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Abstract—For the design of real-time embedded systems,
analysis of performance and resource utilization at an early
stage is crucial to evaluate design choices. Network Calculus
and its variants provide the tools to perform such analyses
for distributed systems processing streams of tasks, based on
a max-plus algebra. However, the underlying model employed
in Network Calculus cannot capture correlations between the
availability of different resources and between the arrivals of
tasks, leading to overly conservative performance bounds for
some frequently used system topologies. We present a model
based on timing constraints relative to pairs of streams, endowed
with an analysis technique that can handle such correlations.

I. INTRODUCTION

Modern stream-processing systems, such as multimedia
applications and embedded automatic control systems, are
often realized on heterogeneous, multi-processor architectures.
Such architectures have a large design space, due to the choice
in processors, the networks to connect them, the partitioning
of software on the hardware, and the choice of scheduling
regimes to allocate resources. As development progresses,
architecture changes become increasingly expensive. It is
therefore essential to evaluate the feasibility of a design at
an early stage. In particular, the performance characteristics
of a design, such as the throughput and required buffer sizes
needed to fulfill the system requirements.

Let us review two illustrative examples, that, by the end
of the paper, we will be able to fully analyse. For now, we
will only informally introduce them. The exact meaning of the
components in the examples will be introduced in the sequel.

The first example, depicted in Figure 1, models a mul-
timedia decoder that decodes audio and video parts of an
incoming multimedia stream separately and then joins the
decoded streams at the output.

Each double arrow in the diagram represents a lossless
channel with FIFO semantics (a stream). The PJD and BD
denote sources of streams and resources, respectively. The
GPC component denotes the actual decoding of audio or
video streams consuming processor resources and producing a
stream of decoded frames. The AND component synchronously
joins the two streams by combining incoming audio and video
frames in the output.

A second example, depicted in Figure 2, shows a server that
is connected to the outside world by a bus. The server responds
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Fig. 1. The greedy processing components (GPC) model the decoding of
the input stream i, arriving periodically with bounded jitter and minimum
inter-arrival time (PJD), on two separate processors, utilizing resources r and
s with fixed bandwidth and bounded delay (BD), and the AND component
joins the decoded streams resulting the output stream o.

to update requests that arrive over a bus and returns a reply
over the very same bus. Conflict-free access to the bus from
both sides is achieved through a time-division, multiple-access
(TDMA) policy. That is, exclusive access to the bus is given
periodically to the requester and the server. The server has
a certain delay before it responds. If this delay corresponds
to the TDMA period, then the bus does not introduce any
additional delay since the reply to a received request can
immediately be transmitted.

Two new components are used here: the TDMA component
that splits a resources according to a fixed schedule, and the
DEL component that imposes a fixed delay on a stream. In
this example, the GPC components do not model processors
or decoders, but the transmission of messages over the bus.

The performance of systems as the ones sketched above
can be analyzed by different approaches. Simulation-based
techniques are efficient but in general non exhaustive, and
therefore may not reveal corner cases. On the other hand,
formal analytical methods can offer strong guarantees for
safety-critical systems. In this paper we present such an
analytical method to discover absolute performance bounds.

Existing formal verification techniques for real-time systems
are based on model-checking of timed automata [9], algebraic
techniques like Network calculus [12] and real-time calculus
[3], scheduling theory [8], or combinations thereof [10].

In network calculus streams of events, such as the arrival
of consecutive frames of data to be processed or the periodic



BD

TDMA

PJD

request

GPC DEL

server

GPC

i x

yo
response

r

t s

bus

Fig. 2. The stream i of update requests passes a bus, represented by resource
r, to arrive at a server, which, after a fixed delay (DEL), sends a reply y back
over the bus. The resource is shared with a fixed TDMA schedule, over the
resources t and s.

activation of a task, are modelled as a cumulative function R
over time. While one such function represents one concrete
execution trace, a “curve” α characterizes an abstract event
stream of all behaviors R, such that for all time instants t and
u where t ≤ u

R(t)−R(u) ≤ α(t− u)

The availability of a resource is modelled by a similar cu-
mulative function C and abstraction β such that β(t − u) ≤
C(t)− C(u).

Given a processor with the resource characterized by a curve
β that handles tasks characterized by α that arrive over a FIFO
queue, network calculus shows that delay is bounded by the
maximum horizontal distance between α and β and backlog,
i.e., the maximum number of queued tasks at any time during
execution, is bounded by their vertical distance. Moreover,
it permits us to calculate the curve α′ that characterizes the
stream of output events that correspond to the completion of
tasks. This forms the basis of a compositional analysis for
networks of processing components.

Unfortunately, the abstraction of streams can lead to pes-
simistic bounds for some systems, as is the case for our
examples.

In the multimedia decoder of Figure 1, the application of
network calculus, with an AND component as described in
[7], will overestimate the needed buffer space, in particular
the inputs x and y of the AND component. This originates in
the model of streams: while the maximum number of arrivals
of each individual stream are exact, the model does not show
that peaks in the number of arrivals occur simultaneously in
x and y. The AND component’s inputs are considered only
independently, thus leading to a pessimistic estimate of the
output’s variability.

In the example of Figure 2, even if the arrivals and resources
are constant, network calculus will overestimate the needed
buffer size between the server and the bus, because the cause-
effect relation of the request and response in combination with
the strict schedule of the TDMA cannot be modelled.

We propose an analysis based on a relative event model,
where events and resource availability are modelled by func-
tions that give the cumulative number of events at the time
of each occurrence of another event. This leads to an event
model that preserves correlations between events, and allows
a natural integration of an abstraction similar to network
calculus’ curves, with bounds that model causal relations such
as data-flow constraints.

A. Contributions

The main novelty presented in this paper is an event model
based on a combination of two kinds of bounds on relative
counter functions: simple clock bounds to model e.g. data-flow
dependencies and drift bounds that limit relative variability to
model e.g. burstiness of a flow. We derive general properties
of such bounds and properties associated with the processing
components, leading to an analysis method based on a fixpoint
algorithm. Finally, we provide experimental evidence that our
relative-time framework can find better bounds for the needed
buffer space in the above examples.

B. Previous Work

Data-flow networks are represented naturally through re-
lational constraints. The first such a notion is synchronic
distance [14] for Petri nets. The synchronic distance is the
maximum number of times a transition may fire before another
must be fired. If the Petri net models a data-flow system, typi-
cally modelled by conflict-free nets, the synchronous distance
of a producer from a consumer (both modelled by transitions)
corresponds to the maximum buffer occupation between them.

The affine clock calculus used in the validation and com-
pilation of real-time applications [16] programmed with a
combination of SIGNAL and ALPHA, The calculus relates two
clocks through a base clock. Typically, the arrival of complex
tasks is related to their completions through a system clock
that determines execution speed. These relations are expressed
by affine transformations over the occurrence-times of events.
The calculus then serves to determine synchronizability of two
event streams.

The more recent work on n-synchrony [5] develops a similar
concept to verify synchronizability of programs written in
a synchronous data-flow language extended with statically
scheduled sample (a periodic selection of elements in a flow)
and merge (a combination of two flows defined by a static
schedule) operations and buffers with FIFO semantics. The
verification is based on a type-system and determines whether
the system can be executed with finite buffer sizes. The clock
envelopes introduced in [4] further develop this system, using
clock abstractions called envelopes that permit more efficient
verification at the cost of some over-estimated buffer sizes.

The clock bounds, introduced in this paper, express the same
essential relations as the data-flow relations of the mentioned
work. The formalization of the relations as bounds on relative
counter functions however, is new. And it is precisely this
formalization that allows us to combine clock bounds with



drift bounds. Clock bounds are more general than the syn-
chronic distance on conflict-free nets, affine relations and clock
envelopes, all of which can be represented by linear clock
bounds in our model. Clock bounds are equal in expressiveness
to the basic model of n-synchrony.

Drift bounds are essentially a relational variant of network
calculus’ arrival and resource curves. The problem of correlat-
ing variability of event streams, such as coincident bursts of
arrival streams, has been studied before in various incarnations
of network calculus.

In [15], [13] the case where streams are transported over a
network as a single, joined stream, to be separated at arrival, is
treated by tracking the correlations between sub-streams and
the aggregated stream. The event count curves of [13] are a
special case of our drift bounds: a bound on a sub-stream with
respect to the aggregate stream.

Correlated streams are also used in [11] for the analysis of
a fork-join scenario, where the load of a single event stream
is split over several processing components and then merged
in a scenario similar to the multimedia decoder of Figure
1. However, [11] distribute frames over the processors for
load distribution, like splitting traffic over two lanes and then
merging it again, rather than the synchronous split join of our
example.

Finally [19] exploits correlations between the workload
imposed by a task traversing a chain, which occur e.g. for tasks
with variable payloads sizes that traverse a chain of processors:
tasks that require many resources on the first processor because
of a large payload, will also require more work for the next
and vice versa. None of the above approaches uses a general
relational model as presented in this paper.

II. A RELATIVE MODEL OF CLOCKS

This section introduces the behavioral model of systems,
which, like network calculus, is based on cumulative functions.
Then it introduces a first abstraction that relates all clocks to
each other rather than to real-time.

In the model streams of periodically recurring events as
clocks. For example, the arrival of audio frames in a multime-
dia stream is represented by a clock that ticks once for each
arriving frame. If a resource is a processor, then each clock tick
corresponds to a cycle that would be used to process a task. If
the resource is a bus, each tick corresponds to the transfer of a
task. The behavior of clocks is described by counter functions.

Definition 1 (Counter function (χ)). Let χ ∈ R → N be a
counter functions such that it
• starts at zero (χ(0) = 0);
• is non-decreasing (t ≤ u =⇒ χ(t) ≤ χ(u)); and
• is surjective (range(χ) = N).

Equivalently, we could choose to describe clocks by dater
functions that give the time at which each tick occurs.

Definition 2 (Dater function). The dater functions η ∈ N→ R
corresponding to the counter function χ is defined as

η(n) = min{t ∈ R | χ(t) ≥ n}
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n ηi(n) ηj(n)

0 0.00 0.00
1 1.00 7.00
2 2.40 9.20
3 8.00 18.2
4 9.20 19.0
5 11.0 19.5
6 13.0 20.0
7 16.0 30.0
8 20.0 32.0
9 23.0
10 30.0
11 31.0
12 32.0

Fig. 3. Two (partial) counter and corresponding dater functions and the exact
times of each tick. Ticks 4 and 2 of respectively i and j occur simultaneously,
as do the pairs (8, 6), and (10, 7).

Figure 3 shows two counter functions and the corresponding
dater functions. It also shows in a table how the dater function
provides a trace of timestamps for each successive tick.

Lemma 1 (Properties of dater functions). The dater function
η starts at zero (η(0) = 0), is strictly increasing (n < m =⇒
η(n) < η(m)), is total (domain(η) = N) and diverges
(limn→∞ η(n) =∞).

Proof: As zero is an eliminator for minimization over
the domain of positive numbers, the dater function must also
start at zero. By contradiction it must be strictly increasing;
if there were some n < m such that η(n) ≥ η(m), then we
arrive at the contradiction that χ is decreasing. Totality is a
consequence of the surjectivity of the counter function, which
can be shown through contradiction. Finally, the dater function
diverges, because the minimum also diverges if the time and
the tick count go to infinity.

The dater function is not a proper inverse of the counter
function because in general, η ◦ χ 6= id. However, we do
have the inequalities η(χ(t)) ≤ t, η(χ(t) + 1) ≥ t, and
χ(η(n)) = n for all times t. This can be understood from
the informal description of counter and dater functions: χ(t)
gives the number of ticks of i up to, and including, time t,
and η(n) gives the time when the n-th tick occurs.

In our model we concentrate on the logical behavior of
clocks, as opposed to the temporal behavior. That is, how
ticks of different clocks interleave with one-another. To this
end, the clocks are modelled by the relations between them,
concentrating on the relative order of events rather than their
absolute timing.

Given two clocks i and j described by their counter func-
tions χi and χj , their relative clock Xi/j(n) gives the tick
count of i at the n-th tick of j. Figure 4 depicts the relative
counter function Ri/j as well as Rj/i from the counter and



dater functions depicted in Figure 3.

Definition 3 (Relative counter function (Xi/j)). Let χi and ηj
respectively be the counter and dater functions of two clocks
i and j, then the relative counter function Xi/j ∈ N → N is
defined as

Xi/j(n) = (χi ◦ ηj)(n)

As the notation already gives away, the behavior of a whole
system, consisting of a set K of clocks, is described by a
column vector χ ∈ (R → N)K×1 and the corresponding
row vector of dater functions η ∈ (N → R)1×K . Thus we
naturally obtain a matrix X ∈ (N → N)K×K of relative
counter functions:

X =

χ1

...
χn

 ◦ (η1 · · · ηn) =

 χ1 ◦ η1 · · · χ1 ◦ ηn
...

. . .
...

χn ◦ η1 · · · χn ◦ ηn


The diagonal of the relative counter function matrix, con-

sists of identity functions since Xi/i(n) = χi(ηi(n)) = n for
all clock i. A note on notation: anywhere where Xi/j is used,
it can be replaced directly by the composition χi ◦ ηj .

Relative counter functions inherit most of the counter func-
tions’ properties. The most important difference being that
relative counter functions can increase by more than one in
a single step. For example, in Figure 4 Xi/j jumps from 4 to
7, because i ticks three times between the second and third
ticks of j.

We can also see that only the (non-strict) order of ticks is
preserved, in the sense that if e.g. Xi/j(2) = 4 we do not
know if the fourth tick of i occurred simultaneously with the
second tick of j, or if it preceded the second tick of j.

Lemma 2 (Properties of relative counter functions). Like
normal counter functions, relative counter functions start at
zero (Xi/j(0) = 0), are non-decreasing (n ≤ m =⇒
Xi/j(n) ≤ Xi/j(m)) and diverge.

Proof: That Xi/j(0) = 0 can be calculated directly.
Divergence and non-decreasingness are both preserved by the
composition of the non-decreasing and divergent counter and
dater functions.

As a relative counter function Xi/j characterizes the behav-
ior of χi with respect to χj , we can compute a pseudo-inverse
X−1i/j characterizing the behavior of χj with respect to χi.

Definition 4 (Pseudo-inverse). The pseudo-inverse X−1i/j ∈
N → N of a relative counter function Xi/j ∈ N → N is
defined as

X−1i/j (n) = min{m ∈ N | Xi/j(m+ 1) ≥ n}

We define the pseudo-inverse X−1 of a matrix as the point-
wise pseudo-inversion and a transposition, i.e., [X−1]i/j =
X−1j/i . Subscription takes precedence over the inversion oper-
ator.

Lemma 3 (Properties of the pseudo-inverse). The pseudo-
inverse X−1i/j has the same properties as a relative counter

n0 1 2 3 4 5 6 7 8 9 10 11 12
0
1
2
3
4
5
6
7
8
9

10
11
12

Xi/j(n)

Xj/i(n)

X−1i/j (n)

Fig. 4. The relative counter functions Xi/j and Xj/i created by composing
the counter and dater functions of Figure 3, and the pseudo-inverse X−1

i/j
.

Note that Xj/i(n) = X−1
i/j

(n) + 1 occurs exactly when the clocks tick
simultaneously.

function. That is, X−1i/j goes through the origin, is non-
decreasing and diverges. Furthermore, the inversion operator
is symmetric ([f−1]−1 = f ) and antitone (f(n) ≤ g(n) ⇐⇒
f−1(n) ≥ g−1(n) for monotonic f and g).

Furthermore, for any n ∈ N, (1) X−1i/j (Xi/j(n)) < n, (2)
Xi/j(X

−1
i/j (n)) < n for n > 0, (3) X−1i/j (Xi/j(n) + 1) ≥ n,

and Xi/j(X
−1
i/j (n) + 1) ≥ n.

Intuitively we might expect the pseudo-inverse X−1i/j to
relate strongly to Xj/i and maybe even be equal. The example
in Figure 4 reinforces this, but it also shows that, for the
few instances where the clocks i and j tick simultaneously,
X−1i/j 6= Xj/i. As the following lemma shows equality almost
holds, with a difference of one.

Lemma 4 (Inverse of relative counter function matrix). Let X
be a matrix of relative counter functions, then X−1 ≤ X ≤
X−1 + 1.

Proof: We will prove this by deriving equal upper and
lower bounds of the converse. First note that X−1i/j (n)

= min{m ∈ N | (χi ◦ ηj)(m + 1) ≥ n} = min{m ∈ N |
ηj(m+1) ≥ ηi(n)} because χi(ηi(n)) = n and ηi(χi(t)) ≤ t
imply χi(x) ≥ y ⇔ x ≥ ηi(y). Then, since ηj(χj(t) + 1) ≥ t
implies x ≥ χj(y)⇒ ηj(x+1) ≥ y, we have the lower bound

min{m ∈ N | ηj(m+ 1) ≥ ηi(n)}
≤min{m ∈ N | m ≥ (χj ◦ ηi)(n)}
= min{m ∈ N | m ≥ Xj/i(n)}
=Xj/i(n)

and, since χj(ηj(n)) = n implies ηj(x) ≥ y ⇒ x ≥ χj(y),

min{m ∈ N | ηj(m+ 1) ≥ ηi(n)}
≥min{m ∈ N | m+ 1 ≥ (χj ◦ ηi)(n)}
= min{m ∈ N | m ≥ Xj/i(n)− 1}
=Xj/i(n)− 1



The most interesting property of relative counter functions
is their transitivity: the relative counter functions Xi/j , Xi/k

and Xk/j of any three clocks i, j and k are not independent.

Lemma 5 (Transitivity of relative counter functions). The
matrix X of relative counter functions is transitively closed,
i.e., for all clocks i, j and k in K

Xi/k ◦Xk/j ≤ Xi/j ≤ Xi/k ◦ (Xk/j + 1)

Proof: The proof of the lower bound follows from the
fact that function composition is associative and that (ηk ◦
χk)(t) ≤ t. Thus we derive Xi/k ◦Xk/j = χi ◦ ηk ◦χk ◦ ηj ≤
χi ◦ ηj = Xi/j . The upper bound is proven similarly, but
now ηk(χk(t) + 1) ≥ t, and therefore Xi/k(Xk/j(n) + 1) =
χi(ηk(χk(ηj(n)) + 1)) ≥ χi(χj(n)) = Xi/j(n).

III. MODELING CLOCK VARIABILITY

Relative counter functions are a first step towards an abstract
representation of streams. In this section we introduce bounds
as a further abstraction to describe the behavior of clocks.
More precisely we introduce two kinds of bounds: (1) clock
bounds on the relative clocks to model for example data-
flow dependencies between processes; and (2) drift bounds
reminiscent of network calculus’ curves, to model variability
in the availability of resources or arrivals of tasks, for example
the (relative) drift of processor’s clocks or the availability
of resources. We use clock and drift bounds as a finite
representation of an infinite number of clock vectors.

A. Clock Bounds

Clock bounds limit the total number of ticks at every tick of
another clock, e.g., the upper clock bound Cu

i/j(n) = m states
that at the n-th tick of j, i may have ticked at most m times.
For example, the BD component, that describes the availability
of the bus and decoders in the examples, is represented by a
pair of upper and lower bounds on the relative counter function
Xr/k as depicted in Figure 5.

Definition 5 (F). Let F be the set of functions f ∈ (N ∪
{∞})→ (N ∪ {∞}) s.t. f(0) = 0 and f is non-decreasing.

F is essentially the set of relative counter functions, ex-
tended with limits.

Definition 6 (Clock bound matrix C). The matrices Cl, Cu ∈
FK×K are the lower resp. upper clock bounds of a clock
vector χ of clocks K if for all clocks i and j, and n ∈ N,

Cl
i/j(n) ≤ Xi/j(n) ≤ Cu

i/j(n)

Clock bounds can be used to model general difference
bounds such as χi(t)− χj(t) ≥ B through Cu

i/j(n) = B + n
as well as relative clock rates such as χi(t) ≤ Rχj(t) through
Cu

i/j(n) = Rn, or combinations of both difference bounds and
relative rates. Even rates or difference bounds that change over
time can be modelled, as long as the behavior is eventually
periodic.

In similar work, such as the clock envelopes [4] and the
affine clock calculus [16], F is often restricted to linear or
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Fig. 5. Top: the clock bounds for the resource r resulting from a BD
component with bandwidth B and delay d. Bottom: the drift bounds for an
event stream o with period p, maximum jitter j and minimum inter-arrival
time d.

convex functions. The bounds in n-synchronous programming
[5], [4] including the clock envelope abstraction, have the
additional restriction that f(n + 1) − f(n) ≤ 1, because
clocks are only compared with their master clock in the clock
hierarchy.

B. Drift Bounds

Clock bounds cannot model time-invariant properties such
as a bound on bursts or jitter. For those, we introduce drift
bounds. Drift bounds limit the increase of ticks of e.g. Xi/j

for different intervals of χj(t). That is, the upper drift bound
Du

i/j on the relative counter function Xi/j requires that i ticks
at least Du

i/j(∆) times for every ∆ ticks of j.
Drift bounds limit the maximum incline for each interval,

e.g., a bound Du
i/j(∆) = m states that i may tick at most m

times, between any ∆ consecutive ticks of j. The constraint
imposed by a drift bound can be interpreted as a sliding
window constraint, with multiple window-sizes. This allows
us to model, for example, the PJD component also depicted in
Figure 5, for an event stream that exhibits short term bursts
and jitter, but is asymptotically stable. Moreover, it limits the
time between each two consecutive events.

Definition 7 (Drift bound matrix D). The matrices Dl, Du ∈
FK×K is a lower resp. upper drift bound of a clock vector χ
of clocks K if for all clocks i and j, n ∈ N, and all interval
sizes ∆ ∈ N,

Dl
i/j(∆) ≤ Xi/j(n+ ∆)−Xj/k(n) ≤ Du

i/j(∆)

Although, as we will see in Section V, drift and clock
bounds are not completely orthogonal, they capture different
properties: clock bounds limit the relative tick count of clocks
whereas drift bounds limit the variability of the relative tick
count.



To our knowledge drift bounds have no parallel in models
for data-flow constraints, they can only be compared to the
arrival and resource curves of network calculus. The difference
between our drift bounds and the curves of network calculus
[12] is found in the bounded quantity: not the counter functions
in χ, but the relative counter functions in X are bounded.
Because the domain of a relative counter function Xi/j is not
real-time but the logical time of ηj , the domain of drift bounds
is not the set of real-time intervals (t, r] but the set of logical
time intervals (χj(t), χj(r)].

In the sequel we use (C,D) to denote a pair of lower
and upper clock bounds C = (Cl, Cu) and drift bounds
D = (Dl, Du). We write χ |= (C,D) (“χ satisfies C and
D”) if the clock vector χ is bounded by the clock bounds C
and drift bounds D.

C. Interpreting Bounds

The bounds can be studied to obtain bounds on the maxi-
mum number of items in a buffer, or the minimum resource
utilisation. For example, in the case of an audio or video
decoder we would be interested in three key figures: the
maximum buffer occupancy (backlog) for each decoder, the
time between arrival of a frame and the decoded result (delay),
and the minimum resource utilization (throughput). This paper
only considers backlog.

The number of tokens in the buffer is the difference between
the number consumed tokens and the number of produced
tokens at any time. This difference translates to the more
general concept of backlog, which at any time, is the difference
χi(t) − χo(t) between the number of arrivals at i and the
number of departures at o. In the model of relative clocks, this
translates to the maximum distance from the identity function,
because Xj/i(n) gives the number of ticks of the clock j the
the n-th tick of i.

Lemma 6 (Backlog bound). Let (C,D) describe the behavior
of some system, then the backlog bi/j for any behavior χ |=
(C,D) is bounded by

bi/j ≤ max{n− Cl
j/i(n) | n ∈ N}

Proof: This follows from the observation that the differ-
ence χi(t)−χj(t) is greatest when i has just ticked, it therefore
suffices to observe the difference at each time instant ηt(n)
for all n ∈ N. Thus bi/j = max{Xi/i(n) − Xj/i(n)) | n ∈
R} ≤ max{n− Cl

j/i(n)) | n ∈ R}.

D. An Algebra of Relative Clock and Drift Bounds

Clock and drift bounds, as well as relative clocks, are
ordered by the partial order defined by the point-wise com-
parison.

Definition 8 (≤). Let ≤ be the partial order over F (Defini-
tion 5) such that for all f, g ∈ F

f ≤ g ⇐⇒ ∀n ∈ N : f(n) ≤ g(n)

With the partial order, we also define the point-wise mini-
mum ∧ and maximum ∨ for all f, g ∈ F such that

(f ∨ g)(n) = max(f(n), g(n))

(f ∧ g)(n) = min(f(n), g(n))

The inequality expressing the upper drift bound matrix
can be rewritten using the min-plus convolution ⊗ which is
defined, for f, g ∈ F as follows

(f ⊗ g)(n) = inf{f(n−∆) + g(∆) | 0 ≤ ∆ ≤ n}

The convolution f⊗g is often explained as the minimum of f
and g when sliding g over f , i.e., (f⊗g) = g+f(0)∧g+f(1)∧
g + f(2) ∧ ..., for a more thorough discussion we once again
refer to [12]. In our case, we use the operator to reformulate
the upper bound condition without any quantifications:

X ≤ X ⊗Du

Alternatively, we may rewrite the inequality in the definition,
such that h(∆) ≥ f(n + ∆) − h(∆) for any n ∈ N and
any interval ∆ ∈ N. This leads to the deconvolution operator,
defined as

(f � g)(∆) = sup{f(n+ ∆)− g(n) | n ∈ N}

This enables a third, equivalent expression of the upper bound
condition

X �X ≥ Du

More generally, the deconvolution is the dual of the convolu-
tion, i.e, f ≤ g⊗ h if, and only if, f � g ≤ h for f, g, h ∈ F .

For the lower bounds both operators have their analogues
in the max-plus convolution ⊗ and deconvolution �, where
the only difference is the interchange of the infimum and
supremum, viz.,

(f⊗g)(n) = sup{f(n−∆) + g(∆) | 0 ≤ n ≤ ∆}
(f�g)(n) = inf{f(∆ + n)− g(∆) | ∆ ∈ N}

These operators have many long established properties
[12]. To quickly recapitulate: all operators are associative and
order-preserving (or reversing) and convolution, minimum and
maximum are commutative and idempotent.

We liberally extend all operators to matrices where the
minimum, maximum, convolution and deconvolution are all
applied point-wise. For example given the matrices A and B
of functions in F

[A⊗B]i/j = Ai/j ⊗Bi/j

The exception is function composition which acts like matrix
multiplication with either the minimum or the maximum as
addition, giving for matrices A ∈ FP×Q and B ∈ FQ×P

[A ◦B]i/j =
∨
{Ai/k ◦Bk/j | k ∈ Q}
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Fig. 6. The clock bound resulting from a TDMA that assigns access to
resource r periodically to s with a period of p = 3.

IV. MODELING STREAM PROCESSING COMPONENTS

We model a system by composing basic components, each
of which defines relations between streams. Stream compo-
nents are connected by equating streams, e.g., the output of
the PJD component that generates the multimedia stream is
the input stream of the two GPCs that model the decoders.
The components presented here are inspired by components
of the MPA-RTC toolbox [3]. In this section we define the
behavior of the components informally introduced above and
derive bounds on the relative counter functions.

A. Constant bounds

The simplest bounds are constant bound components PJD,
BD and TDMA, that directly model the arrivals of input streams,
the availability of a resource or indeed the schedule of a
resource shared with a TDMA policy. The constant bound com-
ponents directly impose bounds. The PJD and BD components
have already been introduced in Figure 5.

The TDMA component gives access to a resource according
to a static schedule. In our case, access is given to one of two
users by a simple periodic schedule. For a TDMA component
as depicted below, the first p resource units of resource r are
assigned to s, the next p units to r, then again p units to s,
etc.

The periodic schedule of a TDMA component can in fact
be modelled by clock bounds, as is depicted in Figure 6. The
equal upper and lower bounds force the clock s to tick syn-
chronously with r for three ticks, and then pause for the same
duration while u is given access, etc. The bounds Cu/r can then
be defined as the remainder, i.e., Cu

u/r = Cl
u/r = id − Cu

s/r.

B. The greedy processing component

The most important component is the GPC which handles
tasks according to the availability of a resource, producing the
result as another stream. The GPC processes its input i as soon
as resources r are available to produce output o.

GPC
i o

r

We formalize the behavior of the GPC, introduced in [17],
as a predicate over clock vectors. The original definition also
provides a stream of remaining resources, which we have left
out for simplicity.

Definition 9 (GPC). Let GPC(i, o, r) be a predicate over
a clock vector with input stream i, output stream o, and
resources r, that holds if, and only if,

χo(t) = min{χi(u) + χr(t)− χr(u) | 0 ≤ u ≤ t}

Lemma 7 (GPC). For all clocks k and all behavior χ such
that χ |= (C,D) and GPC(i, o, r)

Cl
i/r ⊗ id ≤Xo/r ≤ Cu

i/r ⊗ id

Cl
r/i ∧ id ≤Xo/i ≤ Cu

r/i ∧ id

Proof: Let us translate the identity on χo to an identity
on relative counter function Xo/r by substituting real-time
parameter t for relative time ηr(n). Next, we substitute u by
ηr(∆) which is possible, because the minimum must occur
exactly at each tick of r. Finally, Xr/r is the identity function.

Xo/r(n)

= min{χi(u) +Xr/r(n)− χr(u) | 0 ≤ u ≤ ηr(n)}
= min{Xi/r(∆) +Xr/r(n)−Xr/r(∆) | 0 ≤ ∆ ≤ n}
= min{Xi/r(∆) + id(n−∆) | 0 ≤ ∆ ≤ n}
=Xi/r ⊗ id

The upper and lower bounds then follow by substituting X by
Cu and Cl respectively.

C. The synchronous join component

The purely logical AND component — logical, because it
is not dependent on resources — synchronously joins two
streams [18].

AND
x

y

z

Essentially the AND component takes one arriving task of
each stream x and y and combines them into a single output
task on stream z. Combining the tasks is instantaneous, so the
total number of events in the outputs stream at any time is the
minimum of the total number of events of the input streams.

Definition 10 (AND). Let AND(x, y, z) denote a predicate over
clock vectors with input streams x and y and output stream z,
such that it holds if, and only if, χz(t) = min(χx(t), χy(t)).

Lemma 8 (AND). For all clocks k ∈ {x, y, z} and all behavior
χ such that χ |= (C,D) and AND(x, y, z) holds for χ,

Cl
x/k ∧ C

l
y/k ≤ Xz/k ≤ Cu

x/k ∧ C
u
y/k

Proof: First we derive a relation on relative counter
functions by substituting t by ηk(n), which yields Xz/k =
Xx/k ∧Xy/k. The upper and lower bounds are then obtained
by substituting X by its bounds.



D. The delay component
The DELAY component is a synchronous buffer [5] that

holds items for a number of ticks, thus it imposes a fixed
delay. The following diagram represents the component that
delays events of the input stream i for d ticks of the reference
clock r resulting in the output clock o.

DELAY(d)
i o

r

Definition 11 (DELAY). Let DELAY(i, o, d, r) denote a pred-
icate over clock vectors with an input stream i, an output
stream o and reference clock r, such that it holds if, and only
if, χo(t) = χi(ηr(χr(t)− d)).

Lemma 9. For all clock vectors χ such that χ |= (C,D) and
DELAY(i, o, d, r) holds for χ

Cl
i/r(n− d) ≤ Xo/r(n) ≤ Cu

i/r(n− d)

Proof: Substituting t by ηr(n) yields Xo/r(n) =
Xi/r(n− d) ≤ Cu

i/r(n− d) because χr(ηr(n)) = n.

V. INTRINSIC BOUND PROPERTIES

In this section, we identify a number of inequalities that
are intrinsic properties of drift bounds; properties that hold for
any bounds regardless of the modelled system. They arise from
interactions between the different bounds. Later on, the proper-
ties will serve to find, given some bounds (C,D) more precise
bounds (C′,D′) that characterize the exact same behaviors.
That is, bounds such that χ |= (C,D) ⇐⇒ χ |= (C′,D′).

A. Interaction of Lower and Upper Bounds
We use the relation between Xi/j and X−1j/i of Lemma 4,

to derive lower bounds Cl
i/j and Dl

i/j from the upper bounds
Cu

j/i and Du
j/i. This is a natural phenomenon: for example, if

the clock i may have ticked at most thrice at the second tick
of j, we can also conclude that j must have ticked at least
twice at the third tick of i.

Theorem 1. Let (C,D) be a pair of bound matrices, then
χ |= (C,D) implies [Cu]−1 ≤ X ≤ [Cl]−1 + 1 and

X �X ≤ [Dl]−1 + 1 and X�X ≥ [Du]−1

Proof: In case of the clock bounds, this is a straightfor-
ward application of Lemma 4. For the drift bounds, one also
needs to apply that [f � g]−1 ≥ g−1�f−1 and [f�g]−1 ≤
g−1 � f−1.

B. Transitivity of Bounds
The next mapping derives directly from the transitivity

of relative counter functions. Transitivity propagates bounds
through the system.

Theorem 2 (Transitivity of Bounds). Let (C,D) be a pair of
bound matrices then χ |= (C,D) implies

Cl ◦ Cl ≤ X ≤ Cu ◦ (Cu + 1)

X �X ≤ Du ◦ (Du + 1) and X�X ≥ Dl ◦ (Dl − 1)

Where ◦ is a matrix multiplication with the point-wise mini-
mum as addition for the upper bounds and point-wise maxi-
mum for the lower bounds.

Proof: Let K be the set of clocks, then application of
5 and subsequent substitution of X by Cu yields Xi/j ≤
Xi/k ◦ (Xk/j +1) ≤ Cu

i/k ◦ (Cu
k/j +1) for all k ∈ K and χ |=

(C,D). Transitivity of the drift bound follows from the semi-
distributivity of function composition over the deconvolution
(f ◦ (g � h) ≥ (f ◦ g)� (f ◦ h)) and linear w.r.t. addition of
a constant ((f +K)� g = (f � g) +K), viz. Xi/j �Xi/j ≤
Xi/k ◦ (Xk/j + 1)�Xi/j ◦Xk/j ≤ Xi/k ◦ ((X + 1)�X)) =
X ◦ ((X � X) + 1) ≤ Du ◦ (Du + 1) for all χ |= (C,D).
Transitivity for the lower bounds is proven similarly.

C. Drift Bounds Strengthen Clock Bound

The drift bounds limit the incline of any relative counter
function, therefore it also has an effect on the clock bound.

Theorem 3 (Drift bound on clock bound). Let (C,D) be a
pair of bound matrices then χ |= (C,D) implies

Dl ⊗ Cl ≤ X ≤ Cu ⊗Du

Proof: This is a consequence of the satisfaction criteria,
namely that χ |= (C,D) implies X ≤ X ⊗Du and X ≤ Cu.
Thus, substituting X for X ⊗ Du and subsequently Cu, we
have X ≤ X ⊗Du ≤ Cu ⊗Du. Idem for the lower bound.

D. Clock Bounds strengthen Drift Bound

A drift bound is limited by the maximum incline that is
possible for any relative clock that satisfies the clock bounds.
In particular, if the upper and lower clock bounds are very
close to one another, there is little room for bursts so the drift
bound will resemble a straight line.

Theorem 4 (Clock bound on drift bound). Let (C,D) be a
pair of bound matrices then χ |= (C,D) implies

X �X ≤ Cu � Cl and X�X ≥ Cl�Cu

Proof: This amounts to a simple substitution of X its
bounds Cl ≤ X ≤ Cu, as χ |= (C,D) implies X ≤ Cu and,
by Lemma 4, X ≥ Cl. Note that the deconvolution operator is
monotone for its left operant, but antitone for its right operant,
therefore we substitute the left operant by the upper bound and
the right operant by the upper bound, which yields X �X ≤
Cu � Cl. The lower bound is proven analogously.

VI. A FIXPOINT ALGORITHM

The theorems and lemmas derived in the previous two
sections all share a common shape: given some behavior de-
lineated by bounds, they compute new bounds for the relative
staircase functions and their drift. This section constructs a
fixpoint algorithm based on those mappings, that allows us
to compute ever tighter bounds and corresponding backlog
bounds, for data-flow systems consisting of the introduced
components.



A. A lattice of bounds

Informally, bounds (C′,D′) are tighter than bounds (C,D) if
the bounds (C,D) envelop the bounds (C′,D′). The following
bound lattice formalizes the tightness relation as a partial order
on bounds.

Lemma 10 (Complete bound lattice). The partial order of
bounds F ordered by the point-wise comparison ≤ is a
complete lattice where the join and meet are the point-wise
maximum ∧ and minimum ∨ respectively. The top > and
bottom ⊥ are then defined such that >(0) = 0, >(n) = ∞
for n > 0, and ⊥ (n) = 0 for all n ∈ N ∪ {∞}.

The partial order of bounds is extended first to matrices and
then to bounds pairs (C,D) by point-wise applications of the
comparison. By [6] this then yields another complete lattice
ordered by v and joined by t. The bottom element of the
bound matrix lattice has only upper bounds equal to ⊥ and
lower bounds equal to >, and the reverse for the top element.

Thus, (C,D) is tighter than (C′,D′) if, and only if (C,D) v
(C′,D′). Tightness coincides with the subset relation over
behavior: if (C′,D′) is tighter, the set of clock vectors that
satisfies (C,D) contains the set of clock vectors that satisfy
(C′,D′). Since the lattice of clock bound matrices is complete,
any set of clock vectors has unique tightest bounds.

B. Fixpoint of monotonic mappings

Because all mappings are constructed directly from the
inequalities in the theorems, they yield the largest bounds
that satisfy the inequalities. More precisely, for each equality
we define a mapping M over bounds (C,D) and rewrite the
inequality such that C ′l ≤ X ≤ C ′u, X � X ≤ U ′u and
X�X ≤ U ′l for all χ |= (C,D) where (C′,D′) = M(C,D).
For example, the mapping for a delay delay〈i, o, d, r〉(C,D) =
(C′,D′) is defined as{

C ′uo/r(n) = Cu
i/r(n− d)

C ′lo/r(n) = Cl
i/r(n− d)

and (C′,D′)k/j = (C,D)k/j for all clocks k 6= o or j 6=
r. This guarantees that (C′,D′) are the greatest bounds for
which the inequalities of Lemma 9 hold and consequently, that
all clock vectors that satisfy the delay predicate and bounds
(C,D) satisfy the bounds (C′,D′).

The BD, PJD and TDMA components are constant mappings.
For example a BD(r, d,B, k) component corresponds to a
mapping bd〈r, d,B, k〉(C,D) = (C′,D′) where{

C ′ur/k(n) = dBne
C ′lr/k(n) = dBne+ d

and (C′,D′)i/j = (C,D)i/j for all clocks i 6= r or j 6= r.
The mappings are all order- and limit-preserving for they are

compositions of monotonic operators. Proofs of monotonicity
and continuity of the involved operators have been omitted but
are similar to the proofs in [12]. The consequence is (see [6])
that the combined mapping Π(C,D) = (C,D) tM1(C,D) t
M2(C,D) t ... has a unique greatest fix-point where all the

inequalities hold. The algorithm used for experimentation (see
the next section), iteratively applies Π starting with the top
drift bounds.

VII. EXPERIMENTAL RESULTS

We have implemented the mappings and resulting fix-point
algorithm in a prototype programmed in Python. At the core,
is a suite of operators on functions in F . More precisely,
operators on eventually periodic functions that are represented
by a finite transient part (the aperiodic introduction) and
a periodic part with a finite period. The program consists
of a few hundred lines of code, of which more than half
is concerned with the operators. The implementation of the
operators is based on [2] and [18].

In order to compare to conventional network calculus’
analysis both systems were modelled with an additional clock
that represented real-time. So all bounds on input streams and
availability of resources were modelled with respect to the
added real-time clock k.

The multimedia decoder of Figure 1 is described and
analysed by the following code. The system consists of a
list of mappings over bound matrices that correspond to the
predicates introduced for the components in Section IV.
[k,i,x,y,o,r,s] = range(7) # identifiers

# declare system components
system = [

pjd(i, 4, 24, 1, k),
bd(r, 0.3, 3, k),
bd(s, 0.3, 3, k),
gpc(i, x, r),
gpc(i, y, s),
and_join(x, y, o),

]

bounds = solve(system) # fixpoint calculation

print backlog_bound(bounds, x, o)

Not visible in the above snippet, are the mappings described
by the theorems in Section V, that handle the interaction
between the bounds; the interaction between lower on upper
bounds, transitivity, and the interaction of drift bounds and
clock bound are applied by the solver implicitly because they
are independent of the system’s components.

The multimedia decoder is modelled with an input stream
generated by a PJD component with period of 4, jitter of 24 and
a minimum inter-arrival distance of 1. The two decoders had
resources, generated by the BD components, with bandwidth
of 0.3 units per time-unit and a drift of 3.

We calculate the buffer size using conventional network
calculus using the curves for input stream i and resources
r, s defined by the PJD and BD components with respect
to the real-time clock k, e.g., for stream i the upper ar-
rival input curve is αu

i = Du
i/k. Then we derive a bound

max{αu
x(n)−αl

y(n) | n ∈ N} for the buffer size of stream x,
where αu

x = (αu
i ⊗ βu

r )� βl
r ∧ βu

r and αl
y = (αl

i ⊗ βl
s).

In this particular configuration our analysis calculated, in
twelve iterations, an upper bound of 8 for the backlog of



streams x and y, whereas the conventional method yields a
bound of 18. We also confirmed that increasing the jitter of
the input stream i has little effect on the estimated buffer size,
while the conventional method’s estimate grows quickly with
jitter.

Experiments on the second example, shown below, where a
server responds to requests over a bus, showed that the analysis
effectively handles the regular nature of requests received over
the TDMA bus.

[k,i,x,y,o,r,t,s] = range(8) # identifiers

# declare system components
system = [

pjd(i, 9, 23, 1, r),
bd(r, 0.33, 13, k),
tdma(r, t, u, 9),
gpc(i, x, t),
delay(9, x, y, r),
gpc(y, o, u),

]

bounds = solve(system) # fixpoint calculation

print backlog_bound(bounds, y, o)

Conventional analysis has no straightforward way to model
this second example. The closest analysis we could make,
again taking the drift bounds for input stream i and resource r,
uses βu

t = βu
s = βu

r⊗tdmau⊗id where tdmau(n) = 9dn/16e
and βl

t = βl
s = βl

r ⊗ tdma l ⊗ id where tdma l(n) =
9b(n+7)/16c for the upper (resp. lower) bounds for the shared
bus resources. The delay is modeled according to [12] such
that αu

y = αu
x ⊗ delay where delay(n) = 0 if n ≤ 9 else ∞

and αu
x = (αu

i ⊗ βu
t )� βl

t ∧ βu
t . Then we obtain a buffer size

bound max{αu
y (n)− βl

s(n) | n ∈ N} .

With a TDMA period of 9 and matching delay our analysis
consistently showed, after 14 iterations, a backlog bound
of 2 between streams y and o, whereas the backlog bound
calculated by the conventional method is 7. Here the improved
precision of our approach is due to the combined use of clock
and drift bounds.

Clearly conventional analysis has a much lower complex-
ity because we model n streams with n2 bounds, whereas
conventional analysis needs only n bounds. There is room
for improvement because the effect of most bounds is local,
there is no need to track all n2 relations; the implementation
could exploit system topology to reduce the number of bounds
involved in the calculation. It should also be noted that
conventional analysis does not need a fix-point computation
if there are no cyclic dependencies, as is the case for the
examples.

Experience suggests that the computational cost is most
affected by the choice of curves. Combining curves with many
different prime factors can lead to very long periods, which
affects all further operations on the curve.

VIII. DISCUSSION

We have presented a calculus for stream processing systems
that preserves correlations between streams. The joint use of
clock bounds and drift bounds allows for an expressive model-
ing of timing constraints, such as bursty behavior and resource
scheduling. We have implemented a prototype tool and shown
that for some frequently encountered system topologies the
proposed calculus yields significantly better estimates than
conventional network calculus.

Future work will employ the presented calculus to distribute
synchronous (deterministic) data-flow systems over loosely
time-triggered architectures [1], so as to guarantee quality
of service. We intend to use drift bounds to capture the
bounded nondeterminism of communication between indepen-
dently clocked processors.
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