
HAL Id: hal-00747646
https://hal.inria.fr/hal-00747646

Submitted on 2 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collaborative Remediation of Configuration
Vulnerabilities in Autonomic Networks and Systems

Martín Barrère, Rémi Badonnel, Olivier Festor

To cite this version:
Martín Barrère, Rémi Badonnel, Olivier Festor. Collaborative Remediation of Configuration Vulner-
abilities in Autonomic Networks and Systems. 8th IEEE International Conference on Network and
Service Management (CNSM’12), IEEE, Oct 2012, Las Vegas, United States. �hal-00747646�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49852121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00747646
https://hal.archives-ouvertes.fr

Collaborative Remediation of Configuration
Vulnerabilities in Autonomic Networks and Systems

Martı́n Barrère, Rémi Badonnel and Olivier Festor

INRIA Nancy Grand Est - LORIA, France
Email: {barrere, badonnel, festor}@inria.fr

Abstract—Autonomic computing has become an important
paradigm for dealing with large scale network management.
However, changes operated by administrators and self-governed
entities may generate vulnerable configurations increasing the
exposure to security attacks. In this paper, we propose a novel
approach for supporting collaborative treatments in order to
remediate known security vulnerabilities in autonomic networks
and systems. We put forward a mathematical formulation of
vulnerability treatments as well as an XCCDF-based language
for specifying them in a machine-readable manner. We describe a
collaborative framework for performing these treatments taking
advantage of optimized algorithms, and evaluate its performance
in order to show the feasibility of our solution.

I. INTRODUCTION

Autonomic computing contributes to address the growing
complexity of network management by defining a strong basis
for automated systems capable of managing themselves in
an autonomous manner [17], [16]. Nevertheless, when self-
management operations are performed in order to obey high-
level policies, operated changes may lead to vulnerable states
increasing the exposure of the environment. In addition, human
errors occur when systems administration tasks are executed,
therefore vulnerability management activities, namely, identifi-
cation, classification and remediation of vulnerabilities, are re-
quired in order to ensure safe configurations. We have already
shown in [9] that it is possible to specify and assess distributed
vulnerabilities involving several devices simultaneously, and
also covering device-based vulnerabilities as a particular case.
In this paper we propose a collaborative strategy for remedi-
ating both distributed and device-based vulnerabilities.

The scenario presented in Fig. 1 shows a typical
example [23] where two devices, a SIP1 server with no flood-
ing protection and a local DNS2 server with external unknown
name resolution, constitute a distributed vulnerable state. In
this situation, an attacker can perform a denial of service attack
by flooding the SIP server with unresolvable domains that must
be solved by a local DNS server. The local DNS server in turn
is configured for solving unknown domains querying external
servers, thus increasing the number of waiting requests as
well as the response time for each SIP request. If at least
one of the servers is not present or is not compliant with
the required specific state, the distributed vulnerability has no

1Session Initiation Protocol
2Domain Name System

place in the environment. In order to correct such security
problem, different remediation tasks could be performed in
the SIP server or in the DNS server. A key challenge is to
define a strategy for determining how and by which devices
the distributed vulnerability can be remediated.

Fig. 1: Distributed vulnerability scenario [9]

We therefore introduce in this paper a collaborative ap-
proach for describing and performing treatments of configura-
tion vulnerabilities in autonomic networks and systems. These
correction advisories are taken into account by our framework
in order to remediate vulnerable states found across the
network and thus, reducing the exposure to security attacks.
Our main contributions are: (1) a mathematical approach and
an XCCDF3-based specification language for describing con-
figuration vulnerability treatments, (2) a deployable infrastruc-
ture based on the Cfengine system [1], capable of enforcing
the application and reporting of configuration vulnerability
treatments as security policies, (3) optimized algorithms and
their evaluation for performing remediation activities in a
collaborative manner over the network.

The remainder of this paper is organized as follows.
Section II describes existing work and their limits. Section III
presents the proposed approach for modeling configuration
vulnerability treatments in autonomic networks and systems.
Section IV introduces DXCCDF, a language for specifying
distributed vulnerability treatments. The architecture of our
framework as well as the proposed remediation algorithms
are described in Section V. Section VI provides an evaluation
of our solution through a comprehensive set of experiments.
Section VII presents conclusions and future work.

3eXtensible Configuration Checklist Description Format [24]

978-3-901882-48-7 c© 2012 IFIP

II. RELATED WORK

Vulnerability management constitutes a crucial activity for
maintaining safe configurations in autonomic networks and
systems. Commonly, vulnerabilities can take the form of soft-
ware flaws or misconfiguration errors and they can be usually
corrected by means of different methods such as applying
software patches, adjusting configuration settings or removing
the affected software [18]. However, when corrective actions
are performed changes are introduced in the environment
thus change management mechanisms such as those proposed
in [13], [14] must be taken into account. Risk assessment
methods are also important as they provide a strong basis
for analyzing the impact of remediation activities within the
vulnerability treatment process [20], [19], [22]. It is crucial to
ensure safe changes not only from an operational viewpoint but
from a security perspective too. While several works have been
focused on vulnerability management such as [21], just a few
works address this topic into autonomic environments, mainly
focused on the vulnerability assessment activity [9], [8], [12].

Fig. 2: Languages involved in the vulnerability management
process

Several languages have been proposed for supporting the
vulnerability management process as depicted in Fig. 2. De
facto standards such as OVAL4 [7] and XCCDF provide means
for dealing with device-based vulnerabilities. OVAL is an
XML-based language supported by MITRE Corporation [5]
intended to standardize how to assess and report upon the
machine state of computer systems, with a particular focus on
vulnerability descriptions. The XCCDF language maintained
by NIST [6] provides standard means for specifying security
checklists under both technical and non-technical perspectives.
In order to also cover distributed scenarios, we have proposed
DOVAL5 in our previous work [9], a language built on top
of OVAL for describing and assessing distributed vulnerabil-
ities. However, there is a lack for supporting collaborative
treatments capable of mitigating and remediating distributed
vulnerabilities. In this paper, we propose the DXCCDF6 lan-
guage, built on top of XCCDF, as a means for specifying
distributed security treatments in a generalized manner for
both distributed and device-based vulnerabilities.

III. MODELING VULNERABILITY TREATMENTS

In this section we formalize configuration vulnerability
treatments by extending and enhancing our previous mathe-

4Open Vulnerability and Assessment Language
5Distributed OVAL
6Distributed XCCDF

matical model [9]. A distributed vulnerability is defined as a
set of conditions over two or more network devices that if
observed simultaneously, a potential threat is present on that
network. It is important to remark that the required conditions
to be observed over a specific device do not necessarily
constitutes a complete device-based vulnerability description.

A. Describing distributed vulnerabilities

In order to specify a distributed vulnerability as well as the
network over which this vulnerability will be assessed, the
model defines a set of core definitions as follows:
• H = {h1,h2, . . . } denotes the set of devices in the

network (e.g. hosts, routers).
• P = {p1, p2, . . . } denotes the set of device properties in

the form of unary predicates pi(h),h ∈ H .
• S = {s1, s2, . . . } denotes the set of device states where

a state si describes a set of properties required to be
observed over a network device (called role). The set S
is inductively defined as follows:

i if pi ∈ P , then pi ∈ S (i ∈ N)
ii if α,β ∈ S, then (α � β) ∈ S � ∈ {∧,∨}

iii if α ∈ S, then (¬α) ∈ S.
• R = {r1, r2, . . . } denotes the set of relationships be-

tween network devices such as reachability and service
provisioning. The relationships are modelled as n-ary
predicates of the form ri(hi, ...,hj).

Based on the previous definitions, a distributed vulnerability
DV is defined as the compliant projection of the pattern
(PH ,PR) over the network (H,R) where the constructs PH

and PR are defined as follows:
• PH = {s1, ..., sn} denotes the set of machine states or

roles required to be observed on specific network devices.
• PR = {r1, ..., rv} denotes the set of relationships be-

tween those devices matching the required roles.
Under a logical perspective, a compliant projection of the
pattern (PH ,PR) over the network (H,R) makes the follow-
ing sentence to be true: ∃(h1, ...,hn)(s1(h1) ∧ ... ∧ sn(hn) ∧
r1(hi, ...,hj) ∧ ... ∧ rv(hk, ...,hl)). We specify the previous
sentence in short by considering the predicate DV (H,R) that
expresses the evaluation of a distributed vulnerability DV
based on the pattern (PH ,PR) over a generic network (H,R).
It is important to notice that the model allows to specify a
device-based vulnerability by just defining PH = {s1} and
PR = {}, or a sequence of vulnerabilities spread across the
network by considering PH = {s1, ..., sn} and PR = {}.

B. Specifying distributed treatments

Based on this modeling, we consider a distributed treatment
DT as a body of tasks performed over a set of network devices
that introduces configuration changes in order to eliminate the
security weakness described by a specific distributed vulner-
ability DV . In order to formally define what a distributed
treatment is, we extend the description model explained in
Section III-A by defining the following domains:

• A = {a1, a2, . . . } denotes the set of actions applicable
over network devices.

• T = {t1, t2, . . . } denotes the set of tasks applicable
over network devices. A task ti is a logical combination
of actions and its logical value is computed based on
the successful application of each action. The set T is
inductively defined as follows:

i if ai ∈ A, then ai ∈ T (i ∈ N)
ii if α,β ∈ T , then (α � β) ∈ T � ∈ {∧,∨}

In order to define the application of remediation tasks over
the network, we specify the following set of core functions:

• stateH : H → S ≡ function that takes a device h ∈ H
as input and returns its current state s ∈ S.

• stateR : R → 2S ≡ function that takes a network
relationship r ∈ R as input and returns a set with the
current state si ∈ S of each involved network device
hi ∈ H in the relationship.

• action : H × A → H ≡ function that takes a device
h ∈ H as input and returns the same device h after
performing an action a ∈ A.

• taskH : H × T → H ≡ function that takes a device
h ∈ H as input and returns the same device h after per-
forming a task t ∈ T that produces an observable change
on its state. This means that at least one action ai ∈ A
must introduce a change that cannot be rolled back by
any other action in the task nor a combination of them.
The following property holds in the considered model:
stateH(h) 6= stateH(taskH(h, t)), ∀t ∈ T ,∀h ∈ H .

• taskR : R × T → R ≡ function that takes a network
relationship r ∈ R as input and returns the same network
relationship r after performing a task t ∈ T over its
member devices. Based on the definition of T, is can be
noticed that the task t will produce an observable change
on its state and that the following property also holds:
stateR(r) 6= stateR(taskR(r, t)), ∀t ∈ T ,∀r ∈ R.

• TH = {tH1 , ...,TH
n } denotes the body of available tasks

for performing over network devices where each task tHi
is semantically related to a specific state si. Usually, the
following equation can hold |TH | < |PH |, meaning that
treatment tasks are not always available for correcting
certain device states.

• TR = {tR1 , ..., tRv } denotes the body of available tasks for
performing over network relationships where each task
tRi is semantically related to a specific relationship ri.
Usually, the following equation can hold |TR| < |PR|,
meaning that treatment tasks are not always available for
correcting certain network relationships.

We therefore define a distributed treatment DT as the
compliant application of (TH ,TR) over the network (H,R)
that eliminates every possible matching projection of the
pattern (PH ,PR) over (H,R). Under a logical perspective,
this is defined as the disjunction of task applications over each
potential combination of devices and network relationships
(H ′,R′) performing the roles required by the distributed
vulnerability DV as follows:

DT (H,R) = Π(TH ,TR) = taskH(h1, tH1) ∨ . . . ∨
taskH(hn, tHn) ∨ taskR(r1, tR1) ∨ . . . ∨ taskR(rv, tRv)
∀H ′ = {h1, ...,hn} ⊆ H,R′ = {r1, ..., rv} ⊆ R such that

DV (H ′,R′) holds.
Changes done for correcting different instances (H ′,R′)

of the distributed vulnerability must not shadow performed
remediations for other observed vulnerable instances of DV ,
thus ¬DV (H,R) must hold after the DT application.

IV. DXCCDF, A DISTRIBUTED VULNERABILITY
REMEDIATION LANGUAGE

In order to capture the previous mathematical constructions,
we have conceived the DXCCDF language, built on top of
XCCDF, as a means for expressing vulnerability treatments in
a machine-readable manner. XCCDF rules allow to specify re-
mediation information that can be used by automated systems
to perform corrective actions when specific states are detected.
These states can be specified by languages such as OVAL
and DOVAL. DXCCDF extends XCCDF by considering a
new building block named complex-Rule under the dxccdf
namespace. This extension provides the ability to specify a
boolean expression involving all the potential tasks that can
be performed for remediating a specific machine state. Fig. 3
depicts the mapping between the main components involved
in the mathematical model and their representatives constructs
within the DXCCDF language. An action ai can be understood
as a simple operation, i.e. a shell command, that is performed
for changing a system property pi. This property can be
checked and remediated using an XCCDF rule. A task ti is
a combination of actions in the form of a boolean expression
intended to correct a specific state si. Tasks are represented
by means of DXCCDF complex rules. A distributed treatment
DT is also represented using DXCCDF complex rules and
they are finally put together into XCCDF groups.

The model and the DXCCDF language

Model block Insight Applies to Expressed with

Action ai chmod 644 Property pi XCCDF rule

passwd

Task ti a1 ∨ State si DXCCDF complex

(a2 ∧ a3) rule

Distributed t1 ∨ t2 ∨ . . . Distributed DXCCDF complex

treatment DT ∨ tk ∨ . . . vulnerability rule

Distributed {DT1,DT2, {DV1,DV2, XCCDF group of

treatments . . . } . . . } complex rules

Fig. 3: Mapping the model into the DXCCDF language

We now put forward an illustrative DXCCDF example il-
lustrated in Listing 1 where a distributed treatment is specified
in order to provide directives for remediating the distributed
vulnerability previously depicted in Fig. 1. For the sake of
clarity, we have omitted some XCCDF components that should
be present in valid instances. Within this document, the group
for vulnerability treatments is selected for evaluation con-
taining only one treatment. The construct DXCCDF complex
rule represents the distributed treatment itself. A DXCCDF
complex rule allows to refer a check system for assessing

<cdf :Benchmark i d =” s ip−dos−t e s t−1” x m l n s : d x c c d f =” . . . ” x m l n s : c d f =” . . . ” . . .>

<c d f : t i t l e> DXCCDF example </ c d f : t i t l e>
<c d f : G r o u p i d =” v u l n e r a b i l i t y−t r e a t m e n t s ” s e l e c t e d =”1”>

<c d f : r e q u i r e s i d r e f =”dv1−t reatment ” />
</ c d f : G r o u p>

<dxccd f : complex−Rule i d =”dv1−t reatment ” s e l e c t e d =”1” check =”1”>
<d x c c d f : c h e c k sys tem =” h t t p : / / doval . i n r i a . f r / XMLSchema / doval ”>

<d x c c d f : c h e c k−c o n t e n t−r e f h r e f =” dvDefns . xml” name=” d o v a l : i n r i a : d e f : 1 ” />
</ d x c c d f : c h e c k>
<d x c c d f : c r i t e r i a o p e r a t o r =”OR”>

<d x c c d f : c r i t e r i a o p e r a t o r =”OR”>
<d x c c d f : c r i t e r i o n i d r e f =” f l o o d i n g−p r o t e c t i o n−yum” check =”0” />
<d x c c d f : c r i t e r i o n i d r e f =” f l o o d i n g−p r o t e c t i o n−custom ” check =”0” />

</ d x c c d f : c r i t e r i a>
<d x c c d f : c r i t e r i o n i d r e f =” stop−bind−daemon” check =”0” />

</ d x c c d f : c r i t e r i a>
</ dxccd f : complex−Rule>

<c d f : R u l e i d =” f l o o d i n g−p r o t e c t i o n−yum” s e l e c t e d =”1”>
<c d f : f i x> yum i n s t a l l a s t e r i s k−s i p−dos−p a t c h </ c d f : f i x>
<c d f : c h e c k sys tem =” h t t p : / / ova l . mitre . org / XMLSchema / ova l ”>

<c d f : c h e c k−c o n t e n t−r e f h r e f =” s i p De f n s . xml” name=” o v a l : m i t r e : d e f : 1 0 0 2 ” />
</ c d f : c h e c k>

</ c d f : R u l e>

<c d f : R u l e i d =” f l o o d i n g−p r o t e c t i o n−custom ” s e l e c t e d =”1”>
<c d f : f i x>

wget h t t p : / / d o v a l . i n r i a . f r / f i x e s / s i p / a s t e r i s k−s i p−dos−pa tch−r0 . 2 . rpm
rpm −Uvh a s t e r i s k−s i p−dos−pa tch−r0 . 2 . rpm

</ c d f : f i x>
<c d f : c h e c k sys tem =” h t t p : / / ova l . mitre . org / XMLSchema / ova l ”>

<c d f : c h e c k−c o n t e n t−r e f h r e f =” s i p De f n s . xml” name=” o v a l : m i t r e : d e f : 1 0 0 2 ” />
</ c d f : c h e c k>

</ c d f : R u l e>

<c d f : R u l e i d =” stop−bind−daemon” s e l e c t e d =”1”>
<c d f : f i x> s e r v i c e named s t o p </ c d f : f i x>
<c d f : c h e c k sys tem =” h t t p : / / ova l . mitre . org / XMLSchema / ova l ”>

<c d f : c h e c k−c o n t e n t−r e f h r e f =” unixDefns . xml” name=” o v a l : m i t r e : d e f : 2 0 0 0 ” />
</ c d f : c h e c k>

</ c d f : R u l e>

</ cd f :Benchmark>

Listing 1: DXCCDF vulnerability treatment

the distributed vulnerability under analysis by means of a
DOVAL reference, and also to specify a logical criterion
involving both XCCDF rules and DXCCDF complex rules.
In the proposed scenario there exist two involved roles, the
SIP server and the DNS server. Within the DXCCDF example,
one remediation task has been defined for each role, namely,
TSIP and TDNS . The task TSIP is in turn a non-atomic
task since two corrective tasks, namely, TSIP

yum and TSIP
web ,

can be alternatively performed. Thus, the distributed treatment
expressed by the DXCCDF complex rule corresponds to the
logical expression (TSIP

yum ∨TSIP
web ∨TDNS) where each one of

the referenced standard XCCDF rules are defined in the final
part of the document. These XCCDF rules define the actual
corrective actions to perform over the involved devices and
they are orchestrated by the DXCCDF complex rule in order
to remediate the specific distributed vulnerability.

V. A FRAMEWORK FOR COLLABORATIVELY TREATING
DISTRIBUTED VULNERABILITIES

The DXCCDF language provides the capability of describ-
ing remediation activities that can be consumed by autonomic
entities in order to secure the environment. In this section we
propose a framework for supporting collaborative treatments
specified in DXCCDF considering the main building blocks
of our previous DOVAL-based assessment framework.

A. Architecture overview
In order to remediate a distributed vulnerability several

tasks may be performed on different devices. At the moment

of the analysis however, some of the involved devices may
present particular states that do not allow them or make it
more expensive to perform specific corrective actions than
other involved devices. Factors such as availability, capability,
or even policy consistency must be considered during the
remediation process. We refer to this spectrum of factors as
the cost of the node for performing a corrective task. Potential
mechanisms for actually computing task costs are beyond the
scope of this paper and they may involve several activities
such as risk assessment and change management techniques.
The main process for detecting and remediating distributed
vulnerabilities considers these costs as illustrated in Fig. 4.
Repositories of vulnerability descriptions as well as treatments
specifications are available constituting the knowledge source
of the network. At Step 1, a vulnerability description is
consumed and assessed over the network as explained in [9].
If there is one or more pattern matching instances over the
network, a treatment analysis is launched at Step 2.1 and
its corresponding distributed treatment is consumed from the
treatments repository at Step 2.2. Based on the available tasks
for correcting the security vulnerability, devices are analyzed
across the network in order to find a node for performing a

Fig. 4: Collaborative treatment - High level operation

remediation task. Once the treatment execution has been done
and the network has been secured at Step 3, a treatment report
is generated at Step 4 involving the vulnerability description,
the treatment description used for remediating the vulnerability
as well as the information gathered from the network in order
to perform the corrective activity. Generated reports are stored
in a historical database providing the ability to consider past
experiences in future treatments.

B. Assessment and treatment strategies

We consider in our approach that treatment descriptions
may be available later in time after vulnerabilities have been
discovered. In light of this, we put forward a treatment strategy
that can be applied after performing assessment activities
and that can also be integrated to the assessment process if
treatments are available at that time.

In order to present the proposed treatment strategy, we intro-
duce a situation where the distributed vulnerability described
in Fig. 1 is present in the form of many instances. Within
the example illustrated in Fig. 5, a network with a Cfengine
server and five devices is considered. Devices h1, h2 and h3
are involved in the instances of the distributed vulnerability
described by a DOVAL document. Once the assessment has
been performed at Step 1, a DOVAL report identifying de-
tected vulnerability instances is generated. In order to collect
required information, a spanning tree is generated at Step 2 by
means of Cfengine’s functionalities [10] as used in [9]. The
Cfengine server traverses the network starting at the root of
the spanning tree where each node will inform on how it can
collaborate in the corrective tasks and at what cost, as depicted

Fig. 5: Vulnerability treatment scenario

in Algorithm 1 that we explain later. At Step 3, a report is
generated including the cost of each node for correcting the
roles that each one is performing. Based on this information,
the Cfengine server selects a node for applying corrective
actions at Step 4 and a report indicating the results of the
remediation activity is generated.

Input: TreeNode h, DOVAL document dv, DXCCDF
document dt, CostTable ct.

Output: Table with costs for each node on each role.

1 if currentNode h is alive then
2 roleList ← findRolesForDevice(h, dv);
3 foreach role s ∈ roleList do
4 taskList ← findTasksForRole(s, dt);
5 foreach task t ∈ taskList do
6 cost ← queryNodeForTaskCost(h, t);
7 updateCostTable(ct,h, s, cost);
8 end
9 end

10 gatherTasksCosts(leftTreeNode(h), dv, dt, ct);
11 gatherTasksCosts(rigthTreeNode(h), dv, dt, ct);
12 end

Algorithm 1: gatherTasksCosts (recursive)

In the proposed approach, a spanning tree is built in order
to explore the network. Algorithm 1 presents the activity
performed at each active node of the tree (line 1) for gathering
and analyzing devices information. Each node h reads the list
of roles involved in the vulnerability instances given in the
DOVAL document dv, identifies itself in the list (lines 2-3),
and for each task t found in the DXCCDF document dt
applicable on each specific role s that h plays (lines 4-5), the
task cost is computed by the node itself and attached to the
general cost table ct (lines 6-7). The traversal continues on the
left and right sub-trees (lines 10-11) until the whole spanning
tree has been explored. This strategy can be easily integrated
if treatments are available during the assessment process. By
computing task costs at the same time network devices are
evaluated looking for specific states, the Cfengine server will
have all the required information for deciding which nodes will
execute remediation tasks. Already scheduled as future work,
a decentralized distributed strategy would allow any agent to
start a vulnerability treatment though distributed algorithms
such as leader election algorithms [15], [11], are necessary for
deciding which node will execute corrective tasks.

VI. PERFORMANCE EVALUATION

Within the proposed framework, the complexity of the pro-
cess is dominated by the number of nodes in the network and
Algorithm 1 is O(n). This means that the treatment process
can be coupled with the assessment process without increasing
its growth rate. Given a distributed vulnerability, the total
assessment time under both a sequential (TA

S) and a parallel
(TA

P) approach has been mathematically defined in [9]. In
order to evaluate the whole time process involving assessment
and treatment activities (A + T), we have extended these
definitions by considering two additional parameters, namely,

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 0 2000 4000 6000 8000 10000
 0

 10000

 20000

 30000

 40000

 50000

 60000

U
n

it
s
 o

f
T

im
e

 (
T

s
)

U
n

it
s
 o

f
T

im
e

 (
T

p
w

)

Number of Nodes

Time scalability statistics using role assignment with probability 1/2

Ts(A)
Tpw(A)

Ts(A+T)
Tpw(A+T)

 0

 40000

 80000

 0 2000 4000 6000 8000 10000

Number of Nodes

Growth Rate (First Derivative)

Ts(A) - Ts(A+T)
Tpw(A) - Tpw(A+T)

Fig. 6: Time statistics for vulnerability assessment and treat-
ment activities

λ that denotes the average number of available tasks for each
role sj , and w denoting the average time for computing the
cost of a single task. The new equations are defined as follows:

TA+T
S = TA

S + (n ∗ k ∗ P (A) ∗ λ ∗ w) (1)

TA+T
Pw = TA

Pw + (k ∗ λ ∗ w) (2)

Using a sequential approach (TA+T
S), the total time is given

by the time required for assessing the distributed vulnerability
plus the time needed for each node (n nodes in the network)
to assess its k potential roles. The probability for a node
to play a certain role sj is expressed by P (A). For those
roles present in the node, the number of tasks λ multiplied
by the average time each task takes w is considered. Under
a parallel approach (TA+T

Pw) and considering the worst case,
the total time is given by the time required for assessing the
distributed vulnerability in the worst case plus the time needed
for a node to compute the cost of every available task (λ
tasks) for every role sj considering an average time w for
each task. In order to prove the scalability of the proposed
approach, we have performed several analytical experiments
that combine the assessment and treatment processes at the
same time as shown in Fig. 6. Both solid blue lines with
rounded and triangular points represent the time growth when
the number of network devices is increased and only the
assessment process is performed under a sequential (TS(A))
and a parallel (TPw(A)) approach. Dashed red lines show the
time behavior when assessment and treatment activities are
performed at the same time (A+T). TS(A+T) illustrated by
the dashed red line with rounded points shows the same growth
rate than TS(A). The same phenomenon can be observed
when a parallel approach is taken as depicted by TPw(A)
and TPw(A+T). Within our experiments we have overvalued
the parameter w in order to obtain a visible distance between
curves and be able to notice the same growth behavior. First
derivatives drawn in the inner graph confirms the same growth
rates for both sequential (green solid line) and parallel (green

dashed line) approaches, considering only the assessment (A),
and both the assessment plus treatment (A+ T) activities.

In order to provide a technical and deployable infrastructure
for performing treatment activities, we are currently develop-
ing Scapalyzer, a Java-based [4] system capable of consum-
ing OVAL and DOVAL vulnerability descriptions as well as
XCCDF and DXCCDF treatment descriptions and producing
the appropriate assessment and corrective Cfengine policy
rules. Scapalyzer uses the services provided by our previous
system [8], [9], and it is currently focused on the Cisco IOS
platform [2] though more platforms can be also supported by
means of its plugin-based architecture. Moreover, Scapalyzer
uses the JAXB framework [3] for managing XML related
issues, thus enabling our system to seamlessly evolve with
new versions of vulnerability and remediation description lan-
guages by automatically regenerating its internal data model.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we propose a collaborative approach for in-
tegrating remediation descriptions into the management plane
of autonomic networks and systems. We have put forward a
mathematical model for defining vulnerability treatments that
provides a robust foundation for its technical implantation.
Indeed, an XML-based language called DXCCDF has been de-
signed for capturing these mathematical constructs, providing
the ability of describing remediation activities in a machine-
readable manner. Our Cfengine-based framework takes into
account these vulnerability treatment descriptions when unsafe
vulnerable states are detected during the vulnerability assess-
ment process in order to eradicate such security weaknesses.
We have performed an analytical performance evaluation of
our approach obtaining successful linear costs when it is
integrated into the vulnerability management process. We have
also introduced Scapalyzer, an under-development prototype
implementation for translating DXXCDF remediation descrip-
tions into Cfengine policy rules.

Treating and remediating vulnerabilities opens a wide spec-
trum of challenges that must be addressed in order to fully
integrate the vulnerability management process into the man-
agement plane of self-governing environments. The proposed
framework structures the remediation activity, however metrics
are required for quantifying the costs of corrective remediation
tasks with respect to device capacities, service dependencies
and policy consistency. Sometimes the same corrective ac-
tivity may solve several vulnerable states at once, therefore
optimized strategies must be specified for minimizing these
remediation costs. Finally, centralized approaches may gen-
erate bottleneck issues implying poor performance in certain
situations. Decentralized distributed vulnerability management
strategies are required for tackling this issue by balancing the
workload in the network. However, the support algorithms
pose hard challenges in terms of correctness and efficiency
thus appropriate formal proofs should be considered as well.

ACKNOWLEDGEMENTS

This work was partially supported by the EU FP7 Univerself
Project and the FI-WARE PPP.

REFERENCES

[1] Cfengine. http://www.cfengine.org/. Last visited on April 8, 2012.
[2] Cisco IOS. http://www.cisco.com/. Last visited on April 8, 2012.
[3] Java Architecture for XML Binding. http://java.sun.com/developer/

technicalArticles/WebServices/jaxb/. Last visited on March 10, 2012.
[4] Java technology. http://www.oracle.com/technetwork/java/. Last visited

on April 8, 2012.
[5] MITRE Corporation. http://www.mitre.org/. Last visited on March 10,

2012.
[6] NIST, National Institute of Standards and Technology. http://www.nist.

gov/. Last visited on March 10, 2012.
[7] The OVAL Language. http://oval.mitre.org/. Last visited on March 10,

2012.
[8] M. Barrère, R. Badonnel, and O. Festor. Supporting Vulnerability

Awareness in Autonomic Networks and Systems with OVAL. Proceed-
ings of the 7th IEEE International Conference on Network and Service
Management (CNSM’11), October 2011.

[9] M. Barrère, R. Badonnel, and O. Festor. Towards the Assessment
of Distributed Vulnerabilities in Autonomic Networks and Systems.
Proceedings of the IEEE/IFIP Network Operations and Management
Symposium (NOMS’12), April 2012.

[10] M. Burgess, M. Disney, and R. Stadler. Network Patterns in Cfengine
and Scalable Data Aggregation. In Proceedings of the 21st conference
on Large Installation System Administration Conference, pages 22:1–
22:15, Berkeley, CA, USA, 2007. USENIX Association.

[11] M. Castillo, F. Farina, A. Cordoba, and J. Villadangos. A Modified O(n)
Leader Election Algorithm for Complete Networks. In Proceedings of
the 15th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing, PDP ’07, pages 189–198, Washington,
DC, USA, 2007. IEEE Computer Society.

[12] F. Chiang, J. Agbinya, and R. Braun. Risk and Vulnerability Assessment
of Secure Autonomic Communication Networks. The 2nd International
Conference on Wireless Broadband and Ultra Wideband Communica-
tions (AusWireless 2007), (AusWireless):40–40, August 2007.

[13] M. Chiarini and A. Couch. Dynamic Dependencies and Performance
Improvement. In Proceedings of the 22nd conference on Large Instal-
lation System Administration Conference, pages 9–21. USENIX, 2008.

[14] Y. Diao, A. Keller, S. Parekh, and V. V. Marinov. Predicting Labor
Cost through IT Management Complexity Metrics. Proceedings of
the 10th IFIP/IEEE International Symposium on Integrated Network
Management (IM’07), (1):274–283, May 2007.

[15] H. Garcia-Molina. Elections in a Distributed Computing System. IEEE
Trans. Comput., 31(1):48–59, January 1982.

[16] IBM. An Architectural Blueprint for Autonomic Computing. IBM, 2006.
[17] J.O. Kephart and D.M. Chess. The Vision of Autonomic Computing.

Computer, 36(1):41–50, January 2003.
[18] P. Mell, T. Bergeron, and D. Henning. Creating a Patch and Vulnerability

Management Program. NIST, November 2005.
[19] J. Sauve, R. Santos, R. Reboucas, A. Moura, and C. Bartolini. Change

Priority Determination in IT Service Management Based on Risk
Exposure. IEEE Transactions on Network and Service Management,
5(3):178–187, September 2008.

[20] T. Setzer, K. Bhattacharya, and H. Ludwig. Decision Support for Service
Transition Management - Enforce Change Scheduling by Performing
Change Risk and Business Impact Analysis. Proceedings of the IEEE
Network Operations and Management Symposium (NOMS’08), pages
200–207, April 2008.

[21] J. A. Wang and M. Guo. OVM: An Ontology for Vulnerability
Management. In Proceedings of the 5th Annual Workshop on Cyber
Security and Information Intelligence Research: Cyber Security and
Information Intelligence Challenges and Strategies (CSIIRW’09), pages
34:1–34:4, New York, NY, USA, 2009. ACM.

[22] J. A. Wickboldt, L. A. Bianchin, and R. C. Lunardi. Improving
IT Change Management Processes with Automated Risk Assessment.
Proceedings of IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM’09), pages 71–84, 2009.

[23] G. Zhang, S. Ehlert, T. Magedanz, and D. Sisalem. Denial of Service
Attack and Prevention on SIP VoIP Infrastructures using DNS Flooding.
In Proceedings of the 1st International Conference on Principles,
Systems and Applications of IP Telecommunications (IPTComm’07),
pages 57–66, New York, NY, USA, 2007. ACM.

[24] N. Ziring and S. D. Quinn. Specification for the Extensible Configuration
Checklist Description Format (XCCDF). NIST, March 2012.

