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On Set-Membership Observer Design for a Class
of Periodical Time-Varying Systems

Denis Efimov†, Tarek Raïssio, Stanislav Chebotarev‡, Ali Zolghadri\

Abstract—This work is devoted to interval observer design
for Linear Time Varying (LTV) systems and a class of nonlinear
time-varying systems in the output canonical form. An interval
observer design is feasible if it is possible to calculate the
observer gains making the estimation error dynamics coop-
erative and stable. It has been shown that under some mild
conditions the cooperativity of an LTV system can be ensured by
a static linear transformation of coordinates. The case of a time-
varying transformation for periodic systems is considered in this
work. The efficiency of the proposed approach is demonstrated
through computer simulations.

I. INTRODUCTION

The problem of unmeasurable state vector estimation is
very challenging and its solution is demanded in many
applications [6], [9], [20]. In some situations due to the
presence of uncertainty (parametric or/and signal) the design
of a conventional estimator, converging in the noise-free case
to the ideal value of the state, is not possible. However,
an interval estimation remains feasible. By interval or set-
membership estimation we understand an observer that, using
input-output information, evaluates the set of admissible
values (interval) for the state at each instant of time.

There are several approaches to design interval observers
[3], [11], [13], [18]. This paper continues the framework
of interval observer design based on the monotone system
theory [3], [18]. Such an approach has been recently extended
in [22] to nonlinear systems using a LPV representation
with known minorant and majorant matrices, in [21] for
observable nonlinear systems and in [8] for a combined ap-
plication of interval and sliding-mode observers. One of the
most complex assumptions for the interval observer design,
dealing with cooperativity of the interval estimation error
dynamics, was relaxed in [16], [21]. It was shown that under
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some mild conditions applying similarity transformation, a
Hurwitz matrix could be transformed to Hurwitz and Metzler
one (cooperative). The transformation matrix is a solution
of the Sylvester equation, a constructive procedure for this
solution calculation was also given in [21].

In order to apply the approach of interval observer design
to the systems with non-constant matrices dependent on
measurable input-output signals and time, an extension of
the result from [21] has been presented in [7], which allows
one to calculate a constant similarity transformation matrix
representing a given interval of matrices to an interval of
Metzler matrices (this result is introduced in Section 3 for
completeness and comparison). This method can be used
to design interval observers for Linear-Parameter-Varying
(LPV) systems [17], [23], [25] with measurable vector of
scheduling parameters.

An important class of time-varying systems is constituted
by periodical ones [4], [5], [26], [27]. For periodic systems
a time-varying transformation of coordinates is proposed in
this work using the Floquet theory, which represents the
system in a time-invariant cooperative form. Simulations of
an example of such systems are considered in this work to
demonstrate the proposed solution efficiency.

The paper is organized as follows. Some basic facts from
the theory of interval estimation are given in Section 2.
The main result is described in Section 3. The example of
computer simulation is presented in Section 4.

II. PRELIMINARIES

Euclidean norm for a vector x ∈ Rn will be denoted as |x|,
and for a measurable and locally essentially bounded input
u : R+ → R (R+ = {τ ∈ R : τ ≥ 0}) the symbol ||u||[t0,t1]
denotes its L∞ norm:

||u||[t0,t1] = ess sup{|u(t)|, t ∈ [t0, t1]},

if t1 = +∞ then we will simply write ||u||. We will denote
as L∞ the set of all inputs u with the property ||u|| < ∞.
Denote the sequence of integers 1, ..., k as 1, k. The symbols
In and En denote the identity matrix and the matrix with
all elements equal 1 respectively (with dimension n × n).
For a matrix A ∈ Rn×n the vector of its eigenvalues is
denoted as λ(A), ||A||max = maxi=1,n,j=1,n |Ai,j | (the
elementwise maximum norm, it is not sub-multiplicative)
and ||A||2 =

√
maxi=1,n λi(A

TA) (the induced L2 matrix



norm), the relation ||A||max ≤ ||A||2 ≤ n||A||max is
satisfied between these norms.

A. Cooperative systems and interval arithmetic

For two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n,
the relations x1 ≤ x2 and A1 ≤ A2 are understood
elementwise. The relation P � 0 means that the matrix
P ∈ Rn×n is positive definite. Given a matrix A ∈ Rm×n

define A+ = max{0, A}, A− = A+ − A (similarly for
vectors).

Lemma 1. Let x ∈ Rn be a vector variable, x ≤ x ≤ x for
some x, x ∈ Rn, and A ∈ Rm×n be a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (1)

Proof: For x ≤ x ≤ x we have Ax = (A+−A−)x that
gives the required estimates.

A matrix A ∈ Rn×n is called Hurwitz if all its eigenvalues
have negative real parts, it is called Metzler if all its elements
outside the main diagonal are nonnegative. Any solution of
the linear system

ẋ = Ax+ ω(t), ω : R+ → Rn
+,

with x ∈ Rn and a Metzler matrix A, is elementwise
nonnegative for all t ≥ 0 provided that x(0) ≥ 0 [24]. Such
dynamical systems are called cooperative (monotone) [24].

Lemma 2. [21] Given the matrices A ∈ Rn×n, R ∈ Rn×n

and C ∈ Rp×n. If there is a matrix L ∈ Rn×p such that
the matrices A−LC and R have the same eigenvalues, then
there is a S ∈ Rn×n such that R = S(A−LC)S−1 provided
that the pairs (A− LC,χ1) and (R,χ2) are observable for
some χ1 ∈ R1×n, χ2 ∈ R1×n.

This result was used in [21] to design interval observers
for linear time invariant systems with a Metzler matrix R
(the main difficulty is to prove the existence of a real matrix
S, and to provide a constructive approach of its calculation).

B. Floquet theory

Consider a linear periodical time-varying system

ẋ = A(t)x, (2)

where x ∈ Rn is the state and A : R+ → Rn×n is a
periodic piecewise continuous function with period τ > 0,
i.e. A(t) = A(t + τ) for all t ∈ R+. Denote by Φ(t) the
fundamental matrix of the system (2) (it is the solution of
the matrix differential equation Φ̇(t) = A(t)Φ(t) for t ≥ 0
and Φ(0) = In), then Φ(t + τ) = Φ(t)H , where H is the
monodromy matrix of the system. The Floquet representation
provides that Φ(t) = W (t)etB for a 2τ -periodical matrix
function W : R+ → Rn×n and some B ∈ Rn×n [12], then
B = 0.5τ−1 lnH2 and W (t) = Φ(t)e−tB for 0 ≤ t ≤ 2τ .
Introducing the transformation of coordinates ξ = W (t)−1x
we obtain a time-invariant representation of the system (2):

ξ̇ = Bξ.

Since W is continuous and periodical (it is bounded), then
the system (2) stability follows from Hurwitz property of the
matrix B.

III. MAIN RESULT

In this work we consider the following model of a non-
linear time-varying system:

ẋ = A(t, y, u)x+ f(t, x, u, %), (3)
y = C(t, u)x,

where x ∈ Rn, u ∈ Rm, y ∈ Rp are the state, the input and
the output of the system (3), % ∈ Θ ⊂ Rq is the vector of un-
known signals or parameters, the compact set Θ is given, the
matrix functions A : Rp+m+1 → Rn×n, C : Rm+1 → Rp×n

and the function f : Rn+m+q+1 → Rn×m are given. The
instant values of u(t) ∈ L∞, y(t) ∈ L∞ are known. In
this work we consider the case without measurement noise,
the proposed result can be extended to the case with a
noise in the measurement channel, this extension is omitted
for brevity of presentation. Denoting θ(t) = [t y u]T we
can rewrite the system (3) in the quasi-LPV form with a
measurable scheduling parameter vector θ.

Many works on the interval observer design [3], [18], [22],
[21] deal with the case of a constant matrix A (or under some
transformations the estimation error can be represented in the
form with a constant matrix A, next an observer gain L can
be found such that A − LC is Hurwitz and Metzler). In
the work [7] such a restriction has been avoided. First, to
introduce that result we need the following assumptions.

Assumption 1. ||x|| ≤ X , ||u|| ≤ U and ||y|| ≤ Y , the
constants X > 0, U > 0 and Y > 0 are given.

Boundedness of the state x and the input u is a standard
assumption in the estimation theory.

Assumption 2. Let x ≤ x ≤ x for some x ∈ Rn and
x ∈ Rn, then f(t, x, x, u) ≤ f(t, x, u, %) ≤ f(t, x, x, u) for
some given f : R2n+m+1 → Rn, f : R2n+m+1 → Rn and
all t ≥ 0, ||u|| ≤ U , % ∈ Θ.

Assumption 3. There exist matrix functions L : Rp+m+1 →
Rn×p, P : R+ → Rn×n, P (·) = P (·)T � 0 such that for all
t ≥ 0 and ||u|| ≤ U , ||y|| ≤ Y :

p1In � P (t) � p2In, p1, p2 > 0;

Ṗ (t) +D(t, y, u)TP (t) + P (t)D(t, y, u) + P (t)2 +Q = 0,

D(t, y, u) = A(t, y, u)− L(t, y, u)C(t, u), Q = QT � 0.

Assumption 2 states that if the bounds x, x on the state
value x are given, then the values of the nonlinear function
f are enclosed in the interval [f, f ] for all % ∈ Θ (for a
continuous f , the computation of f , f for given x, x and
a convex Θ can be performed using the interval arithmetics
[19], [14]). In assumption 3 the observer gain L(t, y, u) is
introduced, that ensures stability of the time-varying matrix



D(t, y, u) with the Lyapunov function matrix P (t), this as-
sumption determines the stability conditions of the estimation
dynamics (if D(t, y, u) = D(t), then this assumption is a
conventional requirement for linear time-varying systems).
Due to assumption 1 the matrix A is varying in a compact
domain, then Linear Parameter-Varying or polytopic system
results [1], [2], [10], [15] can be used to compute a gain
L satisfying assumption 3. If D(t, y, u) = D(t), then this
assumption is a conventional requirement for linear time-
varying systems, if in addition D(t) is periodical, then this
inequality can be solved as a differential equation [26].

Under these assumptions, if we additionally assume that
the matrix D is Metzler, then the following interval observer
can be designed [3], [18], [22]:

ẋ = A(t, y, u)x+ f(t, x, x, u) + L(t, y, u)[y − C(t, u)x],
(4)

ẋ = A(t, y, u)x+ f(t, x, x, u) + L(t, y, u)[y − C(t, u)x].

Theorem 1. [7] Let assumptions 1, 2 and 3 hold, and the
matrix D(t, y, u) be Metzler for all t ≥ 0 and ||u|| ≤ U ,
||y|| ≤ Y . Let one of the following conditions be satisfied:

1) |f(t, x, x, u)| < +∞, |f(t, x, x, u)| < +∞ for any
t ≥ 0, ||u|| ≤ U and all x ∈ Rn, x ∈ Rn;

2) for any t ≥ 0, ||x|| ≤ X , ||u|| ≤ U , % ∈ Θ and all
x ∈ Rn, x ∈ Rn

|f(t, x, u, %)− f(t, x, x, u)|2 + |f(t, x, x, u)− f(t, x, u, %)|2 ≤
β|x− x|2 + β|x− x|2 + α

for some α ∈ R+, β ∈ R+, and

βIn −Q+R � 0, R = RT � 0.

Then in (3), (4) the variables x(t) and x(t) remain bounded
for all t > 0 and

x(t) ≤ x(t) ≤ x(t),

provided that x(0) ≤ x(0) ≤ x(0).

The result of Theorem 1 is based on rather restrictive as-
sumption that the matrix D is Metzler. All other assumptions
are rather common in the estimation theory (boundedness of
the state x and the input u in assumption 1, existence of
majorant functions for f from assumption 2, existence of the
observer gain L with the corresponding Lyapunov matrix P
in assumption 3, Lipschitz continuity or boundedness of f ,
f stated in the theorem).

The observer accuracy, i.e. the length of the estimated
interval |x(t)−x(t)|, is proportional to the incertitude “size”
represented in the set Θ and the difference |f(t, x, x, u) −
f(t, x, x, u)|. It also predefined by the stability margin of
the matrix D(t), in order to improve the interval estimation
accuracy an H∞observer can be designed as in [27].

A. Static transformation of coordinates

For a constant matrix D the assumption that it is Metzler is
relaxed in Lemma 2, where it is shown that under conditions
of assumption 3 (the matrix D is Hurwitz) there exists a
static real similarity transformation matrix S with S−1DS
being Hurwitz and Metzler. In our case D(t, y, u) is a matrix
variable, an extension of Lemma 2 for this case is presented
below.

Lemma 3. [7] Let D ∈ Ξ ⊂ Rn×n be a matrix variable
satisfying the interval constraints Ξ = {D ∈ Rn×n : Da −
∆ ≤ D ≤ Da + ∆} for some DT

a = Da ∈ Rn×n and
∆ ∈ Rn×n

+ . If for some constant µ ∈ R and a diagonal
matrix Υ ∈ Rn×n the Metzler matrix R = µEn − Υ has
the same eigenvalues as the matrix Da, then there is an
orthogonal matrix S ∈ Rn×n such that the matrices STDS
are Metzler for all D ∈ Ξ provided that µ > n||∆||max.

The matrix µEn has one eigenvalue µn and the rest equal
zero, the matrix R for Υ = ρIn with ρ > µn is Hurwitz and
Metzler. To apply this lemma assume that all its conditions
are satisfied.

Assumption 4. Let D(t, y, u) ∈ Ξ for all t ≥ 0, ||u|| ≤ U
and ||y|| ≤ Y , where Ξ = {D ∈ Rn×n : Da − ∆ ≤ D ≤
Da + ∆} for some DT

a = Da ∈ Rn×n and ∆ ∈ Rn×n
+ .

Let for some constant µ > n||∆||max and a diagonal matrix
Υ ∈ Rn×n the Metzler matrix R = µEn − Υ has the same
eigenvalues as the matrix Da.

For ||∆||max small enough, Assumption 4 becomes a mild
one. Under this assumption there is an orthogonal matrix
S ∈ Rn×n such that the matrices STD(t, y, u)S are Metzler
for all D(t, y, u) ∈ Ξ. Introduce new state variable z = STx
(||z|| ≤ Z for some Z > 0 under Assumption 1), then the
system (3) can be rewritten in the new coordinates:

ż = STA(t, y, u)Sz + φ(t, z, u, %),

where φ(t, z, u, %) = STf(t, Sz, u, %). Using (1) we have the
following relations

x = S+z − S−z ≤ x = Sz ≤ S+z − S−z = x, (5)

where z ≤ z ≤ z are the interval estimates for the variable
z. Similarly under assumption 2 we obtain (here x, x are
calculated in (5)):

φ(t, z, z, u) = S+Tf(t, x, x, u)− S−Tf(t, x, x, u) ≤
φ(t, z, u, %) ≤ S+Tf(t, x, x, u)− S−Tf(t, x, x, u)

= φ(t, z, z, u).

In the new coordinates the interval observer takes form
similar to (4):

ż = STA(t, y, u)Sz + φ(t, z, z, u) +

STL(t, y, u)[y − C(t, u)Sz], (6)
ż = STA(t, y, u)Sz + φ(t, z, z, u) +

STL(t, y, u)[y − C(t, u)Sz].



The applicability conditions for this interval observer are
formulated in the following theorem.

Theorem 2. [7] Let assumptions 1, 2, 3 and 4 hold. Let one
of the following conditions be satisfied:

1) |f(t, x, x, u)| < +∞ and |f(t, x, x, u)| < +∞ for any
t ≥ 0, ||u|| ≤ U and all x ∈ Rn, x ∈ Rn;

2) for any t ≥ 0, ||z|| ≤ Z, ||u|| ≤ U , % ∈ Θ and all
z ∈ Rn, z ∈ Rn

|φ(t, z, u, %)− φ(t, z, z, u)|2 + |φ(t, z, z, u)

−φ(t, z, u, %)|2 ≤ β|z − z|2 + β|z − z|2 + α

for some α ∈ R+, β ∈ R+, and

βIn − STQS +R � 0, R = RT � 0.

Then in (3), (5), (6) the variables x(t) and x(t) are bounded
for all t > 0 and

x(t) ≤ x(t) ≤ x(t),

provided that z(0) = S+Tx(0)−S−Tx(0), z(0) = S+Tx(0)−
S−Tx(0).

This theorem proposes the interval observer for an LTV
(LPV) system explicitly skipping the requirement on cooper-
ativity of the closed loop matrix D (according to assumption
3 it is only stable).

B. Time-varying transformation of coordinates

Another way to relax the Metzler property assumption
in Theorem 1 deals with the periodic matrices D applying
the Floquet theory. Let D(t) = D(t, y, u) = A(t, y, u) −
L(t, y, u)C(t, u) be a periodical matrix with a period τ >
0. Denote as Φ(t) the fundamental matrix of the system
(Φ̇(t) = D(t)Φ(t) for t ≥ 0 with Φ(0) = In), then
Φ(t+ T ) = Φ(t)H , where H is the monodromy matrix and
Φ(t) = W (t)etB for B = 0.5τ−1 lnH2 and 2T -periodical
matrix function W (t) = Φ(t)e−tB for 0 ≤ t ≤ 2τ .

Assumption 5. There is a Metzler matrix G having the
same eigenvalues as the matrix B, and the pairs (B,χ1) and
(G,χ2) are observable for some χ1 ∈ R1×n, χ2 ∈ R1×n.

Under these conditions G = SBS−1for S = OGO
−1
B

where OG and OB are the observability matrices for the
pairs (B,χ1) and (G,χ2) respectively. Define the new co-
ordinates z = SW−1(t)x (again under Assumption 1 there
is a constant Z > 0 such that ||z|| ≤ Z since W (t) is
a continuous bounded periodic matrix function), then the
system (3) equations take the form:

ż = Gz + υ(t, z, u, %) +M(t)L(t, y, u)y,

where υ(t, z, u, %) = M(t)f(t,M−1(t)z, u, %) and M(t) =
SW−1(t). Under Assumption 2, using the relations (1) we
obtain for any t ≥ 0, ||u|| ≤ U , % ∈ Θ

υ(t, z, z, u) ≤ υ(t, z, u, %) ≤ υ(t, z, z, u)

under the condition that z ≤ z ≤ z for some
z, z ∈ Rn, where υ(t, z, z, u) = M+(t)f(t, x, x, u) −
M−(t)f(t, x, x, u), υ(t, z, z, u) = M+(t)f(t, x, x, u) −
M−(t)f(t, x, x, u) with x, x defined as

x = {M−1(t)}+z − {M−1(t)}−z, (7)

x = {M−1(t)}+z − {M−1(t)}−z.

Then the interval observer equations can be designed as
follows:

ż = Gz + υ(t, z, z, u) +M(t)L(t, y, u)y, (8)

ż = Gz + υ(t, z, z, u) +M(t)L(t, y, u)y.

Then the previous theorems admit the following extension.

Theorem 3. Let assumptions 1, 2, 5 hold and the matrix G
be Hurwitz (by a proper choice of L, there exist P = P T � 0
and Q = QT � 0 such that GTP + PG+ P 2 +Q = 0). Let
one of the following conditions be satisfied:

1) |υ(t, z, z, u)| < +∞ and |υ(t, z, z, u)| < +∞ for any
t ≥ 0, ||u|| ≤ U and all z ∈ Rn, z ∈ Rn;

2) for any t ≥ 0, ||z|| ≤ Z, ||u|| ≤ U , % ∈ Θ and all
z ∈ Rn, z ∈ Rn

|υ(t, z, u, %)− υ(t, z, z, u)|2 + |υ(t, z, z, u)

−υ(t, z, u, %)|2 ≤ β|z − z|2 + β|z − z|2 + α

for some α ∈ R+, β ∈ R+, and

βIn −Q+R � 0, R = RT � 0.

Then in (3), (5), (6) the variables x(t) and x(t) are bounded
for all t > 0 and

x(t) ≤ x(t) ≤ x(t),

provided that z(0) = M+(t)x(0) − M−(t)x(0), z(0) =
M+(t)x(0)−M−(t)x(0).

Proof: Consider the dynamics of the interval estimation
errors e = z − z, e = z − z:

ė = Ge+ υ(t, z, z, u)− υ(t, z, u, %),

ė = Ge+ υ(t, z, u, %)− υ(t, z, z, u).

Due to assumption 2 for a Metzler matrix G, for all
t ≥ 0 the properties υ[t, z(t), u(t), %] ≥ υ[t, z(t), z(t), u(t)],
υ[t, z(t), z(t), u(t)] ≥ υ[t, z(t), u(t), %] and

z(t) ≤ z(t) ≤ z(t)

are satisfied, provided that z(0) ≤ z(0) ≤ z(0) (this
condition is true due to the choice of z(0) and z(0)). To
prove that the variables z(t), z(t) are bounded, consider
the Lyapunov function V = eTPe + eTPe and evaluate its
derivative:

V̇ = eT[GTP + PG]e+

eT[GTP + PG]e+

2eTP [υ(t, z, u, %)− υ(t, z, z, u)] +

2eTP [υ(t, z, z, u)− υ(t, z, u, %)].



Due to conditions of the theorem this equality can be
rewritten as follows:

V̇ ≤ −eTQe− eTQe+

|υ(t, z, u, %)− υ(t, z, z, u)|2 + |υ(t, z, z, u)− υ(t, z, u, %)|2.

If the first condition of the theorem is true, then the terms
|υ(t, z, u, %) − υ(t, z, z, u)| and |υ(t, z, z, u) − υ(t, z, u, %)|
are bounded for any t ≥ 0, ||z|| ≤ Z, ||u|| ≤ U , % ∈ Θ and
all z ∈ Rn, z ∈ Rn. Thus the errors e, e are bounded by
the standard Lyapunov arguments, and so are the variables x,
x (from assumption 1 the state x is bounded). If the second
condition of the theorem holds, then this inequality becomes:

V̇ ≤ −eTRe− eTRe+ α,

that implies boundedness of z, z by the same arguments.
For the periodical case the Floquet theory allows us to

transform the problem of interval estimation for a time-
varying system into the time-invariant framework.

IV. EXAMPLE

Consider a time-varying periodical system for n = 2:

ẋ = A(t)x+ f(t, y, %), y = x2,

A(t) =

[
2 cos(t)− 10 sin(t)− 10.5 8 sin(t)− cos(t) + 10.5

14 −10.5− 2 sin(t)

]
3.5 + 2 sin(t)

,

f(t) =

[
0.1 sin(2t)
cos(3yt)

]
+ %, −0.5

[
1
1

]
≤ % ≤ 0.5

[
1
1

]
.

The system is periodical with τ = 2π, for simulations we
will use

% = −0.5

[
tanh(x2) cos(x1)
tanh(x1) sin(0.5t)

]
.

For this choice of % assumptions 1 and 2 are satisfied. For

L =

[
5
6

]
, W (t) =

[
2 + sin(t) 0.5

0.5 1

]
, S = I2

all other conditions of Theorem 3 (including Assumption 5)
are satisfied with

G =

[
−5 0
6 −7

]
.

The results of interval estimation for the coordinates x1 and
x2 are shown in Fig 1 under assumption that initial conditions
for each coordinate belong to the interval [−0.5, 0.5].
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Figure 1. The results of simulations

V. CONCLUSION

The paper is devoted to interval observer design for the
LTV systems and the time-varying nonlinear systems in the
output canonical form. A static transformation of coordinates
is proposed mapping a stable linear uncertain system to
another system that is stable and cooperative. In addition, the
assumption that there exists an observer gain that makes the
estimation error dynamics stable and cooperative is relaxed.
The observer gain has to ensure stability of the estimation
error as usual, next a transformation of coordinates is pro-
posed, that provides the required cooperativity. The efficiency
is shown on examples of computer simulation.

The relaxation of symmetry of the matrix Da introduced
in the conditions of the Lemma 3 and the stability conditions
used in assumption 4 are the future directions of research.

REFERENCES

[1] Anstett F., Millerioux G., Bloch G. Polytopic observer design for LPV
systems based on minimal convex polytope finding. J. Algorithms and
Computational Technology, 3(1), 2009, pp. 23–43.

[2] Bara G.I., Daafouz J., Ragot J., Kratz F. State estimation for affine
LPV systems. Proc. 39th IEEE Conf. Decision and Control, CDC,
2000, pp. 4565–4570.

[3] Bernard O., Gouzé J.L. Closed loop observers bundle for uncertain
biotechnological models. J. Process Control, 14, 2004, pp. 765–774.

[4] Bittanti S., Colaneri P. Periodic Systems: Filtering and Control, ser.
Communications and Control Engineering. Springer, 2008.

[5] Blekhman I. Oscillatory strobodynamics— a new area in nonlinear
oscillations theory, nonlinear dynamics and cybernetical physics. Cy-
bernetics and Physics, 1(1), 2012, pp. 5–10.

[6] Control and Observer Design for Nonlinear Finite and Infinite Dimen-
sional Systems. Lecture Notes in Control and Information Sciences,
Vol. 322, Meurer T., Graichen K., Gilles E.-D. (Eds), Springer, 2005.

[7] Efimov D., Raïssi T., Chebotarev S., Zolghadri A. Interval State
Observer for Nonlinear Time Varying Systems, Automatica, 2012,
accepted.

[8] Efimov D., Fridman L.M., Raïssi T., Zolghadri A., Seydou R. Interval
Estimation for LPV Systems Applying High Order Sliding Mode
Techniques. Automatica, 48, 2012, pp. 2365–2371.

[9] Fossen T.I., Nijmeijer H. New Directions in Nonlinear Observer
Design. Springer, 1999.

[10] Ichalal D., Marx B., Ragot J., Maquin D. An approach for the state
estimation of Takagi-Sugeno models and application to sensor fault
diagnosis. Proc. 48th IEEE Conf. Decision and Control, CDC/CCC,
2009, pp. 7789–7794.

[11] Jaulin L. Nonlinear bounded-error state estimation of continuous time
systems. Automatica, 38(2), 2002, pp. 1079–1082.

[12] Hartman P. Ordinary differential equations. Birkhäuser, 1982.



[13] Kieffer M., Walter E. Guaranteed nonlinear state estimator for coop-
erative systems. Numerical Algorithms, 37, 2004, pp. 187–198.

[14] Kieffer M., Walter E. Guaranteed nonlinear state estimation for
continuous-time dynamical models from discrete-time measurements.
Proc. 5th IFAC Symposium on Robust Control Design, Toulouse,
France, 2006.

[15] Köse I.E., Jabbari F. Control of LPV Systems with Partly Measured
Parameters. IEEE Trans. Automatic Control, 44(3), 1999, pp. 658–663.

[16] Mazenc F., Bernard O. Interval observers for linear time-invariant
systems with disturbances. Automatica, 47(1), 2011, pp. 140–147.

[17] Marcos A., Balas J. Development of linear-parameter-varying models
for aircraft. J. Guidance, Control, Dynamics, 27(2), 2004.

[18] Moisan M., Bernard O., Gouzé J.L. Near optimal interval observers
bundle for uncertain bio-reactors. Automatica, 45(1), 2009, pp. 291–
295.

[19] Moore R.E., Kearfott R.B., Cloud M.J. Introduction to Interval Anal-
ysis. Philadelphia, SIAM, 2009.

[20] Nonlinear Observers and Applications. Lecture Notes in Control and
Information Sciences, Vol. 363, Besançon G. (Ed.), Springer, 2007.

[21] Raïssi T., Efimov D., Zolghadri A. Interval state estimation for a class
of nonlinear systems. IEEE Trans. Automatic Control, 57(1), 2012, pp.
260–265.

[22] Raïssi T., Videau G., Zolghadri A. Interval observers design for
consistency checks of nonlinear continuous-time systems. Automatica,
46(3), 2010, pp. 518–527.

[23] Shamma J., Cloutier J. Gain-scheduled missile autopilot design using
linear parameter-varying transformations. J. Guidance, Control, Dy-
namics, 16(2), 1993, pp. 256–261.

[24] Smith H.L. Monotone Dynamical Systems: An Introduction to the
Theory of Competitive and Cooperative Systems, vol. 41 of Surveys
and Monographs, AMS, Providence, 1995.

[25] Tan W. Applications of Linear Parameter-Varying Control Theory. PhD
thesis, Dept. of Mechanical Engineering, University of California at
Berkeley, 1997.

[26] Tornambe A., Valigi P. Asymptotic stabilization of a class of
continuous-time linear periodic systems. Systems and Control Letters,
28(4), 1996, pp. 189–196.

[27] Xie L., de Souza C.E. H∞ State Estimation for Linear Periodic
Systems. IEEE Trans. Automatic Control, 38(11), 1993, 1704–1707.


