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Abstract. In this work, we develop a computational framework for opti-
mal design of experiment in parametric signal reconstruction. We apply
this to the optimal design of one dimensional q-space, q-ball imaging
and multiple q-shell experimental design. We present how to construct
sampling scheme leading to minimal condition number, and compare to
state-of-the-art sampling methods. We show in particular a better noise
performance of these scheme through Monte-Carlo simulations for the
reconstruction of synthetic signal. This demonstrates the impact of this
computational framework on acquisition in diffusion MRI.

1 Introduction

Diffusion MRI investigates the properties of tissue microstructure from the anal-
ysis of water molecules displacement. The diffusion characteristics, such as the
ensemble average propagator or the orientation distribution function, are related
to the diffusion signal attenuation through continuous transforms. Since then,
the first step in the processing pipeline is usually a parametric estimation of the
diffusion signal, from a series of discrete measurements. The number of samples
in diffusion MRI is limited to keep the acquisition time compatible with in-vivo
measurements. Therefore, the choice of sampling points in the q-space is critical
for a proper reconstruction and quantitative analysis of diffusion characteristics.

The question of sampling efficiency has been widely studied for parametric
estimation in diffusion MRI. Several approaches were proposed to uniformly ar-
range points on the sphere in q-ball imaging (QBI), using an analogy between
the sampling directions and a pair of antipodal electric charges [1, 2], or geomet-
ric constructions [3]. For the reconstruction of diffusion tensor MRI, the noise
performance has been studied through the minimization of the condition number
[4, 5]. In q-space MRI, several studies on multiple shell sampling [6–9] focused on
the efficiency of various sampling strategies, but they do not provide a method
to systematically improve the noise performance.

In this work, we give a general method for optimal design of experiment in
parametric signal reconstruction. We apply this to the optimal design on one di-
mensional q-space experiment, q-ball imaging and multiple q-shell experimental
design. In the last section, we compare the proposed method to state-of-the-art
sampling strategies.



2 Theory

2.1 Parametric estimation of the diffusion signal

The diffusion signal is approximated in a finite, orthonormal basis of functions

∀q ∈ Ω, E(q) =

R
∑

i=1

cifi(q), (1)

where Ω ⊂ R
3. Depending on the application, we have Ω = R (1D diffusion

signal), Ω = S2 (QBI) or Ω = R
3 (q-space imaging).

Provided K measurements yk = E(qk) of the signal at wavevectors qk, the
coefficients ĉi are estimated by least squares. Put in matrix form, we write

ĉ = (HTH)−1HTy. (2)

H is the design matrix, and has entries Hki = fi(qk).

2.2 Information matrix and optimal design

We present a general method to choose the sampling points qk to optimize
the noise performance. A useful index for noise performance and stability of
the reconstruction is the condition number κ(M) = λmax(M)/λmin(M) of the
information matrix M = 1/K HTH, where K is the number of measurements.
The condition number is an upper bound to the error propagation from the
measurements to the coefficients estimates. The optimal value of κ(M) is 1, in
which case the information matrix is proportional to the identity IR.

The coefficients of the information matrix Mij can be interpreted as the
approximation of the continuous dot product 〈fi, fj〉

Mij =
1

K

K
∑

k=1

fi(qk)fj(qk) ≈
∫

Ω

fi(q)fj(q)dΩ(q) = δij (3)

The basis is orthonormal, hence if this approximation is exact, M = IR, and
the associated condition number equals 1. This naturally introduces the notion
of quadrature formula, and its generalization to higher dimension, called the
cubature formula.

Definition 1. A cubature formula for the integral I =
∫

Ω
g(q)dΩ(q) is a col-

lection of nodes qs and weights ωs such that

I =

S
∑

s=1

ωsg(qs) (4)

If such a cubature formula exists for the integral in Eq. 3, then we place the
sampling points at nodes qs, and the number of repetitions Ks at node qs is
proportional to the weight ωs.



3 Methods

In this section, we derive cubature formulae for the simple harmonic oscillator
basis [10] (1D diffusion signal), spherical harmonic basis [11] (QBI) and spherical
polar Fourier basis [12] (q-space imaging).

3.1 Optimal design in one dimensional q-space MRI

The simple harmonic oscillator basis for the reconstruction of real diffusion signal

in one dimension [10] is given by Φi(q, u) = κi(u) exp(−2π2q2u2)L
−1/2
i (4π2q2u2),

where u is a characteristic length, L
−1/2
i the generalized Laguerre polynomial of

degree i and κi(u) a normalization constant.
Put back into the general framework presented in Section 2.2, we have Ω = R,

and the basis functions are fi = Φi. For the evaluation of the dot product in
Eq. 3, we use the substitution x = 4π2q2u2, so that

〈Φi, Φj〉 = 2πuκi(u)κj(u)

∫ ∞

0

L
−1/2
i (x)L

−1/2
j (x)x−1/2e−xdx. (5)

When the basis is truncated to order N , the evaluation of Eq. 5 reduces to
the problem of Gauss-Laguerre quadrature [13]. The optimal samples are qs =√
xs/2πu, with Ks repetitions, where Ks is proportional to xse

xs/[L
−1/2
N (xs)]

2

and the nodes xs, s = 1 . . . N + 1 are the roots of L
−1/2
N+1

.

3.2 Optimal design in q-ball imaging

Geometric Electrostatic Optimal (L = 4)

Fig. 1. Arrangements of K = 50 points on the unit sphere.

The real, symmetric spherical harmonic basis {Ylm} truncated to order L has
dimension R = (L+1) ·(L+2)/2. Put back into the general framework presented
in Section 2.2, we have Ω = S2, and the basis functions are fi = Yi, where
i(l,m) = 1, 2, . . . , R for (l,m) = (0, 0), (2,−2), . . . , (L,L).

This basis is equivalent to the basis of harmonic polynomial of degree L on
S2, for which cubature formulae exist and are called spherical design.

Definition 2. A spherical t-design [14] is a sequence of K points X = (uk),
k = 1 . . .K on the unit sphere, such that the integral of any polynomial p(x, y, z)



of degree at most t over the sphere is equal to the average value of the polynomial
on X :

1

K

K
∑

k=1

p(ukx, uky, ukz) =

∫

S2

p(ω)d2ω. (6)

If the sampling directions uk form a spherical 2L-design, then the approximation
in Eq. 3 is exact and κ(M) = 1. For the construction of a spherical 2L-design
with antipodal symmetry, we rely here on the equivalence criterion in [15]. An
example of optimal direction set for order L = 4 is presented on Fig. 1, and
compared to a geometric [3] and an electrostatic [1, 2] arrangements of points.

3.3 Optimal design in q-space imaging

N = 1, L = 4,K = 66 N = 2, L = 4,K = 168

Constant sampling Optimal sampling Constant sampling Optimal sampling

Fig. 2. 2-shell (left) and 3-shell (right) acquisition protocols: regular multiple q-shell
with constant number of points per shell, and optimal arrangement with minimal con-
dition number for reconstruction in SPF basis.

The truncated spherical polar Fourier (SPF) basis [12] is able to represent
the diffusion signal in the whole q-space. To represent a continuous signal, which
verifies E(0) = 1, we have recently proposed a slightly modified version of
the SPF basis [16]. We reconstruct the signal as E(q · u) = exp(−q2/2ζ) +
∑

nlm anlmCnlm(q · u). The basis functions are Cnlm(q · u) = Fn(q)Ylm(u), with

Fn(q) = χn
q2

ζ
exp

(

− q2

2ζ

)

L5/2
n

(

q2

ζ

)

, (7)

ζ is a scale factor, χn a normalization constant, and Ylm is the real spherical
harmonic function. When the radial and angular truncation orders are N and
L, respectively, this basis has dimension R = N · (L + 1) · (L + 2)/2. Put back
into the general framework presented in Section 2.2, we have Ω = R

3, and
the basis functions are fi = Ci, where i(n, l,m) = 1, 2, . . . , R for (n, l,m) =
(0, 0, 0), (0, 2,−2), . . . , (N,L,L).

For the construction of an optimal design for this basis, we build on the
findings of the previous two sections. We show that the radial part of the integral
in Eq. 3 reduces to a Gauss-Laguerre quadrature problem, while the angular part
reduces to a spherical design problem.



Therefore we propose a design on N + 1 spheres in the q-space. The shell s

has radius qs =
√
ζxs, where xs is the sth root of L

5/2
N+1

. The number of points

Ks on shell s should be proportional to ωs = exp(−xs)/[xs(L
5/2
N (xs))

2] Finally,
the points on each sphere should form a spherical 2L-design. Example of points
sets generated with this method are depicted on Fig. 2. They are compared to
multiple shell sampling where the shell radii are evenly spaced, and the number
of points equal on each shell, as suggested in [7].

4 Experiments and Results

4.1 Quadrature formula in one dimensional q-space MRI
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Fig. 3. Evaluation of Gauss-Laguerre quadrature for one dimensional q-space. (Left)
An example of signal and its reconstruction. The blue squares and the green circles
represent the regular and quadrature samples respectively. The radii of the circles are
proportional to the number of repeated acquisitions. (Right) Condition number of the
information matrix.

In this section, we show the feasibility of one dimensional q-space signal
reconstruction from a set of measurements on a limited support size. We compare
the Gauss-Laguerre quadrature to a regular sampling on the range [0, qmax]

We plot on Fig. 3 an example of reconstruction of a diffusion signal corre-
sponding to the restricted diffusion between two parallel planes, separated by
distance d [10]. The truncation order in the basis was set to N = 5, and the
corresponding Gauss-Laguerre quadrature works on 6 nodes. The result for a
total of 20 acquisitions is visually identical to the reconstruction from a regular
sampling. Besides, the associated information matrix is better conditioned for
the quadrature sampling. The reason why the condition number is not exactly
1 in this case is that the quadrature weight ωs is approximated by the number
of repetitions at node qs, which is an integer.



4.2 Evaluation of conventional schemes in q-ball imaging

We evaluate and report on Fig. 4 the noise performance of point sets gener-
ated with electrostatic analogy [1, 2] and by geometrical construction [3], for
the reconstruction of SH coefficients of the diffusion signal. We compare these
sampling methods to the proposed, optimal point set based on spherical design.
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Fig. 4. q-ball imaging: condition number of the information matrix corresponding to
the truncated SH up to order L = 4 (left) and L = 6 (right), of the electrostatic,
geometric and optimal point sets. The geometric configurations are only provided for
K ≥ 50, as this method is reported to be dedicated to large K by the author in [3]. Our
proposed, optimal design is based on spherical design, and therefore exists for K ≥ 24
at order L = 4, and for K ≥ 46 at order L = 6 [15]. By construction, the condition
number associated is exactly 1.

4.3 Multiple q-shell and three dimensional signal reconstruction
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Fig. 5. Condition number of multiple shell sampling, corresponding to the SPF basis.

Using the results on Gauss-Laguerre quadrature and spherical designs, we
generated optimal sampling schemes on multiple shells for the reconstruction in



the SPF basis. We compare this to the sampling strategy with shell radii evenly
spaced and constant number of points per shell proposed in [7]. The condition
number for the reconstruction in SPF basis is reported on Fig. 5.

We also simulate both methods, for the sampling and reconstruction of a
synthetic diffusion signal corresponding to a mixture of Gaussian. Visual recon-
struction is reported on Fig. 6, and quantitative comparison on Fig. 7.
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Fig. 6. 2 shell (top) and 3 shell (bottom) sampling in action, for the reconstruction of
a synthetic diffusion signal corresponding to a mixture of Gaussian, simulating fiber
crossing. The circles represent the sampling shells, and the line widths are proportional
to the number of points per shell.

5 Conclusion

In this work, we develop a computational framework for optimal design of exper-
iment in diffusion MRI. For the reconstruction of 1D, spherical and 3D signal, we
propose sampling scheme with minimal condition number. Monte-Carlo simula-
tions confirm this result, as the signal to noise ratio of the parameters estimated
from optimal sampling scheme is improved with respect to conventional sampling
scheme, for the same number of acquisitions.

As a conclusion to this study, we claim that a sampling method is optimal for
a reconstruction in a given basis and a given order. In addition to the technical
and physical limitations of the imaging system, the choice of the type of recon-
struction must be taken into account when designing the acquisition protocol.
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Fig. 7. Mean squared error for a synthetic diffusion signal corresponding to a mixture
of Gaussian, with Rician noise (SNR=25).
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