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Abstract—Mobile computing devices and the services offered
by them are utilized by millions of users on a daily basis.
However, they operate in hostile environments getting exposed to
a wide variety of threats. Accordingly, vulnerability management
mechanisms are highly required. We present in this paper a
novel approach for increasing the security of mobile devices by
efficiently detecting vulnerable configurations. In that context,
we propose a modeling for performing vulnerability assessment
activities as well as an OVAL-based distributed framework for
ensuring safe configurations within the Android platform. We
also describe an implementation prototype and evaluate its
performance through an extensive set of experiments.

I. INTRODUCTION

The overwhelming technological advances in the broad
sense of mobile computing have made end users to experience
real computers in their pockets. Android1 [1], a Linux-based
operating system for mobile devices, is nowadays the election
of millions of users as the platform for governing their mobile
devices. Only in the first quarter of 2012, worldwide sales of
smartphones to end users reached 144.4 million units where
Android-based devices leaded the market share owning the
56.1% followed by iOS2 with 22.9% [5]. However, despite
of the many security improvements that have been done since
Android’s creation, the underlying operating system as well as
services and applications have also evolved providing room for
new vulnerabilities. Moreover, the open and barely protected
mobile environment facilitates attackers to take advantage of
such vulnerabilities. Sensitive data handled by mobile users
becomes easily exposed. Under this perspective, managing
vulnerabilities is a crucial and challenging task that must be
addressed in order to ensure safe configurations and to increase
the overall security of the system.

Once a vulnerability is discovered in almost any typical
software product, its patch cycle normally describes a time
gap until the vulnerability is disclosed, another time span until
the patch is available and yet another time span until the end
user applies the patch [26]. It is usually during this period that
attackers activity takes place. Within the Android environment,
this issue gets worse. Android is distributed as open source
and device manufacturers and telecommunications carriers
customize it in order to provide specific services as well as
added value to their customers. When a patch is released by

1Android is developed by Open Handset Alliance, led by Google [11]
2Apple iOS [3]

Google, an extra time gap will occur until the manufacturer
adapts it to work with its own hardware and another time span
will pass until the patch is released by the carrier [31]. In
addition to this problem, several application markets allow to
fast distribute third party applications with only some security
checks expecting that the community identifies and reports
malicious software. With thousands of applications in the
market, Android users are very likely to encounter malware3

on their devices [7].
Such scenario imperatively requires solutions for rapidly

identifying new vulnerabilities and minimizing their impact.
Even though no patch might be available for a new vulnera-
bility at a given time, countermeasures can be taken in order to
mitigate the problem until the disclosure of an official patch. In
that context, vulnerability assessment mechanisms are highly
required in order to increase the vulnerability awareness of the
system. In addition, mobile devices usually have limited re-
sources thus optimized lightweight tools should be developed
to ensure efficiency without losing functionality. Moreover,
there are no current solutions built over solid foundations as
well as open and mature standards that foster its adoption and
speed up general vulnerability information exchange.

In light of this, we propose a novel approach for increas-
ing the security of the Android platform, though it could
be applied over other mobile platforms as well, using the
OVAL4 language [14] as a means for describing Android
vulnerabilities. We put forward a mathematical model that
supports the assessment strategy and a lightweight framework
that efficiently takes advantage of such knowledge in order
to detect and prevent configuration vulnerabilities. We also
present an implementation prototype as well as an extensive
set of experiments that shows the feasibility of our solution.

Finally, the remainder of this paper is organized as follows.
Section II describes existing work and their limits. Section III
presents our approach for modeling the vulnerability assess-
ment process. Section IV details the proposed framework
describing its architecture and the proposed strategy for
performing self-assessment activities. Section V depicts the
internals of our implementation prototype. Section VI shows
an extensive set of experiments and the obtained results.
Section VII presents conclusions and future work.

3Malicious software including virus, worms and spyware among others
4Open Vulnerability and Assessment Language



II. RELATED WORK

Android is an open source operating system that integrates
some security features by design. It uses the Dalvik virtual
machine [4] for executing end user applications written in
Java [13]. It is not the same standard Java virtual machine
used in most popular platforms such as Linux, Mac OS X
or Windows. It has its own API5 that is almost the same
as the standard one. The Dalvik virtual machine takes the
Java application classes and translates them into one or
more .dex (Dalvik Executable) files generating optimized and
smaller code. The internal design of the Android platform
provides important security features such as the sandbox
execution approach [31]. Such approach executes Android
applications within separate instances of the Dalvik virtual
machine that in turn are represented by different Linux kernel
processes. In order to manage the underlying system resources,
Android uses an access control policy based on unique identi-
fiers for each application to ensure that they can not interfere
between each other.

Despite of the many security features provided by the
Android platform [24], [29], end users still face security
threats due to existing vulnerabilities within the system it-
self, misuse of personal data performed by applications and
malicious third party software [23], [25]. Several approaches
have been proposed for analyzing Android applications and
their risks [22], [27]. These contributions provide a strong
support for increasing the security of the Android platform.
Nevertheless, vulnerability assessment mechanisms have been
barely or not at all discussed. Currently, dozens of security
applications exist for the Android platform developed by
different providers [7], [10], [16]. However, they generally use
private knowledge sources as well as their own assessment
techniques, and they do not provide standardized and open
means for describing and exchanging vulnerability descrip-
tions within the community.

Much of the work done in vulnerability analysis has de-
fined the assessment infrastructure using its own vulnerability
specification language arising compatibility and interoperabil-
ity problems. Languages such as VulnXML [15] have been
developed as an attempt to mitigate these problems and to
promote the exchange of security information among appli-
cations and security entities. However, these languages are
only focused on web applications covering a subset of the
existing vulnerabilities in current computer systems. In order
to cope with these problems, the MITRE corporation [8] has
introduced the OVAL language [14], an information security
community effort to standardize how to assess and report upon
the machine state of computer systems. OVAL is an XML-
based language that allows to express specific machine states
such as vulnerabilities, configuration settings, patch states.
Real analysis is performed by OVAL interpreters such as
Ovaldi [12] and XOvaldi [21]. Several related technologies
have evolved around the OVAL language. NIST [9] is respon-
sible for the development of emerging technologies including

5Application Programming Interface

the SCAP6 protocol [18] and the XCCDF7 language [32].
The SCAP protocol is a suite of specifications that includes
OVAL and XCCDF, and it can be used for several purposes,
including automating vulnerability checking, technical control
compliance activities, and security measurement. XCCDF is
a language for authoring security checklists/benchmarks and
for reporting results of checklist evaluation. The use of SCAP,
particularly OVAL and XCCDF, not only allows to specify
vulnerabilities, but also to bring a system into compliance
through the remediation of identified vulnerabilities or mis-
configurations. While OVAL provides means for describing
specific machine states, XCCDF allows to describe certain
actions that should be taken when these states are present on
the system under analysis.

Several previous contributions have taken advantage of
public vulnerability databases [17] and the use of the OVAL
language for performing vulnerability assessment activities
in large scale networks [28]. Currently, OVAL repositories
offer a wide range of vulnerability descriptions though An-
droid is not yet an official supported platform. In this work,
we have instrumented our approach with an experimental
OVAL extension for Android within the OVAL Sandbox
project [14]. Such extension enables practitioners and experts
within the field to specify known vulnerabilities for Android in
a machine-readable manner and at the same time, it promotes
the exchange and enrichment of Android security information
within the community. Our work aims at defining a solution
for increasing the security of Android devices by capitalizing
Android vulnerability descriptions specified with the OVAL
language. Such security advisories are automatically integrated
in a distributed architecture where self-assessment activities
are performed in order to ensure safe mobile configurations.

III. VULNERABILITY ASSESSMENT PROCESS MODEL

The process by which vulnerabilities are assessed is critical
for efficiently analyzing a target system and minimizing com-
putation costs at the same time. In this section we present a
mathematical model that defines and efficiently supports the
vulnerability assessment process. Usually, a vulnerability can
be understood as a logical combination of properties that if
observed in a target system, the security problem associated
with such vulnerability is present on that system. Proper-
ties can vary depending on the nature of the vulnerability
being described, some examples are: a specific process is
running (e.g., httpd), a specific port is open (e.g., 80), the
system has a specific version (e.g., 2.6.10.rc). Frequently, one
property is required by several vulnerability descriptions and
naturally one vulnerability description may require several
properties. Under this perspective, the set of vulnerability de-
scriptions that constitutes a knowledge base can be compactly
represented by using a boolean pattern matrix PM defined as
follows:

6Security Content Automation Protocol
7eXtensible Configuration Checklist Description Format



PM =


p1 p2 · · · pn

v1 a1,1 a1,2 · · · a1,n
v2 a2,1 a2,2 · · · a2,n
...

...
...

. . .
...

vm am,1 am,2 · · · am,n

 ai,j ∈ {0, 1}

Each matrix row encodes the properties required to be ob-
served for the vulnerability vi to be present. Thus, each entry
ai,j denotes if the vulnerability vi requires the property pj .
Considering for instance a scenario with three vulnerabilities
v1, v2 and v3, a pattern matrix PM can be built as follows:

v1 = (p1, p3, p5)

v2 = (p2, p4)

v3 = (p1, p2, p5)

 PM3,5 =

1 0 1 0 1
0 1 0 1 0
1 1 0 0 1


The pattern matrix can also provide useful information for

performing statistics. The vflatten operation aggregates the
number of times that each property occurs within the whole set
of known vulnerabilities. The resulting vector provides an in-
dicator that helps to identify most common properties involved
in vulnerabilities. Such indicator provides valuable information
that can be used for closer monitoring and controlling critical
components changes.

vflatten(PM) = (

m∑
i=1

ai1,

m∑
i=1

ai2, . . . ,

m∑
i=1

ain)

Other useful metric can be extracted from the pattern matrix
when the aggregation operation is performed horizontally, as
indicated by hflatten. A column vector is obtained from
its application where each entry j denotes the amount of
properties required by each vulnerability vj . This metric can be
utilized, among other uses, for identifying those vulnerabilities
that are most likely affected by changes performed in the
environment, thus assessment activities should be taken into
account as well.

hflatten(PM) = (

n∑
j=1

a1j ,

n∑
j=1

a2j , . . . ,

n∑
j=1

amj)
T

The state of a system can be encoded in the same manner as
done with vulnerabilities, indicating for those properties under
control, which ones are present and which ones are not. Thus,
a system state is a boolean vector s defined as follows:

s = (s1, s2, . . . , sn) si ∈ {0, 1}

Each entry si takes the value 1 if the property pi is present
in the system and 0 if it is not. Considering these constructs,
the results of performing the vulnerability assessment process
over a given system is defined by the following equation:

w = hflatten(PM)− [PM ∗ sT ] (1)

⇓

w=


∑n

j=1 a1j∑n
j=1 a2j

...∑n
j=1 amj

−


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

×

s1
s2
...
sn




The resulting assessment vector w = (w1, w2, · · · , wm) de-
notes the status of each vulnerability vi in the target system.
The semantic of the vector w is given by the Kronecker delta
function as follows:

δi =

{
0, if i 6= 0
1, if i = 0

A null entry wi indicates that the vulnerability vi is present
in the system while non null values denotes the absence of
the corresponding vulnerability. This fact can be understood
as a distance metric where a positive value indicates a positive
distance between the vulnerability and the target system, and a
null distance indicates that the vulnerability is actually in the
system. Computing matrix operations in optimized manners
constitutes a field that has been studied for years [30]. The
integration of the proposed model into real computing systems
can take advantage of such expertise providing a compact
and efficient representation for performing vulnerability as-
sessment activities.

IV. AN OVAL-BASED FRAMEWORK FOR ASSESSING
ANDROID VULNERABILITIES

The previous model establishes a well-founded process for
assessing vulnerabilities in an efficient manner. By taking
advantage of OVAL security advisories, such model can be
used for efficiently increasing the security of mobile com-
puting devices. Mobile devices have become a daily use-
ful resource for connecting people, entertainment, working,
managing personal data and much more. This fact attracted
the attention of legitimate users of these pocket-computers
but also from attackers. In only the first semester of 2011,
malware for the Android platform has grown at 250% [7].
It is critical to develop open security frameworks that can
speed up the knowledge exchange among community users
and also being able to take advantage of such information
in order to augment their own security. In this section we
present our approach for efficiently increasing the security
of Android-based devices by automatically evaluating OVAL-
based vulnerability descriptions and reporting analysis results.

A. Architecture and main components

We have designed the proposed architecture illustrated in
Fig. 1 as a distributed infrastructure composed of three main
building blocks: (1) a knowledge source that provides existing
security advisories, (2) Android-based devices running a self-
assessment service and (3) a reporting system for storing
analysis results and performing further analysis. The overall
process is defined as follows. Firstly at step 1, the Android
device periodically monitors and queries for new vulnerability
descriptions updates. This is achieved by using a web service
provided by the security advisory provider. At step 2, the



Fig. 1: OVAL-based vulnerability assessment framework for the Android platform

provider examines its database and sends back new found
entries. The updater tool running inside the Android device
synchronizes then its security advisories. When new infor-
mation is available or configuration changes occur within
the system, a self-assessment service is launched in order to
analyze the device at step 3. At step 4, the report containing
the collected data and the results of the analyzed vulnerabilities
is sent to a reporting system by means of a web service request.
At step 5, the obtained results are stored and analyzed to detect
potential threats within the Android device. In addition, this
information can also be used with different purposes such as
forensic activities or statistical analysis.

Within the proposed approach, vulnerabilities are described
by using OVAL definitions. An OVAL definition is intended to
describe a specific machine state using a logical combination
of OVAL tests that must be performed over a host. If such logi-
cal combination is observed, then the specified state is present
on that host (e.g. vulnerability, specific configuration) [14].
Under a logical perspective, this combination can be under-
stood as a first order formula where each OVAL test corre-
sponds to an atomic unary predicate over that system [19].
The model presented in Section III denotes these predicates
as the set of properties P = {p1, p2, . . . , pn}. P represents all
the predicates (OVAL tests) involved in the vulnerability de-
scriptions (OVAL definitions) available within our knowledge
source. In this manner, a boolean matrix PM representing
each involved OVAL test for each OVAL definition can be
easily built in order to perform assessment activities. The self-
assessment component depicted in Fig. 1 constitutes a critical
building block because it is in charge of orchestrating the
entire lifecycle of the framework in an automatic manner.
Hence, optimized algorithms for performing self-assessment
activities are highly required. In order to achieve this objective,
we have designed and implemented a strategy that uses the
model presented in Section III for minimizing the system
components required to be assessed.

B. Optimized assessment strategy

Due to the limited resources provided usually by mo-
bile devices, it is important to optimize the use of such

elements without losing functionality and performance. The
proposed assessment strategy takes this issue into account
and minimizes computation costs by using a boolean pattern
matrix PM that represents known vulnerabilities and a sys-
tem state vector s that holds the current system properties.
The overall assessment is then efficiently performed using
both the pattern matrix and the system vector defined in
Section III. Within our approach, two types of events can
trigger self-assessment activities: (i) when changes occur in
the system and (ii) when new vulnerability definitions are
available. Algorithm 1 depicts the overall strategy for treating
such events and minimizing the number of OVAL tests to
be re-evaluated. In order to explain the proposed algorithm,
we put forward an illustrative example that considers both
situations and uses the matrix PM3,5 illustrated in Section III.
Let consider the property p2 = {Package X has version Y}
and the system state s = (1, 0, 0, 0, 1) meaning that only the
properties p1 and p5 are present in the system. Within the
OVAL language, p2 is described using an OVAL test that
involves an OVAL package object with its attribute name = X
and an OVAL package state with its attribute version = Y .

Let suppose now that an event of type package updated
has occurred in the system affecting the package X (line 1).
Usually, a complete evaluation of each OVAL definition in-
volving the OVAL test that describes the property p2 should
be carried out. However, only the truth value of the involved
OVAL test for p2 is required for recomputing the results of all
the descriptions affected. In order to achieve this, the objects
affected by the event are retrieved (line 2) and compared
with the objects related to the system properties (lines 3-4).
If the object of one property is seen to be affected (line 5),
the property represented by an OVAL test is re-evaluated and
reflected in the system state (lines 6-7). Within our example,
such optimization point will only assess and change the second
entry of the system state s. Due to both events are disjoint
(system changes at line 1 and definition update at line 11),
we now explain the end of the algorithm for the first case
and then we discuss the behavior for the second case. Let
suppose that the new value for the package version is Y thus
the new system state becomes s = (1, 1, 0, 0, 1). Once the



Input: Event event, PatternMatrix matrix, SystemState state
Output: VulnerabilityList list

1 if event is of type SystemChange then
2 objs ← getAffectedObjectsByEvent(e);
3 foreach Property p ∈ state do
4 o ← getObjectFromProperty(p);
5 if o ∈ objs then
6 result ← evaluateProperty(p);
7 updateSystemState(state, p, result);
8 end
9 end

10 end
11 if event is of type DefinitionUpdate then
12 defs ← getDefinitionsFromEvent(e);
13 props ← getPropertiesFromDefinitions(defs);
14 foreach Property p ∈ props do
15 if p 6∈ state then
16 addEmptyPropertyColumn(matrix, p);
17 addEmptyPropertyColumn(state, p);
18 result ← evaluateProperty(p);
19 updateSystemState(state, p, result);
20 end
21 end
22 foreach Definition d ∈ defs do
23 addAndLoadDefinitionRow(matrix, d);
24 end
25 end
26 w ← hSumMatrix(matrix)− (matrix ∗ state);
27 index ← 0;
28 foreach Entry v ∈ w do
29 if v = 0 then
30 vulnDef ← getV ulnDef(index);
31 addToOutputList(list, vulnDef);
32 end
33 index ← index+ 1;
34 end

Algorithm 1: Efficient event-based vulnerability as-
sessment algorithm

assessment of the OVAL test for p2 has been done, the overall
assessment result is achieved by performing two operations
between boolean matrices (line 26), within our example, as
given by Equation 2.

w=

3
2
3

−

1 0 1 0 1
0 1 0 1 0
1 1 0 0 1

×

1
1
0
0
1


 =

1
1

0

 (2)

For each entry in the result vector w (line 28), we use the
Kronecker delta function (line 29) in order to detect if the
vulnerability represented by that entry is present in the target
system. If it is the case, the vulnerability definition is added
in the output detected vulnerability list (lines 30-31). Within
our example, it can be observed that the change performed in
the system has exposed itself to new security risks due to the
presence of the vulnerability v3.

The second situation involves the arrival of new vulner-
ability descriptions (line 11). In this case, both the pattern
matrix PM and the system state s have to be extended so as

to cover the new properties involved in the OVAL definitions.
In order to achieve this, the new definitions are retrieved from
the event (line 12), and the properties involved within such
definitions are analyzed (lines 13-14). For each uncovered
property (line 15), an extension process must be applied. The
extension process for the pattern matrix PM will include
new columns with null entries for the new properties within
existing vulnerability definitions (line 16). The system state s
is extended (line 17) and updated as well with the result
of the property assessment (lines 18-19). It is important to
notice that the arrival of new vulnerability definitions does
not imply changes on the system and that the assessment
results for known properties are already loaded in the system
state, thus there is no need to re-evaluate them again. Finally,
for each new vulnerability definition (line 22), a new row
is added in the pattern matrix PM indicating the required
properties for that vulnerability to be present (line 23). The
final assessment procedure is then performed in the same
manner as explained in the first situation (lines 26-34). The
proposed strategy constitutes a critical part of our framework
and it has been integrated into our implementation prototype,
which is the heart of the next section.

V. IMPLEMENTATION PROTOTYPE

In order to provide a computable infrastructure to the pro-
posed approach, a running software component inside Android
capable of performing self-assessment activities is required.
Currently, 60.3% of Android users operate their devices using
Gingerbread (versions 2.3.3 to 2.3.7, API level 10) and a total
of 79.3% operate versions starting at 2.3.3 until its last release
Jelly Bean (version 4.1, API level 16) [2]. Our implementation
prototype has been developed to be compliant with Android
platforms starting at version 2.3.3, thus covering almost 80%
of the Android market share. In this section, we describe the
prototyping of our solution as well as the high-level operation
performed during the assessment activity.

The implementation prototype has been purely written in
Java [13] and is composed of four main components: (1) an
update system that keeps the internal database up-to-date, (2) a
vulnerability management system in charge of orchestrating
the assessment activities when required, (3) an OVAL inter-
preter for the Android platform and (4) a reporting system
that stores the analysis results internally and sends them to an
external reporting system. Fig. 2 depicts the main operational
steps performed during the self-assessment activity and the
connection with the mentioned four main components. The
prototype is executed as a lightweight service that is running
on background and that can be awakened by two potential
reasons. The first one is that the update system in charge
of monitoring external knowledge sources has obtained new
vulnerability definitions; the second one is that changes in the
system have occurred hence it is highly possible that some
vulnerability definitions need to be re-evaluated. The prototype
is still in an early development phase so we only cover some
system events such as when a package has been installed.



Fig. 2: Self-assessment service high-level operation

In order to be aware of these two potential self-assessment
triggers, two listeners remain active as shown at step 1. The
updater listener listens the vulnerability database updater com-
ponent and will be notified when new vulnerability definitions
become available. The event bus listener uses the Android
broadcast bus to capture notifications about system changes. If
new vulnerability definitions are available or system changes
have been detected, a vulnerability definition selection process
is launched at step 2. This process is in charge of analyzing the
cause that has triggered the self-assessment activity and de-
ciding which assessment tasks must be performed by actually
implementing the Algorithm 1. At step 3, the vulnerability
manager component uses the services of XOvaldi4Android
in order to perform the corresponding assessment activity.
At step 4, the results of the assessment are stored in the
internal results database and sent to the external reporting
system by performing a web service request. Finally, a local
notification is displayed to the user if new vulnerabilities have
been found in the system.

XOvaldi4Android plays a fundamental role within the pro-
posed framework because it is in charge of actually assess
the Android system. XOvaldi4Android is an extension of
XOvaldi [21], a multi-platform and extensible OVAL inter-
preter. We have ported the XOvaldi system to the Android
platform obtaining a 94 KB size library. We have used the
Eclipse development environment and the ADT plugin [2]
for Eclipse to easily manage development projects for An-
droid. The interpreter uses the JAXB8 technology [6] for
automatically generating its internal OVAL-based data model.
This technology provides means not only for modeling XML
documents within a Java application data model but also for
automatically reading and writing them. Such feature provides
to the interpreter the ability to evolve with new OVAL versions
as well as extensions, in this work for the Android platform,

8Java Architecture for XML Binding

with almost no developing cost. As shown in Fig. 2, the
high-level operation performed by XOvaldi4Android follows
the same assessment process proposed by OVAL. In order
to provide extensibility features, the interpreter decouples the
analysis of the OVAL structure from the actual collection
and evaluation activities by using a plugin repository. While
the former is implemented as the core of the interpreter,
each plugin provides injectable functionality (collection and
evaluation) for the specific type of OVAL test it was built
for. In this manner, declarative extensibility of the interpreter
is achieved by automatic code generation using the JAXB
technology and functional extensibility is supported by its
plugin-based architecture.

VI. PERFORMANCE EVALUATION

Devices with limited resources imperatively require well-
designed and optimized software that take care of such ele-
ments. In this section we present an analytical evaluation of the
proposed mathematical model as well as a technical evaluation
that involves a comprehensive set of experiments showing the
feasibility and scalability of our solution.

A. Analytical evaluation

Within the proposed approach, the vulnerability assessment
process is governed by Equation (1). Given n as the number
of system properties being monitored and m the number of
available vulnerability definitions, the complexity of comput-
ing the result vector w is n×m. Considering the worst case
(n = m), the complexity is O(n2). Being hflatten(PM)
a known value, the number of operations performed during
the process are n boolean multiplications plus n − 1 integer
sums for each vulnerability definition. Then, the total number
of boolean multiplications is m × n and the total number of
integer sums is m× (n− 1). Hence, m× (n+ (n− 1)) ≈ n2
arithmetic operations are performed for assessing the entire
knowledge repository in the worst case.

Considering a knowledge repository with 1000 vulnerability
definitions involving 1000 different system properties, the size
of the pattern matrix PM is 106. This means that the assess-
ment process defined by the model will perform 106 arithmetic
operations for assessing the entire knowledge base. Consider-
ing MFLOPS9 as the performance measure, though boolean
and entire operations are cheaper than floating point opera-
tions, the assessment requires 1 MFLOP. Within our experi-
mental devices Samsung Galaxy Gio running Android 2.3.3,
we have measured an average of 8.936 MFLOPS. With this
information, we can infer that a dedicated application of our
strategy over a 106 size matrix takes less than 1 second in
almost any standard Android-based device.

Moreover, latest models may achieve more than 100
MFLOPS meaning that a knowledge source of 10000 vulner-
ability definitions involving 10000 different properties could
be mathematically assessed in less than 1 second. Currently,
the OVAL repository [14] offers 8747 UNIX vulnerability

9Million Floating Point Operations Per Second
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Fig. 3: Scalability statistics in a simulated environment

definitions including all versions and families after years of
contributions made by the community. Such scenario provides
real facts making the proposed approach highly suitable for
efficiently performing vulnerability assessment activities.

B. Technical experimentation

We have performed several experiments in order to analyze
the behavior of our implementation prototype. The proposed
methodology cyclically tests the framework without other ap-
plications running in foreground. The OVAL definitions set is
increased by 5 each time until a set of 100 definitions is evalu-
ated. The used OVAL definitions are similar in size containing
in average two OVAL tests. For instance, the vulnerability with
the CVE-2011-3874 id permits a locally installed application
to gain root privileges by causing a buffer overflow within
libsysutils. This vulnerability only affects specific Android
versions (first OVAL test) and requires the existence of the
library libsysutils (second OVAL test). Fig. 3 illustrates the
behavior of our implementation prototype over the emulated
Android device. We analyze three performance dimensions:
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Fig. 4: Scalability statistics in a real device
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Fig. 5: Memory load in both emulated and real device

(1) the CPU utilization when XOvaldi4Android is executed
(red solid line with crossings), (2) the XOvaldi4Android
execution time (green dashed line with triangular points) and
(3) the total framework execution time (blue dashed line with
rounded points). During the XOvaldi4Android execution, we
have observed a stable and linear behavior in terms of CPU
utilization, consuming 80% in average. Its execution time is
also stable as shown by the first derivative within the inner
graph. While assessing 50 definitions takes about 72 seconds,
100 definitions takes almost twice the time. The overall exe-
cution time across the framework, including database updates
and reporting results, shows the same behavior though slightly
increased in time due to the sequential execution of its compo-
nents. It is important to notice that these experiments consider
extreme cases. As a matter of fact, only new definitions or
a small set of definitions affected by system changes will be
evaluated in most situations.

In order to analyze the framework behavior using a real
device, we have performed the same experiments using a
standard smartphone Samsung Galaxy Gio S5660 (CPU 800
MHz, 278 MB RAM, Android 2.3.3). Fig. 4 illustrates the
obtained results. We can observe the same behavior on each
curve as with the emulated device, describing a linear growth
for each analysis dimension as shown in the inner graph.
Nevertheless, we have also detected an improvement in terms
of speed and resource usage. The average value for the CPU
utilization is now about 65%. In addition, the execution time
of XOvaldi4Android is almost half the emulator execution
time, taking 38 seconds for analyzing 50 vulnerabilities and
75 for 100 vulnerabilities. This is probably due to a slower
emulated CPU. The overall execution time is also reduced due
to the faster execution of the vulnerability assessment process.
However, its growth rate, though linear, is faster because the
internetwork connections are real in this case.

As a final but not less important dimension to analyze,
we have experimented with the memory load. Within this
analysis, we have considered the allocated memory required by
XOvaldi4Android when it is executed. The system classifies



the allocated memory in two categories, native and Dalvik,
taking in average 40% for native memory and 60% for Dalvik
memory. Fig. 5 illustrates the total memory load considering
both, over the emulator and the smartphone. We have observed
an almost constant utilization of the RAM memory. Within
the emulator (blue solid line with rounded points), XO-
valdi4Android requires 12 MB in average (4.8 MB of native
memory, 7.2 MB of Dalvik memory). Within the smartphone
(red dashed line with rhomboid points), XOvaldi4Android
requires a little less memory, 11 MB in average (4.4 MB of
native memory, 6.6 MB of Dalvik memory).

VII. CONCLUSIONS AND FUTURE WORK

Vulnerability management constitutes a complex activity
that must be addressed in order to increase the overall security
of computing devices. In that context, we have proposed an
approach for supporting vulnerability assessment tasks as the
first key step for integrating this activity within the Android
platform. We have put forward a mathematical model as
well as an optimized strategy that provides solid foundations
for its instantiation on this platform. We have proposed a
lightweight framework that enables the integration of OVAL
security knowledge into the management plane of mobile
Android-based devices. By maintaining low-consumption ser-
vices monitoring the system, the proposed approach minimizes
heavy task executions by only triggering assessment activities
when configuration changes are detected or new vulnerability
definitions are available. In light of this, we have developed
an implementation prototype that efficiently performs self-
assessment activities by following the proposed optimized
strategy. We have also performed an analytical evaluation of
the proposed model as well as an extensive set of technical
experiments that shows the feasibility of our solution.

For future work we plan to analyze protection mechanisms
of the assessment framework itself as well as collaborative
techniques for exchanging security information among neigh-
boring devices over secure channels. We aim at distributing
the resulting improved implementation prototype within the
community as open source. In addition, botnets such as the
one built by the DroidDream malware in 2011 are an emerging
mobile trend [7]. We also aim at extending our previous
work [20] for quantifying compliant network nodes involved
in distributed vulnerabilities in order to describe massive
attack scenarios within mobile environments. Finally, we state
that real autonomy can be achieved if mobile devices are
capable of closing the vulnerability lifecycle by performing
corrective tasks as well. In that context, we also plan to analyze
remediation strategies for correcting vulnerable configurations,
leading us closer to get real autonomic solutions.
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