
HAL Id: hal-00746768
https://hal.inria.fr/hal-00746768

Submitted on 29 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel bicriteria scheduling heuristics providing a
guaranteed global system failure rate

Alain Girault, Hamoudi Kalla

To cite this version:
Alain Girault, Hamoudi Kalla. A novel bicriteria scheduling heuristics providing a guaranteed global
system failure rate. IEEE Transactions on Dependable and Secure Computing, Institute of Electrical
and Electronics Engineers, 2009, 6 (4), pp.241–254. �hal-00746768�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49852878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00746768
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

A novel bicriteria scheduling heuristics providing
a guaranteed global system failure rate

Alain Girault and Hamoudi Kalla

✦

Abstract —We propose a new framework for the (length,reliability)
bicriteria static multiprocessor scheduling problem. Our first criterion
remains the schedule’s length, crucial to assess the system’s real-
time property. For our second criterion, we consider the global system
failure rate, seen as if the whole system were a single task scheduled
onto a single processor, instead of the usual reliability, because it does
not depend on the schedule length like the reliability does (due to its
computation in the classical exponential distribution model). Therefore,
we control better the replication factor of each individual task of the
dependency task graph given as a specification, with respect to the
desired failure rate.

To solve this bicriteria optimization problem, we take the failure rate
as a constraint, and we minimize the schedule length. We are thus
able to produce, for a given dependency task graph and multiprocessor
architecture, a Pareto curve of non-dominated solutions, among which
the user can choose the compromise that fits his requirements best.

Compared to the other bicriteria (length,reliability) scheduling algo-
rithms found in the literature, the algorithm we present here is the
first able to improve significantly the reliability, by several orders of
magnitude, making it suitable to safety critical systems.

Index Terms —Reliability, bicriteria optimization, Pareto optima, static
multiprocessor scheduling, reliability block-diagrams, safety-critical sys-
tems.

1 INTRODUCTION

Bicriteria (length,reliability) multiprocessor scheduling
has recently attracted a lot of attention [1], [7], [8], [13],
[21], [22]. The purpose is to schedule statically a graph of
tasks (also called operations) onto a distributed memory
multiprocessor architecture, such that two criteria of the
obtained schedule are optimized: its length (crucial to
assess the system’s real-time property) and its reliability
(crucial to assess the system’s dependability). With the
ever growing research field on critical embedded sys-
tems, this domain remains very important.

We use the widely accepted reliability model of Shatz
and Wang [23], where each hardware component (pro-
cessor or communication link) is fail-silent and is charac-
terized by a constant failure rate per time unit λ, such that

• Alain Girault is with INRIA and Grenoble University (POP ART
project-team and LIG laboratory), France, Email: Alain.Girault@inria.fr.
This research was supported by a Marie Curie International Outgoing
Fellowship within the 7th European Community Framework Programme.

• Hamoudi Kalla is with the University of Batna (SECOS team), Algeria,
Email: Hamoudi.Kalla@univ-batna.dz.

Manuscript received October 10, 2007; revised June 27, 2008.

its reliability during the interval of time d be e−λd (that is,
the occurrences of the failures follow a constant param-
eter Poisson law; this is also known as the exponential
distribution model [3]). The chosen mean to increase
the reliability of a system is the active replication of the
operations and the data-dependencies, which consists in
executing several copies of a same operation onto as
many distinct processors (resp. data-dependencies onto
communication links). Intuitively, adding more replicas
increases the reliability, but also in general the schedule
length: in this sense, we say that the two criteria are
antagonistic.

But things are not so easy! We show that using to-
gether the reliability criterion and the schedule length
criterion raises technical difficulties, because the relia-
bility depends intrinsically on the duration of the op-
erations and communications. For instance, choosing a
processor such that the duration d of a given operation is
smaller (which is good for the length criterion) induces
a higher reliability (which is also good for the reliability
criterion); this is because the d 7→ e−λd function is
decreasing. It follows that it is difficult to design a
satisfactory bicriteria scheduling heuristic. In particular,
this has three drawbacks: first, the length criterion over-
powers the reliability criterion; second, it is very tricky to
control precisely the replication factor of the operations
onto the processors, from the beginning to the end of the
schedule (in particular, it can cause a “funnel” effect);
and third, the reliability is not a monotonous function
of the schedule.1 Yet, this is the approach that has been
followed so far in the literature.

For this reason, we propose a new criterion in place of
the schedule reliability, which we call the global system
failure rate (GSFR). The GSFR is the failure rate per time
unit of the obtained multiprocessor schedule, seen as if it
were a single operation scheduled onto a single processor.
Since the failure rate is “per time unit”, it is intrinsically
independent of the duration of the operations. As we
will show, our new theoretical framework is consistent
with the intuition that replication is good for reliability
but bad for length. This is our first contribution: Section 4

1. If S′ is a prefix schedule of S, then the reliability of S is not
necessarily greater than the reliability of S′.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

motivates the GSFR and explains how to compute it.
Using the GSFR is also very satisfactory in the area

of periodically executed schedules. This is the case in
most real-time embedded systems, which are periodi-
cally sampled systems. In such cases, applying brutally
the exponential reliability model yields very low reliabil-
ities due to very long execution times (the same remark
applies also to very long schedules). Hence one has to
compute beforehand the desired reliability of a single
iteration from the global reliability of the system during
its full mission; but this computation depends on the
total duration of the mission (which is known) and on
the duration of one single iteration (which may not be
known because it depends on the length of the sched-
ule under construction). In contrast, the GSFR remains
constant during the whole system’s mission: the GSFR
during a single iteration is by construction identical to
the GSFR during the whole mission.

Now, let us address the issues raised by bicriteria
optimization. In Figure 1, each point x1 to x7 represents a
solution of a bicriteria minimization problem: the points
x1, x2, x3, x4, and x5 are Pareto optima [27]; the points x1

and x5 are weak optima while the points x2, x3, and x4

are strong optima. The set of all Pareto optima is called
the Pareto curve. Then, several approaches exist to tackle
bicriteria optimization problems (these methods extend
naturally to multicriteria) [27]:

1. Aggregation of the two criteria into a single one,
so as to transform the problem into a classical single
criterion optimization one.

2. Transformation of one criterion into a constraint,
which allows the solving of the problem by optimizing
the other criterion under the constraint of the first one.

3. Hierarchization of the criteria, which allows the
total ordering of the criteria, and then the solving of the
problem by optimizing one criterion at a time.

4. Interaction with the user, in order to guide the
search for a Pareto optimum.

Second criterion Z2

x
3

x
2

x
6

x
1

x
7

x
4

x
5

Z1(x
6)

First
criterion Z1

Z2(x
6)

Fig. 1. Pareto optima and Pareto curve for a bicriteria
minimization problem.

Our second contribution belongs to the second case: we
propose a new static scheduling algorithm that takes as
a constraint a given GSFR, and that attempts to minimize
the schedule length on an distributed heterogeneous
architecture, by using a greedy list scheduling with
a smart cost function. By executing several times this
algorithm on a given instance of the problem (that is, a

given algorithm and a given architecture), each time with
a different GSFR, we obtain a set of points (length,GSFR).
From this set of points, we can extract the subset of
non-dominated points. By definition, this subset is the
approximated Pareto curve of the given instance of the
problem. We present in details this new algorithm (Sec-
tion 5) and show extensive simulation results (Section 6).

2 RELATED WORK

Numerous works have dealt specifically with the bicrite-
ria (length,reliability) static scheduling problem for dis-
tributed memory heterogeneous architectures. The RDLS
algorithm [7] (“Reliable Dynamic Level Scheduling”) is
an extension of the Dynamic Level Scheduling (DLS)
algorithm [24]. The latter is a list scheduling heuristic
that takes as input a DAG of operations Alg and an
heterogeneous set of processors Arc. At each step, the
heuristic evaluates all the pairs 〈o, p〉 and chooses to
place the operation o on processor p such that the cost
function DL(o, p) be maximal. An additional term is
added to the DL cost function so as to take into account
the reliability of the schedule (under the classical relia-
bility model of Shatz and Wang). Hence, the length and
reliability criteria are combined into a single criterion.
The simulation results show that RDLS is always better
than DLS w.r.t. the reliability criterion, but always worse
w.r.t. the length criterion. Note that operations nor data-
dependencies are never replicated.

[8] proposes a bicriteria extension of the DLS algo-
rithm by building, at each scheduling step, two lists
containing all the pairs 〈vi, mj〉 of tasks vi ready to be
scheduled and of machines mj : the first list is ordered by
decreasing order of the DL function to take into account
the increase in the length of the schedule resulting from
the decision to place vi on mj ; the second list is ordered
by increasing order of the ∆COST function to take
into account the decrease in reliability resulting from
this same decision. Therefore, each pair 〈vi, mj〉 has a
rank in each of those lists, respectively noted Rank1

i,j

and Rank2
i,j . These two ranks are then combined as

Ranki,j = δ1Rank1
i,j+δ2Rank2

i,j , where the two numbers
δ1 and δ2 are chosen empirically so as to balance the
two criteria. Finally, the pair 〈vi, mj〉 having the smallest
Ranki,j is selected and vi is placed on mj . Here again,
they do not replicate operations nor data-dependencies.

[13] proposes a Biobjective Scheduling Algorithm
(BSA) similar to RDLS: the two criteria are aggre-
gated into a single biobjective cost function, the re-
liability model is the one of Shatz and Wang, and
the tasks are not replicated to increase the reliability.
f(t, p) and σ(t, p) denote respectively the finish time
and the reliability of the task t when it is sched-
uled on the processor p. The biobjective function is

D(t, p)=

√

θ
(

f(t,p)
maxpf(t,p)

)2

+(1−θ)
(

σ(t,p)
maxpσ(t,p)

)2

. The nor-

malization with the max prevents one criterion from
dominating the other one, like in [1]. Compared to RDLS,
the reliability is better but the schedule length is worse.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

The eFCRD algorithm (“Efficient Fault-Tolerant Relia-
bility Cost-Driven Algorithm”) proposed [22] produces
static fault-tolerant schedules by replicating each op-
eration twice (one primary replica and one secondary
replica that sometimes overlaps with other operations);
hence no more than one processor failure can be toler-
ated. Concerning the reliability (Shatz and Wang model),
eFCRD tries to schedule each primary replica on a
processor such that the increase of the reliability cost
be minimal and that the deadline of the task be met.
However, the reliability of the communication links is
not taken into account.

[21] addresses the tricriteria optimization problem
(length,reliability,energy) on an heterogeneous architec-
ture with a reliable bus. Both the length and the reliabil-
ity are taken as a constraint. The energy consumption is
minimized thanks to dynamic voltage scaling, but since
this increases the execution time, it also has an impact
on the reliability due to the e−λd reliability formula.
As a result, the criteria are intrinsically dependent and
the problems mentioned in the introduction arise. Also,
it is assumed that the user will specify the number
of processor failures to be tolerated (with re-execution
or passive replication) in order to satisfy the desired
reliability constraint.

[9] tackles the problem of maximizing the reliabil-
ity and minimizing the makespan on related machines
where processors are subject to crash fault. The tasks
are not replicated, hence the increase in reliability is
very limited. For independent tasks with unitary exe-
cution time, the authors propose an optimal scheduling
algorithm and compute the approximate Pareto, which
they further generalize for non-unitary independent
tasks. Finally, for the general case, they propose the
RHEFT algorithm which improves over the well-known
HEFT scheduling algorithm (Heterogeneous Earliest Fin-
ish Time).

In a previous paper [1], we have proposed a bicriteria
scheduling heuristic, where each candidate operation o
is tested onto all possibles subsets of processors P . For
each choice 〈o,P〉, we compute the induced variation
in length ∆ℓ and reliability ∆r, both normalized w.r.t.
the length upper bound and the reliability lower bound
constraints (both provided by the user). In the bicriteria
plane of Figure 1, we project each point 〈∆ℓ, ∆r〉 onto
the diagonal line of angle θ, and choose the point whose
projection is closest to 〈0, 0〉 (this amounts to aggregating
the two criteria). By varying θ, we can give more weight
to the length or the reliability criterion. Note that when
the subset P is a singleton, the operation o is not repli-
cated, while when it is a set {p1, . . . , pk}, the operation
o is actively replicated onto the processors p1 to pk.

Among the works presented so far, only [1], [21],
[22] replicate the tasks to increase the reliability. In
contrast, [7]–[9], [13] cannot increase the reliability of
the obtained system above the reliability level of the
hardware platform the system is executed on, because
the operations are not replicated. In contrast, we use

the active replication of tasks and data-dependencies to
achieve any reliability level required by the user, at the
price of some schedule length overhead of course.

Also, all the works presented so far suffer from the
three drawbacks mentioned in the introduction: first, the
length criterion overpowers the reliability criterion; sec-
ond, it is very tricky to control precisely the replication
factor of the operations onto the processors, from the
beginning to the end of the schedule; and third, the
reliability is not a monotonous function of the schedule.
Our new framework solves these problems thanks to the
replacement of the reliability criterion by a new criterion
that does not depend on the execution times of the
operations and data-dependencies.

Finally, numerous works have restricted themselves
to acyclic networks [15], [16], [18], [23], because the
time necessary to compute the probability that a path
is operational becomes linear in the length of the path
(this is known as the terminal pair problem [4], which is
NP-hard in the case of a general network). Moreover,
all these works explore the state space entirely in order
to find the optimal allocation of the modules onto the
processors, for the reliability criterion. Even with space
reduction techniques [18], this exhaustive exploration
remains very costly, hence they are only capable of
treating very small size problems (less than 8 modules).

3 PRELIMINARIES

3.1 Application algorithm graph

An application algorithm graph Alg is an acyclic oriented
graph (X ,D). Its nodes (the set X) are software blocks
called operations. They do not have any side effect, except
for input/output operations: an input operation is a call
to a sensor driver, while an output operation is a call
to an actuator driver. Each arc of Alg (the set D) is
a data-dependency between two operations. If X⊲Y is a
data-dependency, then X is a predecessor operation of
operation Y, while Y is a successor operation of oper-
ation X. Operation X is also called the source of the
data-dependency X⊲Y, and Y is its destination. The set
of all predecessors of X is noted pred(X). The set of all
successors of X is noted succ(X).

I1

I2 G

O1
I3

C

A

F
B

D

E O2

L14

L34 P3

P1 L12 P2

L23

P4

(a) (b)

Fig. 2. (a) An example of algorithm graph Alg : I1, I2, and
I3 are input operations, O1 and O2 are output operations,
A-G are regular operations; (b) An example of an archi-
tecture graph Arc with four processors, P1 to P4, and four
communication links, L12 to L34.

The Alg graph is acyclic but it is infinitely repeated in
order to take into account the reactivity of the modeled

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

system, that is, its reaction to external stimuli produced
by its environment. Each execution of Alg is called an
iteration. The operations with no predecessor are called
input operations: they are sensor driver invocations to
read data from the environment. The operations with no
successor are called output operations: they are actuator
driver invocations to emit data towards the environment.

3.2 Architecture graph

The architecture graph Arc is a non-oriented bipartite graph
(P ,L,A) whose set of nodes is P∪L and whose set of
edges is A. P is the set of processors and L is the set
of communication links. A processor is composed of a
computing unit, to execute operations, and one or more
communication units, to send or receive data to/from
communication links. A point-to-point communication link
is composed of a sequential memory that allows it
to transmit data from one processor to another. Each
edge of Arc always connects one processor and one
communication link.

We say that the graph Arc is connected if there exists a
path between any two processors, and complete if there
exists a communication link between any two processors.
The architecture is completely connected if its graph Arc is
complete. The bipartite graph representation is essential
to model in a uniform way point-to-point communica-
tion links and multi-point communication media and
buses. In our work, the only assumption we make on
the network topology is that it must be connected.

3.3 Execution characteristics

Along with the algorithm graph Alg and the architecture
graph Arc, we are also given a table Exe of the worst-
case execution times (WCET) of all the operations of
Alg onto all the processors of Arc, and the worst-case
communication times (WCCT) of all the data-dependencies
of Alg onto all the communication links of Arc. An
intra-processor communication takes no time to execute.
Knowing the execution characteristics is not a critical
assumption since WCET analysis has been applied with
success to real-life processors actually used in embedded
systems, with branch prediction [5] or with caches and
pipelines [26]. In particular, it has been applied to the
most critical embedded system, namely the AIRBUS A380
avionics software running on the MOTOROLA MPC755
processor [10], [25].

Finally, the architecture is homogeneous if all its pro-
cessors and all its communication links have the same
characteristics (speed, memory, reliability, bandwidth...).
Otherwise it is heterogeneous. Our proposed method and
bicriteria scheduling algorithm BSH works with hetero-
geneous architectures.

3.4 Static schedules

The graphs Alg and Arc are the specification of the sys-
tem. Its implementation involves finding a multiprocessor
schedule of Alg onto Arc. Its consists of two functions:

the spatial allocation function Ω gives, for each operation
of Alg (resp. for each data-dependency), the subset of
processors of Arc (resp. the subset of communication
links) that will execute it; and the temporal allocation
function Θ gives the starting date of each operation
(resp. each data-dependency) on its processor (resp. its
communication link). In this work we only deal with
static schedules, for which the function Θ is static, and
our schedules are computed off-line.

A static schedule is without replication if for each oper-
ation X (and for each data-dependency), |Ω(X)| = 1. In
contrast, a schedule is with (active) replication if for some
operation X (or some data-dependency), |Ω(X)| ≥ 2. The
number |Ω(X)| is called the replication factor of X.

In a schedule with replication, a given operation can
either start its execution as soon as it has received all its
input data from at least one replica of each of its prede-
cessors, or it can await until it has received all its input
data from all the replicas of each of its predecessors. The
first case is the best choice when one wants to minimize
the schedule length; this choice has even been used by
several task duplication algorithms to further minimize
the schedule length by adding additional replicas for the
sole purpose of avoiding costly inter-processor commu-
nications (e.g., [6]). However, the second case is the best
choice when one wants to maximize the reliability, since
the exact reliability of the schedule can be computed in
polynomial time, instead of in exponential time in the
first case (this has to do with the form of the reliability
block-diagrams; see Section 3.6 below).

A schedule is partial if not all the operations of Alg

have been scheduled, but all the operations that are
scheduled are such that all their predecessors are also
scheduled.

Finally, the length or makespan of a schedule is the max
of the termination times of the last operation scheduled
on each of the processors of Arc. We note it Cmax.

3.5 Failure hypothesis

Both processors and communication links can fail, and
they are fail-silent. Classically, we adopt the failure model
of Shatz and Wang [23]: failures are transient and the
maximal duration of a failure is such that it affects
only the current operation executing onto the faulty
processor, and not the subsequent operations (same for
the communication links); this is the “hot” failure model.
Besides, the occurrence of failures on a processor (same
for a communication link) follows a Poisson law with
a constant parameter λ, called its failure rate per time
unit. Modern fail-silent processors can have a failure rate
around 10−6/hr.

Moreover, failure occurrences are statistically indepen-
dent events. Note that transient failures are the most
common failures in modern embedded systems, all the
more when processor voltage is lowered to reduce the
energy consumption, because even very low energy
particles are likely to create a critical charge leading to
a transient failure [28].

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

The reliability of a system measures its continuity of
service. It is defined as the probability that it functions
correctly during a given time interval [2]. According
to our model, the reliability of the processor P (resp.
the communication link L) during the duration d is
R = e−λd. Conversely, the probability of failure of the
processor P (resp. the communication link L) during
the duration d is F = 1 − R = 1 − e−λd. Hence, the
reliability of the operation or data-dependency X placed
onto the hardware component C (be it a processor or a
communication link) is:

R(X, C) = e−λC Exe(X,C) (1)

In the sequel, the function R will either be used
with two variables as in Equation (1), or with only one
variable to denote the reliability of a schedule (or a part
of a schedule).

3.6 Computing the reliability of a schedule

Definitions: Reliability Block-Diagrams (RBD) have
been introduced to compute the reliability of a sys-
tem [3], [20]. Formally, an RBD is an acyclic oriented graph
(N, E), for which each node of N is a block representing
an element of the system, and each arc of E is a causal-
ity link between two blocks. Two particular connection
points are its source S and its destination D. An RBD is
operational iff there exists at least one operational path
from S to D. A path is operational if and only if all the
blocks in this path are operational. The probability that
a block be operational is its reliability. By construction,
the probability that an RBD be operational is therefore
equal to the reliability of the system it represents.

In our case, the system is the multiprocessor static
schedule, possibly partial, of Alg onto Arc. Each block
represents an operation X placed onto a processor P or
a data-dependency X⊲Y placed onto a communication
link L. The reliability of a block is therefore computed
according to Equation (1).

Computing the reliability in this way assumes that
the occurrences of the failures are statistically indepen-
dent events. Without this hypothesis, the fact that some
blocks belong to several paths from S to D makes the
computation of the reliability very complex. Concerning
hardware faults, this hypothesis is reasonable, but this
would not be the case for software faults [19].

The main drawback of this approach is that the com-
putation of the reliability is, in general, exponential in
the size of the RBD. When the schedule is without
replication, the RBD is serial (i.e., there is a single path
from S to D) so the computation of the reliability is
linear in the size of the RBD. But when the schedule
is with replications, the RBD has no particular form, so
the computation of the reliability is exponential in the
size of the RBD.

An RBD is parallel if all its blocks are in parallel, and
is serial-parallel if its consists of a sequence of parallel
portions. In both cases, the computation of the reliability
is also linear in the size of the RBD.

As an example, consider the simple Alg graph of
Figure 3. A possible schedule with replication of this
Alg graph is show in Figure 5(a), where operation X
is replicated twice (its replicas being noted X1 and X2)
and operation Y is also replicated twice (its replicas
being noted Y1 and Y2). The RBD corresponding to this
schedule is shown in Figure 4. It has no particular form.

X Y

Fig. 3. A simple Alg graph X→Y.

v3

v0

v1

v6

v7

v2

v5

v4

(X⊲Y/L24)

(X⊲Y/L14)

(X2/P2)

S

(Y2/P4)

(X⊲Y/L13)

(Y1/P3)
D

(X⊲Y/L23)

(X1/P1)

Fig. 4. The RBD of the schedule of Figure 5(a).

Minimal cut sets method: One solution to com-
pute efficiently the reliability of a system from its RBD
involves computing all its minimal cut sets [17]. A cut set
in an RBD is a set of blocks C such that there exist no
path from S to D if we remove all the blocks of C from
the RBD. A cut C is minimal if, whatever the block that is
removed from it, the resulting set is not a cut anymore.
The reliability of the static multiprocessor schedule S is
approximated by the reliability of the RBD composed of
all the minimal cuts put in sequence. The reliability of a
minimal cut set Ci is the reliability of all its blocks put
in parallel: R(Ci) = 1 −

∏

(o,c)∈Ci
(1 − R(o, c)). Hence, in

order to approximate the reliability R(S) of an RBD, it
suffices to compute all its minimal cut sets Ci, numbered
from 1 to n, and then to compute the reliability R−(S) of
the serial-parallel RBD composed of all these cuts. This
computation is linear in the number of minimal cut sets:

R(S) ≥ R−(S) =

n∏

i=1

(

1 −
∏

(o,c)∈Ci

(

1 − R(o, c)
))

(2)

This approximation is a lower bound, so if a schedule S
is such that R−(S) > Robj , where Robj is the reliability
objective that the target schedule must meet, then it
proves that R(S) is greater than Robj , which is perfectly
fine. The main problem of this method is that, depend-
ing on the structure of the RBD, the total number of
minimal cuts is between n − 1 and 2n−2, where n is the
number of nodes of the RBD. For instance, the RBD of
Figure 4 has 11 minimal cut sets: {v0, v1}, {v2, v3, v4, v5},
{v6, v7}, {v0, v4, v5}, {v1, v2, v3}, {v2, v4, v7}, {v3, v5, v6},
{v0, v5, v6}, {v0, v4, v7}, {v1, v3, v6}, and {v1, v2, v7}.
Hence, the approximate computation of the reliability
with the minimal cut sets method is also exponential
in the size of S. This is a drawback of the bicriteria
scheduling algorithm of [1].

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

X⊲Y
X⊲Y X⊲Y

X⊲Y

X2X1

P5L24P4L14P2L23P3L13P1

Y1

Y2

X⊲Y

Y

P1 L12 P2

X

(a) (b)

Fig. 5. (a) A simple schedule without routing of the Alg graph of Figure 3; (b) A simple schedule without replication of
the Alg graph of Figure 3.

R R

(b)(a) (c) (d)

Y2 Y2

X1

X2 Y2

Y1 X1 Y1

Y2X2 X2

X1 Y1

Y3

X1

X2 Y3

Y1

Fig. 6. (a) A transformed Alg graph with replication and with a routing operation R when X and Y are replicated twice;
(b) Same as (a) without the routing operation; (c) Same as (a) when Y is replicated thrice; (d) Same as (c) without the
routing operation.

BDD-based methods: To make this computation
faster, several tools use BDDs (e.g., SHARPE [14] or
ALTARICA [11]). For instance, the BDD coding the RBD
of Figure 4, as produced by SHARPE, is shown in Fig-
ure 7. It has 17 leaves, which means that the exact
reliability formula is a sum of 17 terms (much less than
the theoretical maximum number of 256 leaves/terms
corresponding to its 8 variables, v0 to v7).

1

10

0 1

10

1

1

10

0 1

10

1

0

0 1

0 1

0 1

1

10

0 0 1

0

0 1

v0

v5

v7

v6 v5

v7

v4

v1

v5

v7

v6 v5

v7

v4

v1

v6

v7

v4

v7

v7

v1

v3

v5

v7

v6 v6

v1v6

v7

v3

v2

Fig. 7. BDD coding the RBD of Figure 4.

Serial-parallel schedule method: Our scheduling
algorithm BSH (see Section 5) must compute the reli-
ability of partial schedules a great number of times at
each iteration, hence this reliability computation must be
extremely fast. For this reason, we propose to produce
schedules in such a way that the corresponding RBD
will be, by construction, serial-parallel, and furthermore
with a number of blocks exactly equal to the number
of nodes in the schedule. This allows us to compute
its reliability in a linear time w.r.t. the size of S. For
instance, the serial-parallel RBD of the same example as
the BDD of Figure 7 has only 9 nodes, so computing
the reliability is even faster than with the BDD-based
method. The drawback is that the schedules we produce
have a greater Cmax, that is, a higher length overhead. In-
deed, unlike what we have said in Section 3.4 regarding
the schedules with replication, our proposal forces each
operation to wait for the reception of all its input data

sent by all the replicas of its predecessors before starting
its execution (otherwise the obtained RBD would not be
serial-parallel). However, we will see in Section 6.7 that
the additional overhead incurred by this design choice
is reasonable.

Concerning the scheduling algorithm, this method
involves, for any data-dependency X⊲Y, inserting an
additional routing operation, whose WCET is equal to 0
time unit, between the data-dependencies coming out
of the source operation X and the data-dependencies
going towards the destination operation Y. Figure 6(a)
shows the graph transformation that occurs from the
Alg graph of Figure 3 when X is replicated twice (X1

and X2) and Y is replicated twice (Y1 and Y2): a routing
operation R is inserted between the two replicas of X and
the two replicas of Y. This guarantees that each replica
of Y will receive its input data from both replicas of X
before starting its execution. The graph of Figure 6(a) has
four communications. In comparison, when no routing
operation is inserted, Figure 6(b) shows the transformed
Alg graph: it also has four communications, but they
are concurrent, while in Figure 6(a), the routing operation
limits the concurrency: indeed, the two communications
received by R must be scheduled before the two com-
munications sent by R. This difference in concurrency
explains the additional length overhead incurred by the
routing operations. Figures 6(c) and 6(d) show a similar
situation where X is replicated twice and Y is replicated
thrice. In this case, the Alg graph with the routing opera-
tion has five communications, while the Alg graph with-
out routing operation has six communications. Again,
there is less concurrency between the communications
in Figure 6(c) than 6(d), but in this case there are also
fewer communications. This explains why the additional
length overhead is limited (see Section 6.7).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

4 COMPUTING THE GLOBAL SYSTEM FAILURE
RATE PER TIME UNIT (GSFR)
4.1 Definition of the GSFR

Using the reliability as a scheduling criterion raises
technical difficulties because the reliability depends in-
trinsically on the duration of the operations and com-
munications (Equation (1)). More precisely, the function
d 7→ e−λd being decreasing, a bicriteria (length,reliability)
cost function will tend to give a greater importance
to the length criterion than to the reliability criterion.
It follows that it is difficult to design a satisfactory
bicriteria scheduling heuristic. In particular, it is very
tricky to control precisely the replication factor of the
operations from the beginning to the end of the schedule,
and to avoid funnel effects.

For this reason, we propose a new criterion in place
of the schedule reliability, namely the failure rate per time
unit of the global system, defined as follows:

Definition 4.1 (GSFR) Let Alg be an algorithm graph, Arc

be an architecture graph, and S be a static multiprocessor
schedule of Alg onto Arc. The global system failure rate
(GSFR) of S, noted Λ(S), is the failure rate of S seen as
if it were a single operation scheduled onto a single processor.
Let U be the total utilization of the hardware resources by S,
and R be its reliability, then:

Λ(S) =
− log R(S)

U(S)
with U(S) =

∑

(oi,p)∈S

Exe(oi, p) (3)

Since the failure rate is “per time unit”, it is intrinsi-
cally independent of the duration of the operations. As
a consequence, our new theoretical framework is con-
sistent with the intuition that replication is good for the
reliability but bad for the length. Also, the definition of
U(S) is consistent with the “hot” failure model. Finally, it
is very easy to translate a reliability objective Robj into a
GSFR objective Λobj : one just needs to apply the formula
Λobj = − logRobj/D, where D is the mission duration.
This shows that the GSFR criterion is usable in practice.

4.2 A schedule without replication

Consider again the very simple Alg graph of Figure 3,
scheduled onto an Arc graph composed of two pro-
cessors P1 and P2, connected by a point-to-point com-
munication link L12. Figure 5(b) shows one possible
schedule without replication of this Alg graph, where
each operation (resp. communication) is represented by
a box whose height is proportional to its execution time
(resp. communication time) onto its processor (resp. its
communication link).

(X/P1) (X⊲Y/L12) (Y/P2)
S D

Fig. 8. The RBD of the schedule of Figure 5(b).

Let λ1 and λ2 be the failure rates of P1 and P2,
and λ12 be the failure rate of L12. Let t1

X
=Exe(X, P1),

t2
Y

=Exe(Y, P2), and t12
XY

=Exe(X ⊲ Y, L12). By apply-

ing Equation (1), we obtain R(X, P1)=e−λ1t1
X , R(X ⊲

Y, L12)=e−λ12t12
XY , and R(Y, P2)=e−λ2t2

Y .
Figure 8 shows the RBD corresponding to the schedule

of Figure 5(b). Since its three blocks are in sequence in
the RBD, we have the following global reliability:

R(S) = R(X, P1) · R(X ⊲ Y, L12) · R(Y, P2)

= e−λ1t1
X · e−λ12t12

XY · e−λ2t2
Y

= e−(λ1t1
X
+λ12t12

XY
+λ2t2

Y
)

By applying Equation (3), the GSFR of this system S is:

Λ(S) =
− logR(S)

U(S)
=

λ1t
1
X

+ λ12t
12
XY

+ λ2t
2
Y

t1
X

+ t12
XY

+ t2
Y

(4)

In the particular case where the architecture is homo-
geneous w.r.t. the reliability, that is, if λ1=λ2=λ12, then
Λ(S)=λ1. This result is perfectly consistent with our
definition of the GSFR.

4.3 A schedule with replication

We now consider a schedule with replication of the same
Alg graph of Figure 3, scheduled onto an Arc graph com-
posed of five processors P1 to P5, completely connected
by point-to-point communication links. Figure 9 shows
one possible schedule with replication of Alg onto Arc,
where two active replicas of both X and Y (respectively
noted X1, X2, Y1, and Y2) are scheduled. Note that the
execution time of the routing operation R is 0, so it is
represented by a box whose height is 0. In this schedule,
all the operations are placed onto distinct processors, but
of course this is not necessarily the case. Actually, BSH
makes its best to group some operations on the same
processor so as to avoid inter-processor communications.
The RBD of this schedule is shown in Figure 10.

block B3

︸ ︷︷ ︸ ︸ ︷︷ ︸

block B2block B1

︸ ︷︷ ︸

(X⊲Y/L35)

(X1/P1) (X⊲Y/L34) (Y1/P4)

(Y2/P5)

(R/P3)D’
S D

(X⊲Y/L23)(X2/P2)

(X⊲Y/L13)

Fig. 10. The RBD of the schedule of Figure 9.

First, we consider the partial schedule S ′ composed
only of the first two operations X1 and X2 in the schedule
of Figure 9. Its RBD is also shown in Figure 10, but with
destination D′. Since those two blocks are in parallel, the
reliability of S′ is (we adopt the same compact notations
as in Section 4.2, e.g., t2

X
=Exe(X, P2)):

R(S′) = 1 −
(
1 − R(X1, P1)

)
·
(
1 − R(X2, P2)

)

= 1 −
(

1 − e−λ1t1
X

)

·
(

1 − e−λ2t2
X

)

(5)

For the sake of the example, we take the following
numbers: λ1=λ2=10−5 and t1

X
=t2

X
=5. We thus obtain:

R(X1, P1) = 0.9999500

R(X2, P2) = 0.9999500

}

⇒R(S′) = 0.999999997500

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

X⊲Y
X⊲YR

X⊲Y X⊲Y

X1

P1 L13 P3 L23 P2

X2

L34 P4 L35 P5

Y1

Y2

Fig. 9. A simple schedule with replication of the Alg graph of Figure 3.

To compute the GSFR Λ(S′), we apply Equation (3):

Λ(S′) =
− logR(S′)

U(S′)
(6)

In our case, U(S′) = 10 time units (5 + 5). Hence:

Λ(S′) = 2.49987 10−10

We can notice that, when x ≃ 0, ex ≃ 1 + x, or
equivalently 1 − e−x ≃ x, hence Equation (5) becomes:

R(S′) ≃ 1 − (λ1t
1
X
) · (λ2t

2
X
) (7)

By a similar reasoning, when x ≃ 0, log(1 − x) ≃ −x,
hence Equation (6) becomes:

Λ(S′) ≃
λ1t

1
X
λ2t

2
X

U(S′)
=

λ1t
1
X
λ2t

2
X

t1
X

+ t2
X

(8)

This approximation can be easily verified in the above
computation. Equation (8) can be generalized to n active
replicas of X scheduled in parallel onto n processors
P1, . . . ,Pn, with failure rates λ1, . . . , λn, and such that
the Exe(Xi, Pi)=ti

X
. This yields:

Λ(S′) ≃

∏n

i=1 λit
i
X

∑n

i=1 ti
X

(9)

The crucial point is that the order of magnitude of the
GSFR is the product of the failure rates of the n proces-
sors, divided by the sum of the execution times. Hence,
adding active replicas to a schedule greatly increases it
GSFR, which is consistent with the intuition.

We now consider the full schedule S. The RBD is a
sequence of three blocks, B1, B2, and B3:

R(B1) = 1−
(

1−e−(λ1t1
X
+λ13t13

XY
)
)

·
(

1−e−(λ2t2
X
+λ23t23

XY
)
)

R(B2) = 1 because the WCET of R is always 0

R(B3) = 1−
(

1−e−(λ34t34
XY

+λ4t4
X
)
)

·
(

1−e−(λ35t35
XY

+λ5t5
X
)
)

The schedule’s reliability is R(S) = R(B1)·R(B2)·R(B3).
For the sake of the example, we take the following
numbers: ∀i, λi=10−5, ∀i, j, λij=10−4, ∀i, ti

X
=ti

Y
=5, and

∀i, j, tij
XY

=3. We thus obtain:

R(B1) = 0.99999988
R(B2) = 1

R(B3) = 0.99999988

=⇒ R(S) = 0.99999976

According to the WCET of the individual operations and
data-dependencies, the utilization of the schedule S is
equal to 32 time units, which yields:

Λ(S) =
− logR(S)

U(S)
= 7.500 10−9

As expected from the graph transformation (illustrated
in Figure 6), the active replication of X and Y decreases
the GSFR, but the addition of the routing operation
increases the Cmax (it would have been 13 time units
instead of 16). Of course, when computing the multi-
processor schedule, BSH tries to group some operations
on the same processor so as to avoid inter-processor
communications (by putting Y1 onto P1 for instance).

4.4 Mixed serial-parallel schedules

First, let us recall the two important formulas obtained in
Sections 4.2 and 4.3. Both formulas concern a RBD com-
posed of two macro-blocks B1 and B2, with respective
GSFR Λ1 and Λ2, and respective utilization T1 and T2:

serial schedule: Λ(B1 · B2) =
Λ1T1 + Λ2T2

T1 + T2
(10)

parallel schedule: Λ(B1‖B2) ≃
Λ1T1Λ2T2

T1 + T2
(11)

Like in the previous subsections, we consider a sched-
ule of the same Alg graph of Figure 3, where X is
replicated twice and Y is not replicated. This schedule
is actually a subset of the one shown in Figure 9,
where processor P5 and link L35 are removed, and
where the replica Y1 is replaced by the non-replicated
operation Y. The RBD starts with two blocks in parallel
(block B11 for X1/P1 and B12 for X2/P2, and we note
B1=B11‖B12) followed by a sequence of three blocks
(block B21=R, B22=X⊲Y/L34, and B23=Y/P4). Hence, by
applying Equations (10) and (11), we obtain:

Λ11 =
λ1t

1
X

+ λ13t
13
XY

t1
X

+ t13
XY

T11 = t1X + t13XY

Λ12 =
λ2t

2
X

+ λ23t
23
XY

t2
X

+ t23
XY

T12 = t2
X

+ t23
XY

Λ1 ≃
Λ11T11Λ12T12

T11 + T12

T1 = T11 + T12

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

Λ2 =
0 + λ34t

34
XY

+ λ4t
4
Y

0 + t34
XY

+ t4
Y

T2 = 0 + t34
XY

+ t4
Y

Λ =
Λ1T1 + Λ2T2

T1 + T2
T = T1 + T2

For the sake of the example, let us take the fol-
lowing numbers: ∀i, λi=10−5, ∀i, j, λij=10−4, ∀i, ti

X
=ti

Y
=5,

and ∀i, j, tij
XY

=3. This yields T11=T12=T2=8, T1=16, T =24,
Λ11=Λ12=Λ2, Λ1 ≃ 1

2T11Λ11Λ12 , and Λ= 1
3 (2Λ1 + Λ2). The

numerical computations give Λ11=Λ12=Λ2=4.375 10−5,
Λ1 ≃ 7.656 10−9, and Λ ≃ 2.917 10−5.

The order of magnitude of Λ1 is 10−9 while that of
Λ2 is 10−5. This is expected since Λ1 is the GSFR of
two blocks in parallel, while Λ2 is the GSFR of two
blocks in sequence (we do not count R whose GSFR
is equal to 1). The order of magnitude of their sum
is 10−5, which means that Λ2 “wins” over Λ1, but the
1
3 multiplicative factor allows us to “regain” partially an
order of magnitude.

It is interesting to generalize this RBD to n macro-
blocks in sequence, where the first macro-block corre-
sponds to a single non-replicated operation, while the
remaining n−1 macro-blocks are each composed of two
blocks in parallel (the corresponding operation being
replicated twice). Assuming, for the sake of simplicity,
that the execution times of all the blocks are all equal
to 5, the GSFR is then Λ= 1

n
(
∑n

i=1 Λi). Let us also assume
that the failure rates of all the processors are all equal to
10−4; we then have Λ1=10−4 (no replication in the first
macro-block) and ∀ 2≤ i≤n, Λi=2.5 10−8 (one replication
in the n−1 other macro-blocks). Depending on n, we
thus have the GSFR shown in Figure 11.

It follows that, in our example, if one operation is not
replicated, then six other operations must be replicated
twice if we want to “regain” one order of magnitude.

10

10
−5

−4

10987654321
n

G
S

F
R

Fig. 11. GSFR of a system composed of n blocks in
sequence.

5 B ICRITERIA SCHEDULING ALGORITHM

5.1 Principle

Our bicriteria scheduling algorithm is a greedy list
scheduling heuristic called BSH. It takes as input an al-
gorithm graph Alg , a heterogeneous architecture graph
Arc, the table Exe of all operations WCET and com-
munications WCCT, and a constraint Λobj . It produces
as output a static multiprocessor schedule S of Alg

onto Arc, such that the GSFR of S is smaller than Λobj ,

and such that its Cmax is as small as possible. BSH
uses the active replication of operations to meet the Λobj

constraint, and the dependable schedule pressure as a cost
function to minimize the Cmax. Besides, it inserts routing
operations to make sure that the RBD of any partial
schedule is serial-parallel. According to these principles,
BSH is based on the following proposition:

Proposition 5.1 In a serial-parallel RBD, if each macro-block
in the sequence is such that its GSFR is less than Λobj , then
the GSFR of the whole RBD is also less than Λobj .

Proof: Let (Bi)1≤i≤n be the n parallel macro-blocks
that are in sequence in the RBD. By hypothesis, we have:

∀1 ≤ i ≤ n, Λ(Bi) ≤ Λobj

⇒ ∀1 ≤ i ≤ n, Λ(Bi)U(Bi) ≤ ΛobjU(Bi)

⇒
n∑

i=1

Λ(Bi)U(Bi) ≤
n∑

i=1

ΛobjU(Bi)

⇒

n∑

i=1

Λ(Bi)U(Bi) ≤ Λobj ×

n∑

i=1

U(Bi) (12)

Since the macro-blocks Bi are in sequence, we compute
the GSFR for the whole RBD thanks to Equation (10):

Λ =

∑n

i=1 Λ(Bi)U(Bi)
∑n

i=1 U(Bi)

Hence, Inequality (12) implies Λ ≤ Λobj .
BSH works with two lists of operations of Alg : the can-

didate operations L
(n)
cand and the already scheduled op-

erations L
(n)
sched. The superscript (n) denotes the current

iteration of the scheduling algorithm. Initially, L
(0)
sched is

empty while L
(0)
cand contains the input operations of Alg .

At any iteration n, all the operations in L
(n)
cand are such

that all their predecessors are in L
(n)
sched.

The dependable schedule pressure is a variant of
the schedule pressure cost function σ proposed in [12],
which tries to minimize the length of the critical path of
the algorithm graph by exploiting the scheduling margin
of each operation. The schedule pressure σ is computed for
each operation oi and each processor pj as follows:

σ(n)(oi, pj) = ETS(n)(oi, pj) + LTE(n)(oi) − CPL(n−1)

(13)
where CPL(n−1) is the critical path length of the partial
schedule composed of the already scheduled operations,
ETS(n)(oi, pj) is the earliest time at which the opera-
tion oi can start its execution on the processor pj , and
LTE(n)(oi) is the latest start time from end of oi, defined
to be the length of the longest path from oi to Alg ’s
output operations. When computing the length of this
path, since the operations are not scheduled yet, we do
not know their actual WCET, so we compute the average
WCET of each operation on all processors.

First, we generalize the schedule pressure σ to a set of
processors:

σ(n)(oi,Pk) = ETS(n)(oi,Pk) + LTE(n)(oi) − CPL(n−1)

(14)

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

where ETS(n)(oi,Pk)=maxpj∈Pk
ETS(n)(oi, pj).

Then, we consider the makespan as a criterion to be
minimized and the GSFR as a constraint to be met:
for each candidate operation oi ∈ L

(n)
cand, we compute

the best subset of processors to execute oi with the
dependable schedule pressure of Equation (15):

P
(n)
best(oi) = Pj ∈ 2P s.t. (15)

σ(n)(oi,Pj) = min
Pk∈2P

{

σ(n)(oi,Pk) |Λ(n)(oi,Pk) ≤ Λobj

}

where Λ(n)(oi,Pk) is the GSFR of the partial schedule
after replicating and scheduling oi on all the processors
of Pk, and 2P is the set of all subsets of P . To guarantee
the constraint Λ(n)(oi,Pk) ≤ Λobj , the subset Pk is
selected such that the GSFR of the parallel block that
contains the replicas of oi on the processors of Pk is less
than Λobj (see Figure 10). If this last block B is such
that Λ(B) ≤ Λobj and if Λ(n−1) ≤ Λobj , then thanks to
Proposition 5.1, Λ(n) ≤ Λobj .

Finally, we compute the most urgent operation with
Equation (16):

ourg = oi ∈ L
(n)
cand s.t. (16)

σ(n)
(
oi,P

(n)
best(oi)

)
= max

oj∈L
(n)
cand

{

σ(n)
(
oj ,P

(n)
best(oj)

)
}

Computing the GSFR of the partial schedule has been
explained in Section 4. However, when doing so, we
must take into account the future communications for
the data-dependencies sent by the last scheduled opera-
tion Y. Indeed, according to Figure 6, these communica-
tions will be replicated into the same number of replicas
as Y, but the links where they will be placed will only be
known at the next iteration of BSH. As a consequence,
for an Alg graph of the form X→Y→Z, we build the
RBD of Figure 12, where the future communications are
in red/dotted.

Furthermore, when selecting the links to compute the
reliability of the blocks corresponding to these future
communications (L’ and L” in Figure 12), we choose
the links which have the worse failure rates, in order
to guarantee that, whatever the scheduling choice made
during the next iteration n + 1 of BSH, Λ(n+1) will be
less than Λobj .

(R/P3)

(X⊲Y/L35) (Y⊲Z/L”)

(Y1/P4)(X⊲Y/L34) (Y⊲Z/L’)
D

(Y2/P5)

Fig. 12. A RBD taking into account the future communi-
cations of Y.

5.2 Bicriteria scheduling heuristic (BSH)

The BSH scheduling heuristic is shown in Figure 13. Ini-

tially, L
(0)
sched is empty and L

(0)
cand is the list of operations

without any predecessors. At the n-th iteration, these
lists are updated according to the data-dependencies
of Alg .

At each iteration n, one operation oi of the list L
(n)
cand

is selected to be scheduled. For this, we select at the
micro-steps ➀ and ➁, for each candidate operation oi,

the best subset of processors P
(n)
best(oi) to replicate and

schedule oi, such that the GSFR of the resulting partial
schedule is less than Λobj . Then, among those best pairs

〈oi,P
(n)
best(oi)〉, we select at the micro-step ➂ the one

having the biggest dependable schedule pressure value,

i.e., the most urgent pair 〈ourg,P
(n)
best(ourg)〉.

Algorithm BSH:
input: Alg , Arc, Exe , and Λobj ;
output: a multi-processor static schedule of Alg on Arc
that minimizes the makespan and satisfies Λobj , or a failure
message;
begin
Compute the set 2P of all subsets of P ;
/* the user can limit the degree k of processor combinations */

L
(0)
cand := {operations without predecessors};

L
(0)
sched := ∅;

n := 0;
whileL

(n)
cand 6= ∅ do

➀ For each candidate operation oi ∈ L
(n)
cand, compute

σ(n)(oi,Pk) for each subset Pk of 2P .
➁ For each candidate operation oi, select the best subset

P(n)
best(oi) ∈ 2P such that:

σ
(n)(oi,P

(n)
best(oi)) = min

Pk∈2P

σ
(n)(oi,Pk) |

Λ(n)(oi,Pk) ≤ Λobj

ff

➂ Select the most urgent candidate operation ourg among

all oi of L
(n)
cand such that:

σ
(n)`

ourg,P(n)
best(ourg)

´

= max
oj∈L

(n)
cand

σ
(n)`

oj ,P
(n)
best(oj)

´

ff

➃ Schedule each replica of ourg on each processor

of P(n)
best(ourg);

➄ if(P(n)(ourg) = ∅) then
return“fails to satisfy failure rate objective”; exit;
/* the user can modify Λobj or k and re-run BSH */

➅ Update the lists of candidate and scheduled operations:

L
(n)
sched := L

(n−1)
sched ∪ {ourg};

L
(n+1)
cand := L

(n)
cand − {ourg} ∪

{t′ ∈ succ(ourg) | pred(t′) ⊆ L
(n)
sched};

➆ n := n + 1;

end while

end

Fig. 13. The BSH scheduling heuristic.

The selected operation ourg is replicated and sched-
uled at the micro-step ➃ on each processor of Pbest(ourg)
computed at micro-step ➁, and the communications
implied by these assignments are also replicated and
scheduled according to the graph transformations of
Figures 6(a) and 6(c).

We check at the micro-step ➄ if the failure rate objec-
tive is satisfied or not. If it is not, the user can lower the
failure rate objective Λobj or increase the maximal degree
of processor combinations k, and re-execute BSH.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

Finally, we update the lists of candidate and scheduled
operations at the micro-step ➅.

Let n be the number of operations in the graph Alg

and p be the number of processors in the graph Arc.
Since BSH is a greedy list scheduling algorithm, the
number of steps necessary to complete is exactly equal
to n. The only computation step that is not in O(1) is
step ➀, which takes O(2p). As a result, the overall time
complexity of BSH is:

T (BSH) = O (n × 2p) (17)

However, by limiting the degree of processor combi-

nations to k, step ➀ becomes O(
∑k

i=1 Ci
p) (where Ci

p is
the binomial coefficient), so the overall time complexity
of BSH becomes:

T (BSH) = O

(

n ×

k∑

i=1

Ci
p

)

(18)

To obtain an approximate Pareto curve, one just needs
to run BSH several times. With the computing power
available in modern computers, the computation time
is reasonable (but not for simulations made on large
numbers of graphs).

6 SIMULATION RESULTS

6.1 Target architecture

We have conducted extensive simulations of our BSH
algorithm. The following figures have been obtained by
generating randomly 50 Alg graphs of 50 operations
each, with a Communication-to-Computation Ratio set
to 1.2 Each of these Alg graphs were then given to BSH
with two heterogeneous and completely connected Arc

graphs, having 4 and 6 processors (resp. named P1 to P4
and P1 to P6). Table 1 gives the individual failure rates
per time unit of all the processors and communication
links in the two Arc graphs.

P1,P2 P3,P4 L12,L13,L14,L23,L24,L34
λ1,2 = 10−4 λ3,4 = 10−5 λm = 10−3

P5,P6 L15,L16,L25,L26,L35,L36,L45,L46,L56
λ5,6 = 5.10−5 λm = 10−3

TABLE 1
Failure rates per time unit in the two Arc graphs.

6.2 Variation of the GSFR w.r.t. Λobj

Figure 14 shows the actual GSFR obtained by BSH w.r.t.
the objective Λobj , averaged over the 50 Alg graphs. The
successive values of Λobj given to BSH were: 10−2, 10−3,
10−4, 10−5, 10−6, and 10−7.

When Λobj is within [10−7, 10−4], Λ(S) is very close
to Λobj . When Λobj is within [10−3, 10−2], Λ(S) is signifi-
cantly lower than Λobj . Indeed, it is not possible to obtain

2. The Communication-to-Computation Ratio is the ratio between
the average WCCT (over all the data-dependencies) and the average
WCET (over all the operations).

such a bad level of failure rate because the processors
and communication links of Arc are too reliable.

−2

F
ai

lu
re

ra
te

p
er

ti
m

e
u

n
it

Λobj

Λ(S)

10

10

10

10

10

10

-7

-6

-5

-4

-3

-2
|P| = k = 4

Λobj

10 10 10 10 10 10 10
-8 -7 -6 -5 -4 -3

Fig. 14. Variation of the obtained GSFR Λ(S) w.r.t. Λobj.

6.3 Variation of the replication factor w.r.t. Λobj

Figures 15 and 16 show the average replication factor
produced by BSH w.r.t. the objective Λobj , averaged over
the 50 Alg graphs. Each point is the average replication
factor obtained for one Alg graph, and the curve passes
through the average value of all the points obtained
with a given Λobj . When Λobj is within [10−3, 10−2], the
replication factor is almost equal to 1, which is consistent
with the remark made above concerning the GSFR (the
replication factor can never be below 1 since at least one
replica of each operation must be scheduled). As we can
see, the replication factor grows almost linearly when
Λobj decreases from 10−3 to 10−7.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

−8 −6 −4 −2
10 10 1010

Λobj

A
v

er
ag

e
re

p
li

ca
ti

o
n

fa
ct

o
r |P| = k = 4

Fig. 15. Variation of the average replication factor w.r.t.
Λobj on a 4 processors architecture.

−8 −6 −4 −2
10 10 10 10

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Λobj

A
v

er
ag

e
re

p
li

ca
ti

o
n

fa
ct

o
r |P| = k = 6

Fig. 16. Variation of the average replication factor w.r.t.
Λobj on a 6 processors architecture.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

Also, we can see that the two curves are not very
different: the average replication factor is not influenced
by the size of the target architecture, but only by the
objective Λobj and the individual failure rates per time
unit of the architecture’s hardware components.

Finally, theoretically, the upper-bound k has an im-
pact on the schedules produced by BSH, because the
replication factor of all tasks will be less than or equal
to k. But, according to Figures 15 and 16, even when the
desired GSFR is as strict as 10−7, the replication factor
remains smaller than 4. In conclusion, limiting k has an
impact on the complexity of BSH but not on the quality
of the produced schedules, unless one limits k to a value
incompatible with the desired GSFR. Our simulations tell
what value of k is needed w.r.t. the desired GSFR.

6.4 Variation of the exact replication factor w.r.t. Λobj

For Figures 17 and 18, we have chosen one particular Alg

graph of 50 operations. Each operation is numbered from
1 to 50. We have run BSH on this graph with Λobj = 10−5

and drawn the exact replication factor of each operation.
Both figures correspond to a fully connected architecture,
respectively with 4 and 6 processors (whose individual
failure rates per time units are respectively given in
Table 1. In the 4 processors case, the average replication
factor is equal to 2.18, while in the 6 processors case, it
is equal to 2.22.

2

3

4

2.18

0 5 10 15 20 25 30 35 40 45 50

|P| = k = 4

fa
ct

o
r

o
f

o
p

er
at

io
n

i
E

x
ac

t
re

p
li

ca
ti

o
n

Number of operation: i

Fig. 17. Exact replication factor of each operation for
Λobj = 10−5 on a 4 processors architecture.

2

3

4

2.22

0 5 10 15 20 25 30 35 40 45 50

|P| = k = 6

Number of operation: i

fa
ct

o
r

o
f

o
p

er
at

io
n

i
E

x
ac

t
re

p
li

ca
ti

o
n

Fig. 18. Exact replication factor of each operation for
Λobj = 10−5 on a 6 processors architecture.

The important thing to note in Figures 17 and 18 is that
the exact replication factors are evenly distributed over
the average. Indeed, the standard deviation is only 0.384
for Figure 17 (resp. 0.414 for Figure 18). Furthermore,
there is no bad funnel effect.

Finally, the fact that the average replication factor (2.18
for Figure 17 and 2.22 for Figure 18) does not depend
on the size of the target architecture is consistent with
the observation made in Section 6.3.

6.5 Variation of the average replication factor w.r.t.
the processors’ failure rate

We are also interested in the average replication factor
of the operations scheduled on each processor of the
architecture (noted AORP). Recall that, for an opera-
tion X, Ω(X) is the set of processors that execute X, and
conversely Ω−1(P) is the set of operations placed onto P.
Hence we have:

AORP (P) =

∑

X∈Ω−1(P) |Ω(X)|

|Ω−1(P)|
(19)

The AORP is very important to assess the quality
of a (length,reliability) bicriteria scheduling algorithm,
because it shows how it is related to the failure rate
per time unit of each processor. We intuitively expect
that, if λP < λP

′ , then AORP (P) < AORP (P′), that
is, operations scheduled on more reliable processors
should be replicated less. This is consistent because an
operation scheduled onto a very reliable processor (i.e.,
whose failure rate is smaller than Λobj) does not need
to be replicated, while an operation scheduled onto an
unreliable processor (i.e., whose failure rate is greater
than Λobj) must be replicated several times to satisfy the
Λobj constraint.

However, when computing the AORP , we have to be
careful of the values of the failure rate of the communi-
cation links. Indeed, these values have a direct influence
on the replication factor of each operation (see Section 5.1
and in particular Figure 12). For this reason, the simu-
lation below (Figure 19) is run with three values of the
failure rate of the communication media λm, different
from those given in Table 1: these new values of λm are
chosen such that the replicas of the data dependencies
on the communication media have a reduced influence
on the replication factor of the operations.

1.0

1.3

1.6

1.9

2.2

P4 P3 P6 P5 P2 P1

Λobj = 10−5

︸ ︷︷ ︸ ︸ ︷︷ ︸

A
v

er
ag

e
re

p
li

ca
ti

o
n

fa
ct

o
r

λm =10−5

λm =5.10−5

λm =10−4

λ3,4 =10−5 λ1,2 =10−4λ5,6 =5.10−5
︸ ︷︷ ︸

Fig. 19. Average replication factor for each processor.

Figure 19 shows the AORP of each processor P1 to
P6 in the architecture with 6 processors, for a value of
Λobj equal to 10−5 and for three distinct values of λm,
namely 10−4, 5.10−5 and 10−5. It shows very clearly
that AORP (P) is directly related to the failure rate per

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

time unit of P, which demonstrates that BSH works
remarkably well: in the three cases, the more reliable
the processor is, the less its average replication factor
becomes: AORP (P5, 6) < AORP (P3, 4) < AORP (P1, 2).
This order relationship is clearer in the λm = 10−5 case
because, in that case, the communication media are more
reliable than the processors (actually, they are as reliable
as the most reliable processors P5 and P6), hence they
have no influence at all on the replication factors of the
operations.

6.6 Variation of the Cmax overhead w.r.t. Λobj

Figure 20 shows the Cmax overhead of the schedules
produced by BSH w.r.t. the objective Λobj , averaged over
the 50 Alg graphs, computed by Equation (20):

Cmax(BSH) − Cmax(BSH without repl.)

Cmax(BSH without repl.)
× 100 (20)

where “Cmax(BSH without repl.)” denotes the average
Cmax obtained by a modified BSH that does not replicate
the tasks. This figure shows the compromise in terms
of Cmax that the user has to pay in order to gain one
or several orders of magnitude of the failure rate. We
vary two parameters: the number of processors in the
architecture |P|, and the failure rate per time unit of the
communication links λm. Three curves are drawn, re-
spectively for P =4 and λm=10−3, for P =6 and λm=10−3,
and for P =4 and λm=10−4.

�� ����
��

�� 	�	
 ����

���� ������

0

50

100

150

200

250

10 10 10 10−8 −6 −4 −2

|P|=k=4, λm=10−3

|P|=k=4, λm=10−4

|P|=k=6, λm=10−3

A
v

er
ag

e
le

n
g

th
o

v
er

h
ea

d
(i

n
ti

m
e

u
n

it
s)

Λobj

Fig. 20. Variation of the Cmax overhead w.r.t. Λobj and λm.

The Cmax overhead grows when Λobj decreases, be-
cause the replication factor increases and so does the
number of replicas. Another reason for the overhead
is that the insertion of routing operations (necessary
to yield serial-parallel RBD) increases the Cmax. Also,
the overhead is less when the architecture has more
processors, because in that case, the parallelism available
in the architecture is greater, hence each processor must
execute a smaller number of replicas (even though the
average replication factor is roughly the same). Finally,
when the communication links become more reliable
(i.e., λm decreases), the overhead decreases: this is be-
cause the operations need to be less replicated to achieve
the desired Λobj .

6.7 Average Cmax overhead due to the routing opera-
tions w.r.t. λm

Table 2 shows the average Cmax overhead due to the
routing operations. For each Alg graph and each value
of Λobj , we have computed two static schedules: the first
one with BSH (that is, with routing operations), and
the second one by removing the routing operations but
keeping the same assignment choices of the operations
to the processors as in the first schedule. The overhead
is then computed by Equation (21):

Cmax(BSH) − Cmax(BSH without routing)

Cmax(BSH without routing)
× 100 (21)

For the two architectures (with 4 and 6 processors),
we have averaged these overheads over 50 Alg graphs.
We have taken three distinct values of the failure rate
per time units of the communication media λm, namely
10−3, 10−4 and 10−5, and we have averaged the over-
head over the six usual values of Λobj , from 10−2 to 10−7.
Table 2 shows that the overhead due to the routing
operations is very reasonable: it varies between −4.12 %
(an actual gain!) and +9.96 %.

λm 10−3 10−4 10−5

|P| = k = 4 −4.12 % +2.43 % +4.09 %
|P| = k = 6 +2.44 % +8.47 % +9.96 %

TABLE 2
Average Cmax overhead due to the routing operations.

λm 10−3 10−4 10−5

|P| = k = 4 2.07 1.50 1.33
|P| = k = 6 2.10 1.52 1.35

TABLE 3
Average replication factor for the schedules with routing

operations.

We can see that it decreases when the communication
links become less reliable: this is because the average
replication factor of the operations increases (see Ta-
ble 3); hence there is more locality in the computations;
hence there are more routing operations scheduled on
the same processor of either the source or the destination
operation of the data-dependency, resulting in fewer
inter-processor communications and less Cmax overhead.
Also, we can see that the overhead is greater for the
architecture with 6 processors than for the one with 4
processors: this is because there is more concurrency
available to schedule the communications in parallel in a
fully connected 6 processor architecture (15 communica-
tion links) than in a 4 processor one (6 communication
links): indeed, recall that the absence of routing oper-
ations means more data-dependencies in parallel (see
Figure 6). Finally, the average overhead is only +3.88 %,
which is very reasonable.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

6.8 Example of a (length,GSFR) Pareto curve

Figure 21 is an example of a Pareto curve generated by
running BSH with 45 different values of Λobj (from 10−7

to 9.10−3) on a given instance of the problem, i.e., a given
Alg of 100 tasks and a given Arc graph of 10 processors,
with the maximal degree of processor combinations set
to 7. Among the 10 processors of Arc, 5 had a failure rate
per time unit equal to 10−4, the 5 others 10−5; the failure
rate par time unit of all the links was equal to 5.10−4. The
red solid line connects only the non-dominated points.
From this Pareto curve, the user can then chose the
solution that best suits her/his requirements in terms
of reliability and Cmax. Finally, the time necessary for
BSH to produce these 45 points was 18 528 seconds (∼
5 hours and 8 minutes) on an Intel Pentium M 740,
1.73 GHz with 1 GO of memory. If we set the maximal
degree of processor combinations to 4 instead of 7, we
obtain almost exactly the same Pareto curve: the absolute
Cmax difference between the two sets of data, averaged
over the 45 points, is only 12 time units; since the Cmax
varies from 1 220 to 2 692 time units, this difference is
negligible. This shows that limiting the maximal degree
of processor combinations does not penalize the quality
of the schedules produced by BSH. In contrast, the time
necessary for BSH to produce these 45 points was only
5 146 seconds (∼ 1 hour and 26 minutes), a gain of a
factor 3.6! Yet, those figures indicate that BSH is not
suited to architectures with hundreds of processors.

3000

2500

2000

1500

1000
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10

S
ch

ed
u

le
le

n
g

th

Λobj

|P| = 10; CCR= 1; k = 7

Fig. 21. Example of a (length,GSFR) Pareto curve gen-
erated by BSH.

7 CONCLUSION

We have proposed a new framework for the
(length,reliability) bicriteria static multiprocessor
scheduling problem. Our first criterion remains the
static schedule’s length (crucial to assess the system’s
real-time property). For our second criterion, we
consider the global failure rate (GSFR) of the system
instead of the usual reliability. The GSFR is the failure
rate of the multiprocessor schedule seen as if it were a
single operation scheduled onto a single processor; the
GSFR is computed from the reliability of the schedule
and the total utilization of its hardware components. The
reason for this choice is that the GSFR does not depend
on the schedule length like the reliability does, due to

its computation in the classical reliability model of Shatz
and Wang. Thanks to this key independence property
we avoid three problems: firstly, the impossibility to
control the replication factor of each individual task
of the dependency task graph given as a specification,
with respect to the desired reliability; secondly, the
fact that the length criterion overpowers the reliability
criterion; and thirdly, the non-monotonousness of the
reliability in function of the schedule. Furthermore, we
claim that any bicriteria optimization problem in which
the two criteria are not independent one of the other
will always suffer from those three problems. Finally,
it is very easy to translate a reliability objective Robj

into a GSFR objective Λobj : one just needs to apply the
formula Λobj = − logRobj/D, where D is the mission
duration. This shows that the GSFR criterion is usable
in practice.

We have proposed a new bicriteria scheduling algo-
rithm, called BSH. It is a greedy list scheduling heuristic
that takes as input a task DAG (Alg), a heterogeneous
distributed memory architecture (Arc), the worst case
execution and communication times of the operations
and data-dependencies onto the processors and com-
munication links (Exe), and an upper-bound constraint
on the GSFR (Λobj). BSH returns a static multiproces-
sor schedule of Alg onto Arc, such that its GSFR is
less than Λobj . The GSFR is improved thanks to the
active replication of the operations. At each iteration of
BSH, we have to compute the reliability of several par-
tial schedules, one for each replication and assignment
choice of the candidate operation onto the processors of
Arc; to compute efficiently the reliability of these partial
schedules, we have chosen to insert routing operations
scheduled between the replicas of any operation that
must send some data and the replicas of any operation
that must receive this same data: thanks to this choice,
the reliability block diagram (RBD) corresponding to the
schedule is guaranteed to be serial-parallel, meaning that
the reliability can always be computed in linear time.

By invoking iteratively BSH with different values
of Λobj , we are able to produce the Pareto curve for a
given instance (i.e., a given Alg , Arc, and Exe), therefore
providing the user with the choice among several trade-
offs between the execution time and the reliability. Our
simulation results indicate what execution time overhead
can be expected depending on the failure rate level
imposed on a system. More important, our simulation
results show that BSH works remarkably well, produc-
ing static schedules where the replication factor of the
operations decreases when they are scheduled onto more
reliable processors. Finally, the overhead incurred by
the routing operations is reasonable (only +3.88 % on
average).

Future work will include the application of our new
reliability framework to other task and failure models:
for instance, a task with redundant inputs executed on
a non fail-silent processor may still execute if one of its
predecessor tasks is faulty. Our routing operations could

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

then be used to vote among the available inputs. This
will result in other forms of RBDs, with “N-out-of-M”
nodes.

ACKNOWLEDGMENTS

Many thanks to David Powell, Erik Saule, and Denis
Trystram for helpful discussions on these topics; to the
anonymous reviewers and the associate editor for their
constructive remarks; and to Thomas McGowan for his
English proficiency.

REFERENCES

[1] I. Assayad, A. Girault, and H. Kalla. A bi-criteria scheduling
heuristics for distributed embedded systems under reliability and
real-time constraints. In International Conference on Dependable
Systems and Networks, DSN’04, pages 347–356, Firenze, Italy, June
2004. IEEE, Los Alamitos, CA.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing.
IEEE Trans. Dependable Secure Comput., 1(1):11–33, January 2004.

[3] H.S. Balaban. Some effects of redundancy on system reliability. In
National Symposium on Reliability and Quality Control, pages 385–
402, Washington (DC), USA, January 1960.

[4] M.O. Ball. Computational complexity of network reliability
analysis: An overview. IEEE Trans. Reliability, 35:230–239, August
1986.

[5] A. Colin and I. Puaut. Worst case execution time analysis for a
processor with branch prediction. Real-Time Syst., 18(2/3):249–
274, 2000.

[6] J.-Y. Colin and P. Chretienne. C.P.M. scheduling with small
computation delays and task duplication. Operations Research,
39(4):680–684, 1991.

[7] A. Dogan and F. Özgüner. Matching and scheduling algorithms
for minimizing execution time and failure probability of appli-
cations in heterogeneous computing. IEEE Trans. Parallel and
Distributed Systems, 13(3):308–323, March 2002.

[8] A. Dogan and F. Özgüner. Biobjective scheduling algorithms for
execution time-reliability trade-off in heterogeneous computing
systems. The Computer Journal, 48(3):300–314, 2005.

[9] J. Dongara, E. Jeannot, E. Saule, and Z. Shi. Bi-objective schedul-
ing algorithms for optimizing makespan and reliability on hetero-
geneous systems. In Symposium on Parallelism in Algorithms and
Architectures, SPAA’07, pages 280–288, Paris, France, June 2007.
ACM, New-York.

[10] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reliable
and precise WCET determination for a real-life processor. In
International Workshop on Embedded Software, EMSOFT’01, volume
2211 of LNCS, Tahoe City (CA), USA, October 2001. Springer-
Verlag.

[11] J. Gauthier, X. Leduc, and A. Rauzy. Assessment of large automat-
ically generated fault trees by means of binary decision diagrams.
J. of Risk and Reliability, 221(2):95–105, 2007.

[12] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid
prototyping for real-time embedded heterogeneous multiproces-
sors. In 7th International Workshop on Hardware/Software Co-Design,
CODES’99, Rome, Italy, May 1999. ACM, New-York.

[13] M. Hakem and F. Butelle. A bi-objective algorithm for scheduling
parallel applications on heterogeneous systems subject to failures.
In Rencontres Francophones du Parallélisme, RENPAR’06, Perpignan,
France, October 2006.

[14] C. Hirel, R. Sahner, X. Zang, and K.S. Trivedi. Reliability and
performability modeling using Sharpe. In International Conference
on Computer Performance Evaluation: Modelling Techniques and Tools,
TOOLS’00, volume 1786 of LNCS, pages 345–349. Springer-Verlag,
March 2000.

[15] C.-C. Hsieh and Y.-C. Hsieh. Reliability and cost optimization in
distributed computing systems. Computers and Operations Research,
30(8):1103–1119, July 2003.

[16] M.A. Iverson. Dynamic Mapping and Scheduling Algorithms for a
Multi-User Heterogeneous Computing Environement. PhD Thesis,
Ohio State University, Columbus (OH), USA, 1999.

[17] P.A. Jensen and M. Bellmore. An algorithm to determine the
reliability of a complex system. IEEE Trans. Reliability, 18:169–174,
November 1969.

[18] S. Kartik and C.S.R. Murthy. Improved task allocation algorithms
to maximize reliability of redundant distributed computing sys-
tems. IEEE Trans. Reliability, 44(4):575–586, December 1995.

[19] J.C. Knight and N.G. Leveson. An experimental evaluation of
the assumption of independence in multi-version programming.
IEEE Trans. Software Engin., 12(1):96–109, 1986.

[20] D. Lloyd and M. Lipow. Reliability: Management, Methods, and
Mathematics, chapter 9. Prentice-Hall, 1962.

[21] P. Pop, K. Poulsen, and V. Izosimov. Scheduling and voltage
scaling for energy/reliability trade-offs in fault-tolerant time-
triggered embedded systems. In CODES-ISSS’07, Salzburg, Aus-
tria, October 2007. ACM, New-York.

[22] X. Qin and H. Jiang. A novel fault-tolerant scheduling algorithm
for precedence constrained tasks in real-time heterogeneous sys-
tems. Parallel Computing, 32(5-6):331–356, June 2006.

[23] S.M. Shatz and J.-P. Wang. Models and algorithms for reliability-
oriented task-allocation in redundant distributed-computer sys-
tems. IEEE Trans. Reliability, 38(1):16–26, April 1989.

[24] G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for
interconnection constraint heterogeneous processor architectures.
IEEE Trans. Parallel and Distributed Systems, 4(2):175–187, February
1993.

[25] J. Souyris, E.L. Pavec, G. Himbert, V. Jégu, G. Borios, and R. Heck-
mann. Computing the worst case execution time of an avionics
program by abstract interpretation. In International Workshop on
Worst-case Execution Time, WCET’05, pages 21–24, Mallorca, Spain,
July 2005.

[26] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise
WCET prediction by separate cache and path analyses. Real-Time
Syst., 18(2/3):157–179, May 2000.

[27] V. T’kindt and J.-C. Billaut. Multicriteria Scheduling: Theory, Models
and Algorithms. Springer-Verlag, 2006.

[28] D. Zhu, R. Melhem, and D. Mossé. The effects of energy manage-
ment on reliability in real-time embedded systems. In International
Conference on Computer Aided Design, ICCAD’04, pages 35–40, San
Jose (CA), USA, November 2004.

