) pour faire une pre-
mière classi�cation de la pathologie. Ensuite, nous associons la carte de classi�cation obtenue
avec une carte de segmentation grâce à un outil de �classi�cation interactive� a�n de trouver un
compromis entre la dépendance à un opérateur et la robustesse de l'algorithme.

Mots-clés : peau, hyper-pigmentation, SVM, réduction de dimension, imagerie multi-spectrale
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1 Introduction

In dermatology, one of the last steps to validate a new treatment is to test it on a su�cient
number of patients and assess if its e�cacy is statistically better than a standard treatment or
a placebo. Nowadays, for such a study, dermatologists have to clinically measure the severity
of all the patients along the treatment period. Then, statistical tests such as the t-test [1] are
applied on the dermatologist measures to determine if the treatment is statistically e�cient. In
practice, specialists do not use an absolute measure to quantify the severity evolution of the
studied treatment using a statistical test but, on the contrary, a relative measure with respect
to a reference treatment or a placebo. Let's call this reference a comparator. For example, in
the clinical study we consider in this report, patients are selected to present the same severity
degree on the two cheeks. Then, one cheek receives the tested treatment that we will call �active�
whereas the second cheek receives the comparator. It is the severity on the active treated area
normalised by the comparator treated area that is used for the statistical test.

In order to automatise as much as possible the treatment evaluation process and to make
it more objective, we propose to use images associated with a processing methodology. Images
we use are multi-spectral. They consist of a collection of monochrome images taken at di�erent
wavelengths. With these images, we have both spatial and spectral informations of the skin.
Indeed, spectral information is crucial to analyse the skin. Figure 1 shows the theoretical ab-
sorptions of melanin and haemoglobin. In this �gure, it appears clearly that without the spectral
information it is di�cult to unmix these two components.

To employ images for skin hyper-pigmentation evaluation, we propose the following scheme.
First, the pathological areas have to be segmented on images at the baseline visit. Then, a
severity criterion has to be drawn and estimated to quantify the severities of pathological areas
at each measurement time. These severity measurements can be used by clinicians to evaluate
treatment e�cacy or patient evolution. In this report, we focus on the classi�cation part.

In the literature, methods have been proposed to segment skin lesions on color or spectral
images [2, 3, 4, 5, 6, 7, 8]. The most popular solution is to transform the RGB representation
of a color image to the standard CIE L∗a∗b representation. Then the luminance band L∗ or the
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4 Prigent & Descombes & others

ITA index [2, 3] computed with the L∗ and b∗ bands of the CIE L∗a∗b representation can be
thresholded to give a classi�cation map of the disease. Concerning the spectral analysis of the
skin, several methods have been proposed to evaluate the quantity of a skin component. This
problem can be referred to as unmixing or source separation, applied on the measured spectrum.
A theoretical absorbency spectrum of the components of the skin is presented on �gure 1. The
simplest method to evaluate the pigmentation of a skin area is to select only one spectral value in
an area of interest or to compute a ratio between two spectral measurements [3]. Stamatas et al.
proposed an algorithm [4] to analyse the spectrum and determine the proportion of the principal
skin components which are melanin and haemoglobin. The method consists in modelling the
melanin absorbency as linear in the spectrum range of 630-700 nm:

Am(λ) = aλ+ b, (1)

where Am represents melanin absorbance, a and b are linear coe�cients and λ is the wavelength.
Then, the spectrum can be corrected by subtracting the in�uence of the estimated melanin:

Ac(λ) = A(λ)−Am(λ). (2)

Concentrations of oxy-hemoglobin and deoxy-hemoglobin can be calculated by solving a system
given by the Beer-Lamber law applied to two speci�ed wavelengths (λ1 = 560 nm , λ2 = 580
nm):

Ac(λ) = [oxy_Hb] ∗ εoxy_Hb(λ) + [deoxy_Hb] ∗ εdeoxy_Hb(λ), (3)

where εoxy_Hb and εdeoxy_Hb represent extinction coe�cients which are tabulated values. Finally,
corrected melanin concentration cartography can be extracted by correcting the a�ne estimation
of melanin concentration taking into account the deoxy-hemoglobin in�uence in the 630-700 nm
range:

[Melanin]c = [Melanin]−
(
[deoxy_Hb] ∗ a[εdeoxy_Hb] + b[εdeoxy_Hb]

)
, (4)

where a[εdeoxy_Hb] and b[εdeoxy_Hb] are coe�cients from the linear model of the deoxy-hemoglobin
absorbance in the range 630-700 nm. Considering the problem of pigmentation, with multi-
spectral data, this algorithm provides a quanti�cation map of the melanin. Thresholding this
map gives a classi�cation map of the pigmentation. Other algorithms, initially proposed within
the signal processing community, can provide unmixing on multi-spectral data. In this report,
we propose to use a data reduction and classi�cation scheme that we compare to the Stamatas
et al. algorithm. We perform data reduction, and classi�cation using Support Vector Machine
(SVM). A lot of algorithms have been proposed to reduce the data dimension. The most popular
are unmixing ones like PCA [9], Kernel PCA [10], Di�usion maps [11], ICA [12], endmember
extraction [13]. These algorithms tend to combine the spectral data into a new lower dimensional
space by minimizing a criterion. Another family of algorithms aim to partition the spectrum and
combine neighbouring spectral bands. This can be done manually by selecting spectral areas of
interest and averaging neighbouring redundant bands or automatically with algorithms like the
projection pursuit (PP) [14]. Both types of techniques have been tested in this study.

This report is organized as follows: section 2 describes the chosen algorithm to classify the
skin areas of interest and shows results on real data validated by experts. In section 3 we propose
a classi�cation strategy that tends to compromise between operator dependency and robustness.
Finally, in section 4, we conclude about the proposed method and obtained results.

2 classi�cation

In order to classify pathological areas on multi-spectral images we use the classical scheme which
consists in �rst, reducing the spectrum and then classifying the reduced data with a supervised
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Classi�cation of skin hyper-pigmentation lesions 5

Figure 1: Theoretical absorption of melanin and haemoglobin (Y-axe) depending on the wave-
length (X-axe)

algorithm. The interest of data reduction is threefold. First it avoids the Hughes phenomenon
[15]. Second it redistributes the data within the reduced data cube in order to avoid redundancy,
and then it increases the classes separability. The third interest is linked to the two �rst ones
since lower dimensionality and less redundant information make a data classi�er faster. For skin
application, we propose to study two di�erent data reduction approaches. The �rst one called
Projection Pursuit (PP), partitions the image spectrum into groups of bands and projects each
group to obtain one band per group. The second approach called the independent component
analysis (ICA), belongs to the unmixing algorithm familly. ICA tends to redistribute the spectral
information to obtain a new data cube where bands have minimum common information from
a statistical point of view. The selection of the n most relevant bands allows to reduce the data
cube with ICA.

2.1 Data reduction with Projection Pursuit

The projection pursuit (PP) approach was originally proposed in [14]. An adaptation to multi-
spectral images or hyper-spectral data has been proposed in [16, 17]. The PP method can be
decomposed in two steps.

The �rst step consists in partitioning the spectrum into groups. Originally each group con-
tained the same number of bands. In [17] a method that partitions the spectrum into various
band number groups is proposed. It tends to minimize the variance σ inside each group. Such
a partitioning is important in our application since we want to keep an interpretation of the
spectral data due to the absorbency of melanin or haemoglobin (see Figure 1). The method
in [17] requires the input parameter K (number of groups). In [18] we proposed an alternative
method. From an index I such as the Kullback-Leibler divergence, we measure the deviation
between consecutive bands. It results in a function FI which describes the spectrum variations:

FI(k) = I(k − 1, k), k = 2, ..., Nb, (5)

with Nb the number of bands. FI(k) is low if the bands k − 1 and k are redundant and high
if the bands k − 1 and k exhibits less redundancy. Thresholding FI(k) with a threshold T [18]
allows to select the most signi�cant local maxima of FI . The location of these maxima gives the
spectral bands to be chosen to partition the spectrum. The advantage of the parameter T is that
it can be interpreted as the degree of redundancy accepted between each group.

The second step is the estimation of the vectors that allow to project each group into one
band. These vectors are estimated by maximising a distance between groups [16]. To estimate
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6 Prigent & Descombes & others

this distance, the most common indices are the Bhattacharyya distance and the Kullback-Leibler
divergence [17]. For classi�cation purpose more speci�c indices can be used. For example, an
index based on histogram analysis is proposed in [19]. Nevertheless, such indices require manual
parameter speci�cation, and do not improve signi�cantly the classi�cation accuracy. This is why
we prefer to use the symmetrical Kullback-Leibler deviation:

Dkb(a, b) =
Hkb(a, b) +Hkb(b, a)

2
, (6)

such as

Hkb(a, b) =

∫
fa(x)ln

(
fa(x)

fb(x)

)
dx, (7)

where a and b are the projected groups of bands and f the density function of the distribution
a (respectively b).

2.2 Data reduction with ICA

ICA is one of the most famous unmixing algorithm. It had been detailed in [12]. For skin
hyper-pigmentation application, we expect that a source will be representative of the melanin
concentration. Mathematically, ICA models the unmixing problem as linear:

Xi,j = ASi,j +Ni,j , (8)

where Xi,j is a single pixel at the spatial position (i, j). This pixel Xi,j is considered as a linear
combination of independent components given by A. Si,j is the vector containing the linear
mixing coe�cients (i.e. proportion of each component per pixel). The noise is modelled as
additive by the vector Ni,j . The coe�cients are quantities that should be positive and the sum
of the proportions of all the components have to be equal to 1:

∀k ∈ [0.Nb], Si,j(k) ≥ 0 (9)

and
N∑
k=1

Si,j(k) = 1 (10)

The unmixing model of equation (8) shows one indetermination. In fact, each permutation of
the columns of matrix A gives a di�erent result. Nevertheless, this indetermination only changes
the order of the sources.

In order to solve the unmixing problem for the skin hyper-pigmentation with multi-spectral
images, we compare two algorithms. FastICA [20] and JADE [21]. The goal of these algorithms is
to �lter the noise Ni,j , and then to �nd Â (an estimate of A). The proportion of each component
per pixel (i, j) is then obtained by the inverse product:

Si,j = PXd
i,j , (11)

where Xd
i,j represents the denoised Xi,j , and P the pseudo-inverse matrix of Â.

FastICA performs the estimation of A in a similar way to the projection pursuit. In [20],
the author proposes to get the component by maximazing the non-Gaussianity through a neg-
entropy index. This index aims at measuring the deviation between the studied signal X and the
entropy of a Gaussian distribution with the same correlation matrix. Indeed, each component
(i.e. each column of A) is iteratively estimated with the constraint that each component has to

Inria



Classi�cation of skin hyper-pigmentation lesions 7

be orthogonal to all the other ones. To compare the data to a Gaussian distribution with the
same correlation matrix, whitening is used in order to make the data covariance matrix equal to
the identity matrix:

E(XXT ) = IdNb
(12)

To compute the data whitening, the Principal Component Analysis (PCA) is used:

Zi,j =WXi,j , (13)

withW the whitening matrix obtained byW =
√
D
−1
ET , whereD is the diagonalized covariance

matrix (XXT ) by PCA and E the eigen-vector matrix. At this step, one can keep only the �rst
components that give enough explained variance. This allows to reduce the data and the noise
which is contained in low variance PCA obtained bands.

The JADE (Joint Approximate Diagonalisation of Eigenmatrices) algorithm proposed in [21]
consists in minimizing the fourth order cumulants in order to solve the linear ICA problem.
The author demonstrates that minimizing cumulants of order 1,2 and 4 (i.e. mean, covariance
and fourth order cumulants) is mathematically equivalent to maximize the neg-entropy between
components. JADE algorithm starts with a data whitening using PCA. Then, the problem can
be written as follows:

Zi,j =WASi,j (14)

Where W is the whitening matrix and Zi,j the whitened data. The new mixing matrix WA is a
rotation matrix since it links two white data. The last part of the JADE algorithm is to perform
this rotation transformation optimizing the criterion:

φ(z) =
∑

ilkj 6=iikl

(QZi,j,k,l)
2 (15)

where Qzi,j,k,l is the fourth order cumulant of Z:

QZi,j,k,l = E(ZiZjZkZl)− E(Zi)E(Zj)E(Zk)E(Zl)−
E(ZiZk)E(ZjZl)− E(ZiZl)E(ZjZk) (16)

2.3 SVM classi�cation

SVM [22] is the most wildly used method for classi�cation on multi-spectral images. SVM
classify a data set into two classes by computing a separating hyperplane. A class is associated
to each pixel depending on its position w.r.t the hyperplane. This algorithm is widely used in
various domains to classify images (see for instance [10, 23, 24, 25, 26]). The condition for a
good classi�cation is to �nd the optimal hyperplane that separates at best two classes de�ned by
training pixels. To do this, we seek to maximize the margin between the separating hyperplane
and the points of the two training sets. If we denote the margin 2

||~ω|| , the hyperplane equation
is:

~ω.~x+ b = 0. (17)

To estimate the hyperplane separator (i.e. estimate ~ω and b), a label y = −1 or y = +1
is associated to each training pixel depending on its class. Then the hyperplane estimation
problem reduces to minimize ||~ω||2 such that:{

~ω.~x+ b ≥ +1 if yi = +1

~ω.~x+ b ≤ −1 if yi = −1
(18)
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8 Prigent & Descombes & others

It is not straightforward to minimize the expression of equation (18). Nevertheless, the
transformation into the dual space with Lagrange multipliers makes it a quadratic problem easy
to solve:

max
λ
W (λ) = −1

2

Np∑
i=1

λiλj ~xi. ~xj +

Np∑
i=1

λi. (19)

with
Np∑
i=1

λiyi = 0, 0 ≤ λi,∀i ∈ [1, N ] (20)

where N is the number of training pixels.
In order to classify non linear problem, a kernel is introduced in the equation (20):

max
λ
W (λ) = −1

2

Np∑
i=1

λiλjK(~xi, ~xj) +

Np∑
i=1

λi (21)

We choose the Gaussian kernel because, in our experiments [27], it outperforms linear, polynomial
or angular kernels [23].

2.4 Face volume compensation

An example of classi�cation by PP and SVM is shown in Figure 4(b), and a reference manual
classi�cation is shown in Figure 2(f). As one can see, the classi�cation is quite accurate in the �at
areas whereas there is no detection of the pathology in areas corrupted by the volumes of the face.
Concerning ICA, experimentations show that a single component is su�ciently representative of
the melanin concentration in the skin. This is the reason why we perform a classi�cation in a
single component. This classi�cation can be done by SVM. Nevertheless, we observe that thresh-
olding this component provides accurate results. In Figure 5(b) the classi�cation is accurate in
the �at areas, but there are a lot of false detections in areas concerned by shading.

Whatever the classi�cation method we use, it needs an additional �lter to compensate the
volumes of the face. The literature proposes several minimisation methods to solve the shape
from shading inverse problem [28, 29, 30] introduced by Horn in [31]. Most of these methods tend
to solve the eikonal equation. For image processing, with the Lambertian surface hypothesis the
eikonal equation for a pixel at the position x, y is:

I(x, y) =
I0(x, y)√

p2(x, y) + q2(x, y) + 1
(22)

where p2 and q2 are the derivatives of the Lambertian surface in x and y directions respectively,
I0 the albedo and I the image intensity.

In our application, we need to compensate the shading on multi-spectral data. Then, the
idea is to analyse the spectrum to �nd which spectral area is better adapted to estimate the
shading variations. Figure 2 shows the �ve bands obtained after the reduction of an 18 spectral
band data cube. As one can see the last band depicted on 2(e) mainly contains the shading
variations. In fact, it is justi�ed by Figure 1. For near infra-red wavelengths (900nm), melanin
and haemoglobin absorptions are very low. So the main skin components do not react to this
wavelength and then the obtained image contains mainly the shading. If we assume the skin
in the near infra-red image to react as a Lambertian surface, equation (22) gives that we can
compensate the spectral band shading by the near infra-red image. Figure 7(a) shows the second
band of the reduced data cube. Figure 3(b) shows the result obtained when dividing the second

Inria



Classi�cation of skin hyper-pigmentation lesions 9

band of the reduced cube by the near infra-red band of the reduced cube. As one can see, shading
on the border of the image are well compensated. They became white in the compensated image
and are now not interfering with the dark gray of the pathological areas. But the compensation
is not e�cient in the areas where the shading is caused by the volume of the face. If we perform
such a compensation and compute a classi�cation we obtain false classi�cation (see Figure 4(c)
and Figure 5(c))We thus have rejected the Lambertian assumption.

Consider that the light illuminating the skin is partly re�ected by the surface and partly
penetrates the skin before being re�ected. The signal re�ected by the skin surface can be used
as a model of the shading. The interference theory states that in this case, the signal amplitudes
exhibit the following relationship:

A2
0 = A2

01 +A2
02 + 2A01A02cos(φ1 − φ2), (23)

where A0 is the amplitude of the global signal, A01 and A02 the amplitudes of the two re�ected
light rays, and cos(φ1 − φ2) the phase angle between the two light rays. As a �rst approxima-
tion, if we neglect the phasing angle, the relation between the shading and the skin absorption
information is additive. This is why we propose to compensate the shading by subtracting the
near infra-red band to all the others bands:

Icλ = Iλ + z[max(IIR)− IIR] (24)

with

z =
max(Iλ)−min(Iλ)
max(IIR)−min(IIR)

(25)

where Icλ and Iλ denote respectively the compensate band and the band at the wavelength λ,
and IIR the near infra-red band. The factor z allows to take into account how deep the light
penetrates the skin depending on the wavelength. So the interference term that we neglect is
partially taken into account in this z term. Figure 3(c) shows the e�ect of the subtraction based
compensation on a spectral band. With this method, both shadows on the border of the image
and the face volume shading are compensated. Then, when we apply this method in the PP and
SVM scheme or on the ICA and thresholding classi�cation, we have an accurate detection both
on the �at areas and on areas where artefacts are caused by the volume shading.

2.5 Experimental results

The proposed classi�cation methods have been tested on 96 images. These are multi-spectral
images that contain 18 spectral bands of 1000*1000 pixels. On this data set the PP plus SVM
method and the ICA based method are competitive and give equivalent quality results. The main
di�erence between these two methods is the operator dependency. In fact SVM ask the operator
to select training pixels whereas the ICA thresholding ask the operator to choose the value of
the threshold. The second method is easier for an operator to use but include subjectivity.

To evaluate the classi�cation on these 96 images, we partition them into 3 groups. The �rst
one contains 27 images that are quali�ed as �easy� in the sense that these images contain mainly
skin in the �at area of the cheek. The second group quali�ed as �intermediate� contains more
artefacts like eye, hair or nose. This group represents 37 of the 96 images. The third group
contains 31 images with a lot of artefacts.

As the Stamatas et al. algorithm and the ICA based methods are equivalent from an operator
input point of view, we propose to compare them �rst. For both method, we estimate the
threshold that maximizes the correspondence with the dermatologist analysis in term of surface.
Figure 6(b) shows the correlation curves between the dermatologist estimation of the pathological
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10 Prigent & Descombes & others

(a) Band 1 (b) Band 2 (c) Band 3

(d) Band 4 (e) Band 5 (f) Manual classi�cation

Figure 2: Spectral bands of the reduced data cube by projection pursuit (a-e), and a manual
classi�cation of the hyper-pigmentation (f).

(a) 2nd band on the reduced
data cube

(b) Band after division shad-
ing compensation

(c) Band after subtraction
shading compensation

Figure 3: In�uence of the shading compensation on the second band of the reduced data cube

area and the algorithm calculation on the 27 images of the �rst group. The dermatologist scale is
discrete from 0 (no pathology) to 6 (100% of the area is pathological). The perfect correlation is
represented by the red diagonal line. Figure 6(b) shows that the ICA based method outperforms
the Stamatas et al. algorithm. It has to be notice that the measured correlation in this case is
arti�cially heigh since the dermatologist analysis is taken into account to measure the surface.

Now, we compare the surface evaluation of ICA based method and SVM on the whole set
(ie. 96 images). Table 1 shows the percentage of correspondence between the dermatologist area
estimation in a scale from 0 to 6 and the algorithm surface estimation in percentage for both the
ICA based method and PP-SVM. It is natural in the table 1 that the percentages for the ICA
based method are better since this method use the dermatologist clinical analysis to calculate
the pathological area size. Although the correspondence between obtained classi�cations and
dermatologist measurement is quite satisfactory, some over-estimation of the pathological area
appears mainly for the groups 2 and 3 where the correspondence percentage decrease.

Finally, experiments show that the ICA based method and the PP-SVM suit well our problem.
However, these techniques are not robust enough to the data variability appearing in a clinical
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Classi�cation of skin hyper-pigmentation lesions 11

(a) Reconstructed color im-
age

(b) SVM Segmentation

(c) SVM segmentation with
shading compensation by the
division based method

(d) SVM segmentation with
shading compensation by the
substraction based method

Figure 4: Classi�cation results with projection pursuit depending on the shading compensation
method

Table 1: Correspondence of surface measurement between dermatologist and algorithms

ICA PP-SVM

Group 1 81.5% 63%

Group 2 75.7% 62.2%

Group 3 62.5% 52%

Total 73% 58.7%

study.

3 Generalisation to a complete study

The classi�cation scheme proposed in the previous section is not usable on a full study. First, the
algorithms are not robust enough to image set variability. Second, for the ICA based method,
the operator has to select a source and a threshold for this source. For the SVM, the operator has
to select training pixels on each image. This is not compatible with a practical use on a whole
study, containing about 100 subjects. In this section, we propose a protocol that allows both to
automatize the algorithms as much as possible and improves the robustness of the classi�cation.
We focus on the SVM based method since it is the one that seems to be the easier to automatize.
To this end, we propose a scheme to train a SVM once for all the images, and then, we add a
interactive classi�cation step to avoid possible over or miss-classi�cation.
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(a) Reconstructed color im-
age

(b) ICA based segmentation

(c) ICA based segmentation
with shading compensation
by the division based method

(d) ICA based segmentation
with shading compensation
by the substraction based
method

Figure 5: Classi�cation results with the ICA based method depending on the shading compen-
sation method

(a) (b)

Figure 6: Correlation of the ICA based method (left) and the Stamatas algorithm (right), with
the dermatologist quanti�cation. x-axis contains the algorithm estimated surface, and the y-axis
the dermatologist surface estimation.

3.1 Global training

To make a global training for all the images, we �rst need to normalize them. Images have more
or less shading and non skin elements. Moreover, natural skin darkness is di�erent from one
patient to another. Let's detail the two steps:

3.1.1 Fourier �ltering

In order to remove as many artefacts as possible in all the images, we propose to add a Fourier
�ltering step between the projection pursuit and the face volume compensation. Indeed, in our
images, we observe that the main undesired parts are in the low frequencies areas. The eyes, the
nose, or the lips are inside the face volume (in opposition to the �at area of the cheek), and the
face volume represents low frequency variations in our images. Another remaining artefact not
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Classi�cation of skin hyper-pigmentation lesions 13

completely corrected by the face volume compensation step is the lighting inhomogeneity which
is also contained in low frequency in our images. To make the Fourier �ltering, let's consider
IR a reduced image by projection pursuit. We �rst apply a Hamming 2D window to each band
IR(b) of IR to avoid oscillations [32]:

∀b ∈ [0, nb], HIR(b) = IR(b).HW, (26)

with nb the total number of bands of IR, and

HW (i, j) = 0.54

− 0.46 ∗ cos

π ∗
√(

i− nl

2

nl

)2

+

(
i− nc

2

nc

)2
 (27)

where nl and nc are respectively the number of lines and columns of IR. Then, we apply a 2D
Fourier transform to each band b of HIR [32]:

F (HIR)(u, v, b) =
1

nl ∗ nc

nl∑
x=1

nc∑
y=1

HIR(x, y, b)e
−2iπ(ux

nl +
vy
nc ) (28)

Finally we apply a low frequency mask M in the Fourier space and compute the Fourier inverse
transform to obtain IRF

[32]:

∀b ∈ [0, nb], IRF
(b) = F−1 (F (HIR)(b).M) , (29)

with

F−1(I)(x, y) =
1

nl ∗ nc

nl∑
u=1

nc∑
v=1

FI(u, v)e
2iπ(ux

nl +
vy
nc ) (30)

where I represents a monochrome image and FI its Fourier transform. An example of the �ltered
image is shown in Figure 7(c). As one can see, the surrounding of the eye and the nose are better
�ltered than with the face volume compensation method alone shown in Figure 7(b).

3.1.2 Global training

In this section, we propose to use SVM with a single training for the whole studies. SVM is
applied on the �ltered images obtained with the method described in section 3.1.1. To this end,
each band has to be radiometrically normalized. In fact, the SVM will de�ne a single separator
for the whole data set. To perform this normalization, we use a histogram speci�cation [32] that
makes each band of IRF

having a �at histogram. An example of a �ltered and normalized band
is shown in Figure 7(d). The image 7(e) shows how important the Fourier �ltering is. If there is
not such a �ltering, the histogram speci�cation doesn't eliminate enough shading. When images
are �ltered and normalized, we train the SVM on selected training images. These images have to
be selected carefully. The images must not be too atypical otherwise the SVM will not be able
to generalize to the whole study. Then, on each chosen image, an operator speci�es healthy and
pathological areas. Finally, all the marked pixels are concatenated and used to train a SVM. All
the images can then be classi�ed with this SVM.
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(a) Initial band (b) Band with infra-red com-
pensation

(c) Band with infra-red com-
pensation and Fourier �lter-
ing

(d) Band with infra-red com-
pensation, Fourier �ltering
and histogram speci�cation

(e) Band with infra-red
compensation and histogram
speci�cation

Figure 7: In�uence of �ltering on one band.

3.2 Interactive classi�cation tool

The classi�cation proposed in the previous section can still fail for non typical images. If there
are too many artefacts in an image or if the contrast between healthy and pathological area is
to low, the trained separator will not be adapted to classify correctly the image. Furthermore,
the SVM classi�er has a non zero over or miss-classi�cation rate. In our application, we need to
be sure that the classi�ed areas are pathological to correctly evaluate a treatment. This is why
we propose a protocol that we call �interactive classi�cation� to allow an operator to easily make
corrections w.r.t the classi�cation.

There are two types of corrections that can be chosen by the operator: remove over-segmentation
and add miss-classi�cation.

To enable the operator to remove over-segmentation, we perform a connected component
analysis [32] on the SVM classi�cation map. Then the operator can click on a component he/she
wants to add or remove from the �nal classi�cation.

If the SVM miss-classi�es an area, a segmentation map is needed to allow the operator to add
a segment to the classi�cation. For our application we perform the segmentation on IRF

. In the
literature a lot of segmentation algorithms have been proposed to deal with multi-spectral images
[33]. The two main methods are split and merge segmentation or unsupervised classi�cation
associated with connected component analysis [32]. To reduce the computation time as much as
possible we use the second approach. We use the Gaussian mixture classi�cation algorithm as
proposed in [33]. We �rst perform a classi�cation on IRF

with a Gaussian mixture model. Each
obtained component is partitioned with connected component analysis. The �nal segmentation
map is obtained by concatenation of the segments of each Gaussian component on a single map.
The global classi�cation scheme is drown in Figure 8. Figure 9 and Figure 10 show screen-shots
of the classi�cation GUI we developed. To maximize the chance to segment the area of interest,
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Classi�cation of skin hyper-pigmentation lesions 15

we perform twice the segmentation: one with a Fourier high-pass �lter that cut 20% of the low
frequencies and one with a Fourier high-pass �lter that cut 40% of the low frequencies. The
operator can click on the segment of these two maps to add it in the �nal classi�cation, or chose
the SVM classi�cation. On the Figure 9 it is the SVM classi�cation that have been chosen and
drawn in the bottom right quadrant. If the SVM do over-classi�cation, the operator can click on
the regions he/she wants to keep or remove. On the Figure 10 segments from the segmentation
maps in the two top quadrants have been selected. They appear in white on the segmentations
maps. The �nal classi�cation is shown in the bottom right quadrant. In the worst cases where
both SVM classi�cation and the segmentation fail to detect the interest area, the operator can
select it by hand.

Figure 8: Final classi�cation scheme.

3.3 Obtained results

We use the proposed classi�cation approach on two clinical studies. The �rst one contains 48
patients, with two images per patient. The second one contains 44 patients, with two images
per patient. We trained the SVM only once for both studies with three patients selected from
these studies. These three patients (see Figure 11) were selected as follow. The �rst patient
11(a) is an �easy� image in the sense that it has few shading e�ect and the pathology contrast
is intermediate. The two others patients are selected because they contain shading e�ect. The
patient 11(b) has a contrasted located pathological area with a shading area around the eye.
The patient 11(c) has a di�use pathological area with shading areas around the nose and the
chin. Filtered bands and training areas of these three images are shown in Figures 11(d), 11(e)
and 11(f)

We launched the SVM classi�cation and the segmentation on both studies keeping the same
parameters. Then an operator did a interactive classi�cation. During the interactive classi�ca-
tion, 91% of the images was classi�ed with the SVM and/or the segmentation. The 9% images
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16 Prigent & Descombes & others

Figure 9: Screenshot of the software that allows to do the interactive classi�cation, �rst example.
Top left: segmentation obtained with the Fourier �lter that cut 20% of the low frequencies, top
right: segmentation obtained with the Fourier �lter that cut 40% of the low frequencies, bottom
left one band of the original image, bottom right SVM chosen component

left were classi�ed by hand. On the 91% of images classi�ed by the proposed method, the op-
erator need to use the segmentation map in about 40% of the images, and in about 30% of
the cases either the SVM classi�cation or the segmentation map can be use. The interactive
classi�cation took one hour for the operator to classify about 100 images. If the operator has to
do it manually it takes more time with a less precise classi�cation. To quantify the accuracy of
the classi�cation, we compare it with a clinical measurement of the pathological area made by
a dermatologist with a scale from 0 to 6. We compare this measurement with the percentage
of the images area classi�ed as pathological. As the dermatologist does not consider the holes
inside pathological areas, we �lls holes in the binary masks. Correspondence curves between
this dermatologist and the algorithm are shown in Figure 12. For the �rst study the correlation
between clinical and algorithm classi�cations is 76.3% and 71.3% for the second. The obtained
correlations outperform the SVM algorithm without the proposed procedure with global training
and the interactive selection tool. In fact, for the �rst study we got 58.7% of correlation between
the SVM algorithm (see table 1) and the clinical analysis. For the second study (see Figure 13)
we got only 45.1% of correlation between the SVM algorithm and the clinical analysis. Let add
two remarks about the presented results. An important point is that the �interactive classi�ca-
tion tool� makes the operator work at the output of the algorithm. This insure a minimisation of
over and miss classi�cation not possible with the SVM algorithm alone. A second remark is that,
even though the correlation curves in Figure 6 seems better than the one in Figure 12, the clas-
si�cation in the second case �ts better the pathology. This di�erence is due to the method used
to compute the threshold to obtain the results in Figure 6 knowing the dermatologist analysis.

4 Conclusion

In this report, we have proposed a new scheme that allows to classify hyper-pigmentation lesions
of skin using multi-spectral images. The obtained results on two clinical studies tend to show that
the method is robust. The fact that the operator interacts at the last step of the classi�cation can
be seen as a positive thing. It allows both to make a miss or over-classi�cation control and avoid
the classi�cation to be based only on machine learning techniques which are often contested
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Figure 10: Screenshot of the software that allows to do the interactive classi�cation, �rst example.
Top left: segmentation obtained with the Fourier �lter that cut 20% of the low frequencies, top
right: segmentation obtained with the Fourier �lter that cut 40% of the low frequencies, bottom
left one band of the original image, bottom right �nal classi�cation. The �nal classi�cation has
been obtained by clicking two regions in the segmentations map (regions in white on the top
quadrants).

in medical applications. From the obtain classi�cation, severity criteria can be designed to
characterize the disease and evaluate a patient evolution or a treatment e�cacy. For example,
we designed a contrast criterion in [34] and are currently working on spatial and homogeneity
criteria.
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