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Loi de conservation scalaire avec des contraintes mobiles

dans la modélisation du trafic routier

Résumé : Le but de ce travail est d’étudier un modèle couplé de EDP-EDO et démontrer
l’existence des solutions. Le modèle a été introduit pour décrire un goulot d’étranglement mobile.
En particulier, il peut décrire le mouvement d’un poids lourd ou un bus, qui roule à une vitesse
inférieure à celle des autres voitures, en réduisant la capacité de la route et générant ainsi un
goulot d’étranglement.
On peut modéliser cette situation d’un point de vue macroscopique par un système couplant une
EDP avec une EDO. L’EDP est une loi de conservation scalaire avec une contrainte mobile sur
la densité et l’EDO décrive la trajectoire du véhicule plus lent.
Le bus se déplace avec une vitesse qui dépend du trafic routier, c’est-à-dire que le bus voyage à
une vitesse constante tant qu’il n’est pas ralenti par les conditions de circulation en aval. Lorsque
cela se produit, il adapte sa vitesse à la vitesse moyenne du trafic environnant. A son tour, la
circulation est modifiée par la présence du véhicule plus lent. Il y a donc un couplage fort et non
trivial.

Mots-clés : Lois de conservation scalaires avec contraintes; Modélisation du trafic routier;
Couplage EDP-EDO; Méthode du suivi de fronts.



Conservation laws with moving density constraints 3

1 Introduction

A slow moving large vehicle, like a bus or a truck, reduces the road capacity and thus generates a
moving bottleneck for the surrounding traffic flow. From the macroscopic point of view this can
be modeled by a PDE-ODE coupled system consisting in a scalar conservation law with moving
density constraint and an ODE describing the slower vehicle motion, i.e.,





∂tρ+ ∂xf(ρ) = 0, (t, x) ∈ R
+ × R,

ρ(0, x) = ρ0(x), x ∈ R,
ρ(t, y(t)) ≤ αR, t ∈ R

+,
ẏ(t) = ω(ρ(t, y(t)+)), t ∈ R

+,
y(0) = y0.

(1.1)

Above, ρ = ρ(t, x) ∈ [0, R] is the scalar conserved quantity representing the mean traffic density,
R is the maximal density allowed on the road and the flux function f : [0, R] → R

+ is a strictly
concave function such that f(0) = f(R) = 0. It is given by the following flux-density relation

f(ρ) = ρv(ρ),

where v is a smooth decreasing function denoting the mean traffic speed and here set to be
v(ρ) = V (1− ρ

R
), V being the maximal velocity allowed on the road.

The time-dependent variable y denotes the slower vehicle position, that moves with a traffic
density dependent speed of the form

ω(ρ) =

{
Vb if ρ ≤ ρ∗

.
= R(1− Vb

V
),

v(ρ) otherwise,
(1.2)

that is, it moves with constant speed Vb < V as long as it is not slowed down by downstream
traffic conditions. When this happens, it moves with the mean traffic speed.
Finally, the constant coefficient α ∈ ]0, 1[ gives the reduction rate of the road capacity due to
the presence of this large vehicle.

For our analytical purposes, it is not restrictive to assume that R = V = 1, so that the model
becomes 




∂tρ+ ∂x(ρ(1− ρ)) = 0, (t, x) ∈ R
+ × R,

ρ(0, x) = ρ0(x), x ∈ R,
ρ(t, y(t)) ≤ α, t ∈ R

+,
ẏ(t) = ω(ρ(t, y(t)+)), t ∈ R

+,
y(0) = y0.

(1.3)

The above model was introduced in [10] to model the effect of urban transport systems, such
as buses, in a road network. Other macroscopic models for moving bottlenecks in road traffic
were recently proposed by [3, 12]. Compared to those approaches, the model described by (1.1)
offers a more realistic definition of the slower vehicle speed and a description of its impact on
traffic conditions which is simpler to handle both from the analytical and the numerical point of
view.

From the analytical point of view, model (1.1) can be viewed as a generalization to moving
constraints of the problem consisting in a scalar conservation law with a (fixed in space) constraint
on the flux, introduced and studied in [1, 8]. In the present case, the constraint location moves
due to the surrounding traffic conditions, which in turn are modified by the presence of the slower
vehicle, thus resulting in a strong non-trivial coupling between the conservation equation and
the trajectory of the vehicle.

RR n° 8119



4 Delle Monache & Goatin

The study of coupled PDE-ODE systems is not new in the conservation laws framework,
we refer the reader to [2, 7, 9, 12]. Nevertheless, the problem posed here is slightly different.
On one side, we deal with a strong coupling with the PDE and the ODE affecting each other,
unlike [7, 9], where the PDE solution does not depend on the ODE. On the other side, even
if the ODE has discontinuous right-hand side, the particular definition of the model allows us
to consider classical Carathéodory solutions as in [2, 3, 4, 7] instead of the weaker Filippov’s
generalized solutions needed in [9, 12].

The present paper provides an existence result for solutions of (1.1) constructed by wave-front
tracking approximations, as stated by Theorem 1 in Section 3. The continuous dependence on
initial data is currently under investigation.

2 The Riemann problem with moving density constraint

Consider (1.3) with the particular choice

y0 = 0 and ρ0(x) =

{
ρL if x < 0,
ρR if x > 0.

(2.1)

We aim at defining a Riemann solver for the conservation law with moving density constraint.
Therefore we consider the following Riemann problem





∂tρ+ ∂xf(ρ) = 0,

ρ(0, x) =

{
ρL if x < 0,

ρR if x > 0,

(2.2)

under the constraint
ρ(t, Vbt) ≤ α. (2.3)

Let fα : [0, α] → R
+ be the function describing the constrained flow at x = y(t), i.e.,

fα(ρ) = ρ
(
1−

ρ

α

)
,

and ρα ∈ ]0, α/2[ such that f ′(ρα) = Vb, i.e.,

ρα =
α

2
(1− Vb) .

Problem (2.2), (2.3) can be recasted in the framework of conservation laws with flux constraint
studied in [1, 8]. Rewriting the equations in the bus reference frame (setting X = x − Vbt), we
get 




∂tρ+ ∂X (f(ρ)− Vbρ) = 0,

ρ(0, x) =

{
ρL if X < 0,

ρR if X > 0,

(2.4)

under the constraint
ρ(t, 0) ≤ α. (2.5)

Remark that solving problem (2.4), (2.5) is equivalent to solving (2.4) under the corresponding
constraint on the flux

f(ρ(t, 0))− Vbρ(t, 0) ≤ fα(ρα)− Vbρα
.
= Fα.

Inria



Conservation laws with moving density constraints 5

We are now ready to define the Riemann solver for (1.3), (2.1) following [10, §V]. Denote by R the
standard Riemann solver (i.e., without the constraint (2.3)) for (2.2), i.e., the (right continuous)
map (t, x) 7→ R(ρL, ρR)(

x
t
) is the standard weak entropy solution to (2.2). Moreover, let ρ̌α and

ρ̂α, with ρ̌α ≤ ρ̂α, be the intersections of the flux function f(ρ) and the line fα(ρα) + Vb(ρ− ρα)
(see Figure 1).

ρ̌α

f(ρ)

ρ

Vb

ρ̂α ρ∗

Figure 1: Flux function

Definition 1 The constrained Riemann solver Rα for (1.3), (2.1) is defined as follows.

1. If f(R(ρL, ρR)(Vb)) > Fα + VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR)(x) =

{
R(ρL, ρ̂α) if x < Vbt,
R(ρ̌α, ρR) if x ≥ Vbt,

and y(t) = Vbt.

2. If VbR(ρL, ρR)(Vb) ≤ f(R(ρL, ρR)(Vb)) ≤ Fα + VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR) = R(ρL, ρR) and y(t) = Vbt.

3. If f(R(ρL, ρR)(Vb)) < VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR) = R(ρL, ρR) and y(t) = v(ρR)t.

Note that, when the constraint is enforced (point 1. in the above definition), a nonclassi-
cal shock arises, which satisfies the Rankine-Hugoniot condition but violates the Lax entropy
condition.

Remark 1 The above definition is well-posed even if the classical solution R(ρL, ρR)(x/t) dis-
plays a shock at x = Vbt. In fact, due to Rankine-Hugoniot equation, we have

f(ρL) = f(ρR) + Vb(ρL − ρR)

and hence

f(ρL) > fα(ρα) + Vb(ρL − ρα) ⇐⇒ f(ρR) > fα(ρα) + Vb(ρR − ρα).

RR n° 8119



6 Delle Monache & Goatin

Remark 2 The density constraint ρ(t, y(t)) ≤ α does not appear explicitly in Definition 1, and
in the following Definition 2. It is handled by the corresponding condition on the flux

f(ρ(t, y(t)))− ω(ρ(t, y(t)))ρ(t, y(t)) ≤ Fα. (2.6)

The corresponding density on the reduced roadway at x = y(t) is found taking the solution to
the equation

f(ρy) + ω(ρy)(ρ− ρy) = ρ
(
1−

ρ

α

)
,

closer to ρy
.
= ρ(t, y(t))).

3 The Cauchy problem: existence of solutions

The aim of this section is to study the existence of the solutions of problem (1.1), (1.3). A bus
travels along a road modeled by





∂tρ+ ∂x(ρ(1− ρ)) = 0,
ρ(0, x) = ρ0(x),
ρ(t, y(t)) ≤ α.

(3.1)

The bus influences the traffic along the road but it is also influenced by it. The bus position
y = y(t) then solves {

ẏ(t) = ω(ρ(t, y(t)+)),
y(0) = y0.

(3.2)

Solutions to (3.2) will be intended in Carathéodory sense, i.e., as absolutely continuous functions
which satisfy (3.2) for a.e. t ≥ 0. In our setting, due to the strong PDE-ODE coupling, we
will prove existence of both solutions to (3.1) and (3.2) at the same time. We start giving our
definition of solution.

Definition 2 A couple (ρ, y) ∈ C0
(
R

+;L1 ∩ BV(R; [0, R])
)
×W

1,1(R+;R) is a solution to (1.3)
if

1. ρ is a weak solution of the conservation law, i.e., for all ϕ ∈ C1
c (R

2;R)

∫

R+

∫

R

(ρ∂tϕ+ f(ρ)∂xϕ) dx dt+

∫

R

ρ0(x)ϕ(0, x) dx = 0 ; (3.3a)

moreover, ρ satisfies the Kružhkov entropy conditions [11] on (R+ × R)\{(t, y(t)) : t ∈ R
+},

i.e., for every k ∈ [0, 1] and for all ϕ ∈ C1
c (R

2;R+) and ϕ(t, y(t)) = 0, t > 0,

∫

R+

∫

R

(|ρ− k|∂tϕ+ sgn(ρ− k) (f(ρ)− f(k)) ∂xϕ) dx dt

+

∫

R

|ρ0 − k|ϕ(0, x) dx ≥ 0 ; (3.3b)

2. y is a Carathéodory solution of the ODE, i.e., for a.e. t ∈ R
+

y(t) = y0 +

∫ t

0

ω(ρ(s, y(s)+)) ds ; (3.3c)

Inria



Conservation laws with moving density constraints 7

3. the constraint is satisfied, in the sense that for a.e. t ∈ R
+

lim
x→y(t)±

(f(ρ)− ω(ρ)ρ) (t, x) ≤ Fα. (3.3d)

Remark that the above traces exist because ρ(t, ·) ∈ BV(R) for all t ∈ R
+.

Remark 3 Our choice of a Carathéodory solution of the ODE is motivated by the particular
bus velocity defined by (1.2). With this choice it is not possible for a bus to end up trapped
in a queue unless its speed is equal to Vb, in which case ω(ρ(t, y(t)+)) = ω(ρ(t, y(t)−)) = Vb.
Therefore Carathéodory solutions are always well defined.

We are now ready to state the main result of the paper.

Theorem 1 Let ρ0 ∈ BV(R; [0, R]), then the problem (1.1) admits a solution in the sense of
Definition 2.

The rest of the section is devoted to the proof of Theorem 1. In particular, we will construct a
sequence of approximate solutions via the wave-front tracking method, and prove its convergence.
Finally, we will check that the limit functions satisfy conditions (3.3a)-(3.3d) of Definition 2.

3.1 Wave-front tracking

To construct piecewise constant approximate solutions, we adapt the standard wave-front track-
ing method, see for example [5, §6]. Fix a positive n ∈ N, n > 0 and introduce in [0, 1] the mesh

Mn = {ρni }
2n

i=0 defined by
Mn =

(
2−n

N ∩ [0, 1]
)
∪ {ρ̌α, ρ̂α}.

In order to include the critical points ρ̌α, ρ̂α, we modify the above mesh as follows:

• if mini |ρ̌α − ρni | = 2−n−1, then we simply add the new point to the mesh:

M̃n = Mn ∪ {ρ̌α};

• if |ρ̌α − ρnl | = mini |ρ̌α − ρni | < 2−n−1, then we replace ρnl by ρ̌α:

M̃n = Mn ∪ {ρ̌α} \ {ρ
n
l };

• we perform the same operations for ρ̂α.

In this way, the distance between two points of the mesh M̃n = {ρ̃ni }
2n

i=0 satisfies the lower bound∣∣ρ̃ni − ρ̃nj
∣∣ ≥ 2−n−1.

Let fn be the piecewise linear function which coincides with f on M̃n, and let ρn0 be a
piecewise constant function defined by

ρn0 =
∑

j∈Z

ρn0,j χ]xj−1,xj ]
with ρn0,j ∈ M̃n,

which approximates ρ0 in the sense of the strong L
1 topology, that is

lim
n→∞

‖ρn0 − ρ0‖L1(R) = 0,

RR n° 8119



8 Delle Monache & Goatin

and such that TV(ρn0 ) ≤ TV(ρ0). Above, we set x0 = y0.

For small times t > 0, a piecewise approximate solution (ρn, yn) to (1.3) is constructed piecing
together the solutions to the Riemann problems





∂tρ+ ∂x (f
n(ρ)) = 0,

ρ(0, x) =

{
ρ0 if x < y0,
ρ1 if x > y0,

ρ(t, yn(t)) ≤ α,





∂tρ+ ∂x (f
n(ρ)) = 0,

ρ(0, x) =

{
ρj if x < xj ,
ρj+1 if x > xj ,

j 6= 0,

(3.4)

where yn satisfies {
ẏn(t) = ω(ρn(t, yn(t)+)),
yn(0) = y0.

(3.5)

Note that the solutions to the constrained Riemann problem in (3.4), left, coupled with (3.5), is
constructed by means of Rα, see Definition 1.

The approximate solution ρn constructed above can be prolonged up to the first time t > 0,
where two discontinuities collide, or a discontinuity hits the bus trajectory. In both cases, a new
Riemann problem arises and its solution, obtained in the former case with R and in the latter
case with the constrained Riemann solver Rα, allows to extend ρn further in time.

3.2 Bounds on the total variation

Given an approximate solution ρn = ρn(t, ·) constructed by the wave-front tracking method, we
define the Glimm type functional

Υ(t) = Υ(ρn(t, ·)) = TV(ρn) + γ =
∑

j

∣∣ρnj+1 − ρnj
∣∣+ γ, (3.6)

where γ is given by

γ = γ(t) =

{
0 if ρn(t, yn(t)−) = ρ̂α, ρn(t, yn(t)+) = ρ̌α

2|ρ̂α − ρ̌α| otherwise.
(3.7)

The value of γ is chosen to have the following uniform bound on Υ.

Lemma 2 For any n ∈ N, the map t 7→ Υ(t) = Υ(ρn(t, ·)) at any interaction either decreases
by at least 2−n, or remains constant and the number of waves does not increase.

Lemma 2 in particular implies that the wave-front tracking procedure can be prolonged to
any time T > 0.

Proof. In order to obtain a uniform bound on the total variation, we will consider the different
types of interactions separately. In particular, we will assume that at any interaction time t = t̄
either two waves interact or a single wave hits the bus trajectory.

(I1) We consider a classical collision between two waves (see Figure 2). In this case, either
two shocks collide (which means that the number of waves diminishes) or a shock and a
rarefaction cancel. However, in both cases, TV(ρn) is not increasing and γ is constant.
Thus, we get Υ(t̄+) ≤ Υ(t̄−).

Inria



Conservation laws with moving density constraints 9

ρl ρr

ρm

Figure 2: Interaction between two waves away from the bus trajectory

A particular case is when the bus trajectory coincides with one of the interacting waves.
In this situation, it must be a classical shock between a left state belonging to [0, ρ̌α] and a
right state in [ρ̂α, ρ

∗], and moving with speed equal to Vb. This interaction cannot generate
a non-classical shock, it can therefore be treated as the general case above.

(I2) Assume that a wave between two states ρl, ρr ∈ [0, ρ̌α]∪ [ρ̂α, 1] hits the bus trajectory (see
Figure 3). In this case, the front crosses the bus trajectory and no new wave is created.
Notice that this collision may eventually lead to a modification of the bus trajectory (for ex-
ample, if ρr > ρ∗, after the collision the bus takes the velocity v(ρr) 6= ω(ρl)). Nevertheless,
TV(ρn), Υ and the number of waves remain constant.

ρl

Vb

ρr

Figure 3: Interaction between a wave and the bus trajectory

(I3) Assume that we are in presence of the non-classical shock along the bus trajectory. Different
types of interactions may occur.

(I3.1) Assume that the non-classical shock is present at t < t̄, and a shock between ρl ∈ [0, ρ̌α]
and ρ̂α hits the bus trajectory on the left (Figure 4, left). After the collision, the
number of discontinuities in ρn diminishes and the functional Υ remains constant:

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−)

= |ρl − ρ̌α|+ 2|ρ̂α − ρ̌α| − (|ρl − ρ̂α|+ |ρ̂α − ρ̌α|)

= 0.

Assume now a shock between ρ̌α and ρr ∈ [ρ̂α, 1] hits the bus trajectory on the right
(Figure 4, right). Then, after the collision, the bus takes the velocity v(ρr) of the
traffic mainstream, the number of discontinuities in ρn diminishes and the functional

RR n° 8119



10 Delle Monache & Goatin

Υ remains constant:

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−)

= |ρ̂α − ρr|+ 2|ρ̂α − ρ̌α| − (|ρ̌α − ρr|+ |ρ̂α − ρ̌α|)

= 0.

ρ̂α

ρ̌α

ρl

Vb

ρ̂α

ρ̌α

ρr

ρr
v(ρr)

Figure 4: Interaction between a shock and the bus trajectory

(I3.2) Consider now the case of a non-classical shock arising at t = t̄. We first analyze the
case of a rarefaction front hitting the bus trajectory from the left (Figure 5, left). We
have ρr = ρ̌α < ρl ≤ ρ̂α.

ρr = ρ̌α

ρ̌α

Vb

ρ̂α

ρl

ρl = ρ̂α

ρ̂α

Vb

ρr

ρ̌α

Figure 5: Interaction between a rarefaction and the bus trajectory

In this case, a new wave is created at t and the total variation is given by:

• TV(t̄−) = |ρ̌α − ρl| ≥ 2−n−1;

• TV(t̄+) = |ρ̂α − ρ̌α|+ |ρ̂α − ρl| ≤ 2|ρ̂α − ρ̌α|,

where the second estimate is obtained by simple algebraic manipulation of the total
variation TV(t̄+). Then we are able to compute the changes in the functional as
follows:

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−)

= (|ρ̂α − ρ̌α|+ |ρ̂α − ρl|)− (|ρ̌α − ρl|+ 2|ρ̂α − ρ̌α|)

= 2(ρ̌α − ρl) ≤ −2−n,

hence the functional is strictly decreasing.
Let us consider now the case of a rarefaction front hitting the bus trajectory from
the right (Figure 5, right). In this case, we have ρ̌α ≤ ρr < ρl = ρ̂α. A new wave is
created at t̄ and the total variation is given by:

• TV(t̄−) = |ρ̂α − ρr| ≥ 2−n−1;

• TV(t̄+) = |ρ̂α − ρ̌α|+ |ρ̌α − ρr| ≤ 2|ρ̂α − ρ̌α|,

Inria



Conservation laws with moving density constraints 11

The functional changes as follows:

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−)

= (|ρ̂α − ρ̌α|+ |ρ̌α − ρr|)− (|ρ̂α − ρr|+ 2|ρ̂α − ρ̌α|)

= 2(ρ̂α − ρr) ≤ −2−n,

making the functional strictly decreasing.

�

3.3 Convergence of approximate solutions

In this section we prove that the limit of wave-front tracking approximations provides a solution
(ρ, y) of the PDE-ODE model (1.1) in the sense of Definition 2.
We start showing the convergence of the wave-front tracking approximations.

Lemma 3 Let ρn and yn, n ∈ N, be the wave-front tracking approximations to (1.1) constructed
as detailed in Section 3.1, and assume TV(ρ0) ≤ C be bounded, 0 ≤ ρ0 ≤ 1. Then, up to a
subsequence, we have the following convergences

ρn → ρ in L
1

loc
(R+ × R); (3.8a)

yn(·) → y(·) in L
∞([0, T ]), for all T > 0; (3.8b)

ẏn(·) → ẏ(·) in L
1([0, T ]), for all T > 0; (3.8c)

for some ρ ∈ C0
(
R

+;L1 ∩ BV(R)
)

and y ∈ W
1,1(R+).

Proof. Lemma 2 gives a uniform bound on the total variation of approximate solutions. Thus,
we have TV(ρn(t, ·)) ≤ Υ(t) ≤ Υ(0). A standard procedure based on Helly’s Theorem (see
[5, Theorem 2.4]) ensures the existence of a subsequence converging to some function ρ ∈
C0

(
R

+;L1 ∩ BV(R)
)
, proving (3.8a).

Since |ẏn(t)| ≤ Vb, the sequence {yn} is uniformly bounded and equicontinuous on any com-
pact interval [0, T ]. By Ascoli-Arzelà Theorem, there exists a subsequence converging uniformly,
giving (3.8b).

In order to prove (3.8c), we have to show that TV (ẏn; [0, T ]) is uniformly bounded. In fact,
the analysis performed in Section 3.2 shows that ẏn can change only at interactions with waves
coming from its right. We can estimate the speed variation at interactions times t̄ by the size of
the interacting front:

|ẏn(t̄+)− ẏn(t̄−)| = |ω(ρl)− ω(ρr)| ≤ |ρl − ρr|.

In particular, ẏn is non-increasing at interactions with shock fronts and non-decreasing at inter-
actions with rarefaction fronts, which must be originated at t = 0. In fact, the analysis performed
in Section 3.2 shows that no new rarefaction front can arise at interactions. Therefore,

TV (ẏn; [0, T ]) ≤ 2PV (ẏn; [0, T ]) + ‖ẏn‖L∞([0,T ]) ≤ 2TV(ρ0) + Vb

is uniformly bounded. Above, PV (ẏn; [0, T ]) denotes the positive variation of ẏn, i.e., the total
amount of positive jumps in the interval [0, T ]. �
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3.3.1 Proof of (3.3a) and (3.3b)

Since ρn converge strongly to ρ in L
1

loc
(R+ × R), it is straightforward to pass to the limit in

the weak formulation of the conservation law, proving that the limit function ρ satisfies (3.3a).
Kružhkov entropy condition (3.3b) can be recovered in the same way.

3.3.2 Proof of (3.3c)

We will prove that

lim
n→∞

ρn(t, yn(t)+) = ρ+(t) = ρ(t, y(t)+) for a.e. t ∈ R
+. (3.9)

By pointwise convergence a.e. of ρn to ρ, there exists a sequence zn ≥ yn(t) such that zn → y(t)
and ρn(t, zn) → ρ+(t).

For a.e. t > 0, the point (t, y(t)) is for ρ(t, ·) either a continuity point, or it belongs to a
discontinuity curve (represented by y(·)) that can be either a classical shock or a non-classical
discontinuity between ρ(t, y(t)−) = ρ̂α and ρ(t, y(t)+) = ρ̌α.

Fix ǫ∗ > 0 and assume TV (ρ(t, ·); ]y(t)− δ, y(t) + δ[) ≤ ǫ∗, for some δ > 0. Then by weak
convergence of measures (see [6, Lemma 15]) we have TV (ρn(t, ·); ]y(t)− δ, y(t) + δ[) ≤ 2ǫ∗ for
n large enough, and we can estimate

∣∣ρn(t, yn(t)+)− ρ+(t)
∣∣ ≤ |ρn(t, yn(t)+)− ρn(t, zn)|+

∣∣ρn(t, zn)− ρ+(t)
∣∣ ≤ 3ǫ∗

for n large enough.

If ρ(t, ·) has a discontinuity of strength greater than ǫ∗ at y(t), then it holds also for the ap-
proximate solutions |ρn(t, yn(t)+)− ρn(t, yn(t)−)| ≥ ǫ∗/2 for n sufficiently large, and we proceed
as in [6, Section 4]. That is, we set ρn,+ = ρn(t, yn(t)+) and we show that for each ε > 0 there
exists δ > 0 such that for all n large enough there holds

∣∣ρn(s, x)− ρn,+
∣∣ < ε for |s− t| ≤ δ, |x− y(t)| ≤ δ, x > yn(s). (3.10)

In fact, if (3.10) does not hold, we could find ε > 0 and sequences tn → t, δn → 0 such that
TV (ρn(tn, ·); ]yn(tn), yn(tn) + δn[) ≥ ε. By strict concavity of the flux function f , there should
be a uniformly positive amount of interactions in an arbitrarily small neighborhood of (t, y(t)),
giving a contradiction. Therefore (3.10) holds and we get

∣∣ρn(t, yn(t)+)− ρ+(t)
∣∣ ≤ |ρn(t, yn(t)+)− ρn(t, zn)|+

∣∣ρn(t, zn)− ρ+(t)
∣∣ ≤ 2ε

for n large enough, thus proving (3.9).

Combining (3.8c) and (3.9) we get ẏ(t) = ω(ρ(t, y(t)+)) for a.e. t > 0.

3.3.3 Proof of (3.3d)

In order to verify that the limit solutions satisfy the constraint (3.3d), we can use directly the
convergence result proved in the previous section or proceed as follows. Let us introduce the sets

Ω± = {(t, x) ∈ R
+ × R : x ≶ y(t)}

and

Ω±
n = {(t, x) ∈ R

+ × R : x ≶ yn(t)}.

Inria



Conservation laws with moving density constraints 13

Let us now consider a test function ϕ ∈ C1
c (R

+ × R), ϕ ≥ 0, such that supp(ϕ) ∩ {(t, y(t)) : t >
0} 6= 0 and supp(ϕ) ∩ {(t, yn(t)) : t > 0} 6= 0. Then by conservation on Ω+

n we have

∫∫
χΩ+

n

(
ρn∂tϕ+ fn(ρn)∂xϕ

)
dx dt

=

∫ +∞

0

∫ +∞

yn(t)

(
ρn∂tϕ+ fn(ρn)∂xϕ

)
dx dt

=

∫ +∞

0

(
fn(ρn(t, yn(t)+))− ẏn(t)ρ

n(t, yn(t)+)
)
ϕ(t, yn(t)) dt

=

∫ +∞

0

(
fn(ρn(t, yn(t)+))− ω(ρn(t, yn(t)+))ρn(t, yn(t)+)

)
ϕ(t, yn(t)) dt

≤

∫ T

0

Fαϕ(t, yn(t)) dt, (3.11)

where we have used the fact that wave-front tracking approximations satisfy the constraint (2.6)
by construction. The same can be done for the limit solutions ρ and y(t) that, by conservation
on Ω, satisfy

∫∫
χΩ+

(
ρ∂tϕ+ f(ρ)∂xϕ

)
dx dt

=

∫ +∞

0

∫ +∞

y(t)

(
ρ∂tϕ+ f(ρ)∂xϕ

)
dx dt

=

∫ +∞

0

(
f(ρ(t, y(t)+))− ẏ(t)ρ(t, y(t)+)

)
ϕ(t, y(t)) dt

=

∫ +∞

0

(
f(ρ(t, y(t)+))− ω(ρ(t, y(t)+))ρ(t, y(t)+)

)
ϕ(t, y(t)) dt (3.12)

By (3.8a) and (3.8b) we can pass to the limit in (3.11) and (3.12), which gives

∫ +∞

0

(
f(ρ(t, y(t)+))− ω(ρ(t, y(t)+))ρ(t, y(t)+)− Fα

)
ϕ(t, y(t)) dt ≤ 0.

Since the above inequality holds for every test function ϕ ≥ 0, we have proved that

lim
x→y(t)±

(f(ρ)− ω(ρ)ρ) (t, x) ≤ Fα

for a. e. t > 0. The left-hand limit can be handled in the same way using the sets Ω+
n and Ω+.
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