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Abstract We consider the problem of displaying commer-

cial advertisements on web pages, in the “cost per click”

model. The advertisement server has to learn the appeal of

each type of visitors for the different advertisements in order

to maximize the profit. Advertisements have constraints such

as a certain number of clicks to draw, as well as a lifetime.

This problem is thus inherently dynamic, and intimately com-

bines combinatorial and statistical issues. To set the stage, it

is also noteworthy that we deal with very rare events of in-

terest, since the base probability of one click is in the or-

der of 10−4. Different approaches may be thought of, rang-

ing from computationally demanding ones (use of Markov

decision processes, or stochastic programming) to very fast

ones. We introduce NOSEED, an adaptive policy learning al-

gorithm based on a combination of linear programming and

multi-arm bandits. We also propose a way to evaluate the ex-

tent to which we have to handle the constraints (which is di-

rectly related to the computation cost). We investigate perfor-

mance of our system through simulations on a realistic model

designed with an important commercial web actor.

Keywords advertisement selection, web sites, optimiza-

tion, non-stationary setting, linear programming, multi-arm

bandit, click-through rate (CTR) estimation, exploration-

exploitation trade-off.
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1 Introduction

The ability to efficiently select items that are likely to be

clicked by a human visitor of a web site is a very important

issue. Whether for the mere comfort of the user to be able to

access the content he/she is looking for, or to maximize the

income of the website owner, this problem is strategic. The

selection is based on generic properties (date, world news

events, ...), along with available personal information (rang-

ing from mere IP related information to more dedicated in-

formation based on the login to an account). The scope of ap-

plications of this problem ranges from advertisement or news

display (see for instance the Yahoo! Front Page Today Mod-

ule), to web search engine result display. There are noticeable

differences between these examples: in the first two cases, the

set of items from which to choose is rather small, in the order

of a few dozens; in the latter case, the set contains billions

of items. The lifetime of items may vary considerably, from

a few hours for news, to weeks for web advertisements, to

years for pages returned by search engine. Finally, the ob-

jective ranges from drawing attention and clicks on news, to

providing the most useful information for search engines, to

earning a maximum of money in the case of advertisement

display. Hence, it seems difficult to consider all these settings

at once and in this paper, we consider the problem of select-

ing advertisements, in order to maximize the profit earned

from clicks: we consider the “cost to click” economic model

in which each single click on an advertisement brings a cer-

tain profit. We wish to study principled approaches to solve

this problem in the most realistic setting; for that purpose, we
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consider the problem with:

• finite amounts of advertising campaigns,

• finite amounts of clicks to gather on each campaign,

• finite campaign lifetimes,

• the appearance and disappearance of campaigns along

days, and

• a finite flow of visitors and page requests.

With these assumptions, we would like to emphasize that

our goal is not to optimize any asymptotic behavior and ex-

hibit algorithms that are able to achieve optimal asymptotic

behavior (but perform badly for much too long). To the op-

posite, we concentrate on the practical problem faced here

and now by the web server owner: he/she wants to make

money now, and do not really care about ultimately becom-

ing a billionaire when the universe will have collapsed (which

is likely to happen in a not so remote future with regards

to asymptotic times either). In the same order of ideas, we

also want to keep the solution computable in “real”-time, real

meaning here within a fraction of a second, and able to sup-

port the high rate of requests observed on the web server of an

important web portal. Of course, such requirements impede

the quality of the solution, but these requirements are neces-

sary from the practical point of view; furthermore, since we

have to deal with a lot of uncertainty originating from various

sources, the very notion of optimality is quite relative here.

In Section 2, we formalize the problem under study, and

introduce the vocabulary and the notation used throughout

the paper. Our notations are summarized in an appendix to

the paper. The problem we tackle is actually changing over

time; for pedagogical reasons, in Section 3 we first study

the problem under a static setting where the set of advertis-

ing campaigns are known in advance and the time horizon

is fixed, before moving to the more general dynamic setting

without these constraints in Section 4. We define a series of

problems of increasing complexity, ranging from the case in

which all information is available, to the case where key in-

formation is missing. Assessing algorithms in the latter one

is difficult, in particular from a methodological point of view,

and spanning this range of problems let us assess our ideas

in settings in which there is a computable optimal solution

against which the performance of algorithms may be judged.

Section 5 presents related works. Section 6 presents some ex-

perimental results of our algorithm near optimal sequential

estimation and exploration for decision (NOSEED) in both

static and dynamic settings. Finally, Section 7 concludes and

we briefly discuss the lines of foreseen future works.

2 Formalization of the problem

At a given time t, there is a pool of advertising campaigns.

Each advertising campaign in the pool has a starting time,

a lifetime and a click budget that is expected to be fulfilled

during its lifetime. At each click on an advertisement of the

campaign, a certain profit is made. The status of an advertis-

ing campaign can be either one of the following (Fig. 1):

Fig. 1 At time t = 300, Ad1 is in scheduled state (in dark grey), Ad2 has
expired (in white), Ad3 and Ad4 are running with remaining lifetimes of 100
and 300, respectively (in light grey)

scheduled when the campaign will begin at some time in

the future,

running when the campaign has started but not expired

yet,

expired when either the lifetime of a campaign has ended

or the click budget has been reached.

The advertisements of a campaign can only be displayed

when it is in the running state.

Each advertising campaign is assumed to have a unique

identifier, and we will represent an advertising campaign by a

tuple (S , L, B, cp, rb) where S , L, B and cp denote its starting

time, lifetime, click budget and profit per click, respectively;

rb � B denotes the remaining click budget of the advertising

campaign. Note that, for a given advertising campaign, all

parameters except the remaining click budget are constant;

the remaining click budget is initially equal to the click bud-

get of the advertising campaign and decreases with time as

it receives clicks from the visitors. Throughout the paper, the

advertising campaign with identifier k will be denoted by Adk

and its parameters will be identified by subscript k, e.g., S k

will denote the starting time of the advertising campaign with

identifier k.

Now, the problem that we are interested in is as follows

(Fig. 2):

• The web site receives a continuous stream of page re-

quests. Each request originates from a “visitor”, that is,
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Fig. 2 The interaction between a visitor and the system

a human being browsing in some way the website. We

assume that non human visitors (robots) may be iden-

tified as such, and are filtered out1) . Each visitor is as-

sumed to belong to one among N possible user profiles;

the user profiles are numbered from 1 to N. We will

use Ui to denote the ith user profile and vi to denote the

probability that a visitor belongs to that user profile2) .

• When a visitor visits the web site, a new “session” be-

gins and we observe one or several iterations of the fol-

lowing sequence of events:

– The visitor requests a certain page of the web site.

– The requested page is displayed to this visitor with

an advertisement from advertising campaign with

identifier k embedded in it.

– The visitor clicks on the advertisement with a cer-

tain probability pi,k where i denotes the user pro-

file of the visitor; this probability is usually called

the click-through rate (CTR) and the event itself is

a Bernoulli trial with success probability pi,k.

– If there is a click, then the profit associated with

the advertising campaign is incurred.

• After a certain number of page requests, the visitor

leaves the web site and the session terminates.

Returning visitors do not change the nature of the problem

given that the session information persists, and for the sake

of simplicity we will be assuming that there are no returning

visitors.

The objective is to maximize the total profit by choosing

the advertisements to be displayed “carefully”. Since page re-

quests are atomic actions, in the rest of the paper we will take

a page request as the unit of time to simplify the discussion,

i.e., a time step will denote a page request and vice versa.

Note that in the real-world, some of the parameters men-

tioned above may not be known with certainty in advance.

For example, we do not know the visit probabilities of the

user profiles, their probability of click for each advertising

campaign, the actual profiles of the visitors, or the number

of requests that they will make; the number of visitors may

change with time and new advertising campaigns may begin.

These and other issues that we will address in the following

sections of the paper make this problem a non-trivial one to

solve.

3 Static setting

In order to better understand the problem and derive our so-

lution, we will first investigate it under a static setting. In this

setting, we assume that

• there is a pool of K advertising campaigns, and

• the properties of the advertising campaigns (i.e., their

starting times, lifetimes, click budgets and click profits)

are known in advance.

Note that, this leads to a fixed time horizon T which is

equal to the latest ending time of the advertising campaigns.

At time T , the task is finished. Other parameters of the prob-

lem, such as the click and visit probabilities, may or may not

be known with certainty. We will start with the case in which

all the information is available, and subsequently move to the

setting in which uncertainty comes into play, and then only a

part of the information will be available.

3.1 Static setting with full information

In the static setting with full information, we assume that all

parameters are known. To be more precise:

(a) the visit probabilities of user profiles, vi, and their click

probabilities for each advertising campaign, pi,k are known,

and,

(b) there is no uncertainty in the actual profiles of the visi-

tors, i.e., we know for sure the profile of each visitor.

Note that, even if we have full information, the visitor at

time t and whether the visitor will click on the displayed ad-

vertisement or not are still unknown.

We first define the problem we wish to solve as a Markov

1) The identification of robots is not necessarily easy to perform, but even if some of them are not filtered out, that would not bring serious problems to our
study.
2) The sum of vi over all user profiles is equal to 1, which forms a categorical distribution with probability mass function fP(Ui) = vi
3) To be precise, one optimal solution, or a set of equally performing optimal solutions.
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decision process (MDP) [1]. This implies that the problem

under consideration has an optimal solution3) . For the sake

of clarity, we only detail the MDP formulation in the static

setting, but subsequent, more complex settings, may easily

be cast into the MDP (or partially-observable MDP) frame-

work. Then, we consider the problem of determining an op-

timal policy for this MDP. As it will be shown in the fol-

lowing section, the state space of the MDP grows linearly

with time and exponentially with the number of advertising

campaigns. This huge state space makes it difficult to de-

termine an optimal policy by straightforward dynamic pro-

gramming approaches in a reasonable time for any practical

application; this raises the question of whether there can be

other approaches to solve the problem and obtain a policy that

performs “well” (also this explains why we do not solve the

problem using traditional MDP algorithms).

Being interested in real settings, thus looking for non

asymptotic performance, and wishing to have an algorithm

that performs as best as possible in an efficient way, we ex-

amine various issues and subsequently propose the NOSEED

algorithm which aims to handle them both in simple and more

complex settings as will be detailed in Sections 3.2, 3.3, and

4.

3.1.1 The underlying Markov decision problem for the ad-

vertising selection problem

At any time t, the state of this version of the problem can be

fully represented by a tuple that consists of time t, the time

horizon T , the visit and click probabilities, and a set of tuples

denoting the advertising campaigns:

〈t, T, {vi}, {pi,k}, Ad1 = 〈S 1, L1, B1, cp1, rb1〉, . . . , AdK〉.

By omitting the fixed parameters, this tuple can be more

compactly represented as 〈t, rb1, . . . , rbK〉.

Given a state s = 〈t, rb1, . . . , rbK〉, if there is no click at

that time step or there is no running advertising campaign

then the next state, which we will denote by s′
noclick

, has

the same representation as s except the t component since

click budgets of campaigns do not change, i.e., s′
noclick

=

〈t + 1, rb1, . . . , rbK〉. In case an advertisement from a running

advertising campaign Adk is clicked, the remaining click bud-

get of Adk will be reduced by 1 and the next state becomes

〈t + 1, rb1, . . . , rbk − 1, . . . , rbK〉; we will denote this state by

s′
click,k

.

A policy is defined as a mapping from states to a distribu-

tion over the set of advertising campaigns; given a particular

state, the policy determines which advertising campaign to

display at that state. A policy is called optimal if it maxi-

mizes the expected total profit. Let V(s) denote the expected

total profit that can be obtained by following an optimal pol-

icy starting from state s until the end of time horizon; V(s) is

usually called the value of state s. Now, suppose that there is

a visitor from the ith user profile at state s; the expected to-

tal profit that can be obtained by displaying an advertisement

from a running advertising campaign Adk can be defined as:

Vi,k(s) = pi,k[cpk + V(s′click,k)] + (1 − pi,k)V(s′noclick), (1)

and the optimal policy, i.e., the best advertising campaign to

display, would be to choose advertising campaign with the

maximum expected total profit, i.e., argmaxAdk
Vi,k(s). Note

that, the value of state s can be calculated by taking the ex-

pectation of maximum Vi,k(s) values over all user profiles and

we have:

V(s) =
∑

Ui

max
Adk

Vi,k(s). (2)

Regarding expired campaigns, we define their value to be

0. Using Eqs. (1) and (2), the value of any state can be de-

termined, for example, by dynamic programming; hence-

forth, the optimal policy can be determined too. However,

the size of the state space is equal to (T − t) × rb1 . . . × rbK

and grows exponentially with the number of advertising cam-

paigns (with order equal to their budgets). From a practical

point of view, this huge state space makes such solutions very

computationally demanding, and unable to meet our require-

ments in this regard.

3.1.2 A greedy approach

When we look at Eq. (1) more carefully, it is easy to see

that the value of the next state without a click, V(s′
noclick

), is

an upper bound for the value of the next state with a click,

V(s′
click,k

). Replacing the second term by V(s′
noclick]) − ξi,k

where ξi,k is a constant that depends on s, Adk and the user

profile Ui, we obtain:

Vi,k(s) = pi,kcpk − pi,kξi,k + V(s′noclick). (3)

If ξi,k values are small compared to the corresponding click

profits, i.e., their effect is negligible, or they are ignored, then

the optimal policy becomes choosing the advertising cam-

paign with the highest expected profit per click among the

set of running campaigns at that state denoted by C:

arg max
Adk∈C

Vi,k(s) = arg max
Adk∈C

[pi,kcpk + V(s′noclick)]

= arg max
Adk∈C

pi,kcpk.
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We will call this particularly simple method the highest

expected value (HEV) policy. Alternatively, we can employ a

stochastic selection method where the selection probability of

a running advertising campaign is proportional to its expected

profit per click. This variant will be called the stochastic ex-

pected value (SEV) policy.

As both policies exploit advertising campaigns with possi-

bly high return and assign lower priority to those with lower

return, one expects them to perform well if the lifetimes of the

advertising campaigns are “long enough” to ensure their click

budgets. However, they may show inferior performances even

in some trivial situations, that is ξi,k terms are significant. For

example, assume that there is a single user profile and two ad-

vertising campaigns, Ad1 and Ad2, starting at time t = 0 with

click probabilities of 0.005 and 0.01, lifetimes of L1 = 2 000

and L2 = 4 000 time steps, budgets of B1 = 10 and B2 = 20

clicks, and unit profits per click i.e., cp1 = cp2 = 1 (Fig.

3). In this particular case, starting from t = 0, HEV policy

always chooses Ad2 until this campaign expires (on expec-

tation at t = 2 000, at which point the other campaign Ad1

also expires) and this results in an expected total profit of 20

units; SEV policy displays on average twice as many adver-

tisements from Ad2 compared to Ad1 during the first 2000

time steps, and performs slightly better with an expected to-

tal profit of 23 1
3 . However, both figures are less than the value

of 25 that can be achieved by choosing one of the campaigns

randomly with equal probability. Note that, by displaying ad-

vertisements from only Ad1 in the first 2000 time steps until

it expires and then Ad2 thereafter, it is possible to obtain an

expected total profit of 30 that satisfies the budget demands

of both advertising campaigns; the lifetime of Ad2, which is

long enough to receive a sufficient number of clicks with the

associated click probability, allows this to happen. In order to

derive this solution, instead of being short-sighted, it is com-

pulsory to take into consideration the interactions between

the advertising campaigns over the entire timeline and deter-

mine which advertising campaign to display accordingly, in

other words, consider a planning problem, as in the dynamic

Fig. 3 A toy example in which HEV and SEV policies have suboptimal
performance. Ad1 and Ad2 have the same unit profit per click, click proba-
bilities of 0.005 and 0.01, and total budgets of B1 = 10 and B2 = 20 clicks,
respectively. The expected total profits of HEV and SEV are 20 and 23 1

3
compared to a maximum achievable expected total profit of 30

programming solution mentioned before.

Observing Fig. 3, it is easy to see that the interactions be-

tween the advertising campaigns materialize as overlapping

Fig. 4 The timeline divided into intervals and parts. I j denotes the jth in-
terval [t j−1 , t j] and ak, j denotes the allocation for advertising campaign Adk

in interval I j. The first index of a (user profile) is left unmentioned for the
sake of clarity. In this particular example, the set of running advertising cam-
paigns in the second interval is AI2 = {Ad2, Ad3}, and the set of intervals that
cover Ad1 is IA1 = {I3, I4}

time intervals over the timeline4); in this toy example the in-

tervals are I1 = [0, 2 000] and I2 = [2 000, 4 000], and what

we are trying to find is the optimal allocation of the number

of advertising campaign displays in each interval. This can

be posed as the following optimization problem where ak, j

denotes the number of displays allocated to Adk in the inter-

val I j:

maximize 0.005 × a1,1 + 0.01 × (a2,1 + a2,2),

s.t. a1,1 + a2,1 � 2 000, a2,2 � 2 000,

0.005 × a1,1 � 10, 0.01 × (a2,1 + a2,2) � 20,

which has an optimal solution of a1,1 = a2,2 = 2000 and

a2,1 = 0. One can then use this optimal allocation to calculate

the display probabilities for both advertising campaigns pro-

portional to the number of displays allocated to them in the

corresponding time intervals.

3.1.3 Optimal allocation approach

Let Ek be the ending time of advertising campaign Adk, which

is simply equal to the sum of its starting time and lifetime.

Given a pool of K advertising campaigns C, the time inter-

vals during which the advertising campaigns overlap with

each other can be found from the set of their starting and

ending times. Let t0, t1, . . . , tM , M � 2 × K, be the sorted

list of elements of the set of starting and ending times of the

advertising campaigns; without loss of generality, we will

assume that t0 = 0 as otherwise there will not be any ad-

vertising campaigns to display until t0. By definition, the M

intervals defined by I j = [t j−1, t j], 1 � j � M cover the en-

tire timeline of the pool of the advertising campaigns. Let

AI j = {Adk |S k < t j � Ek} be the set of running advertising

4) See Fig. 4 for a more detailed example.
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campaigns in interval I j. Note that for some of the intervals,

this set may be empty; these intervals are not of our interest

as there will be no advertising campaigns to display during

such intervals (which is certainly not good for the web site)

and we can ignore them. Let A = {I j|AI j � ∅} be the set of

remaining intervals, l j = t j− t j−1 denote the length of interval

I j, and IAk = {I j|Adk ∈ AI j} be the set of intervals that cover

Adk (Figure 4). Generalizing the formulation given above for

the simple example and denoting the number of displays al-

located to Adk in the interval I j for the user profile Ui by ai,k, j,

we can define the optimization problem that we want to solve

as follows:

maximize
∑

I j∈A

∑

Adk∈AI j

cpkpi,kai,k, j, (4)

s.t.
∑

Adk∈AI j

ai,k, j � vil j, ∀ Ui, I j ∈ A, (5)

∑

Ui

∑

I j∈IAk

pi,kai,k, j � rbk, ∀ Adk ∈ C. (6)

The objective function (Eq. 4) aims to maximize the total

expected profit, the first set of constraints (Eq. (5)) ensures

that for each interval we do not make an allocation for a par-

ticular user profile that is over the capacity of the interval

(i.e., the portion of the interval proportional to the visit prob-

ability of the user profile), and the second set of constraints

(Eq. (6)) ensures that we do not exceed the remaining click

budgets. This corresponds to the maximization of a linear ob-

jective function (ai,k, j being the variables), subject to linear

inequality constraints, which is a linear programming prob-

lem. This problem can be solved efficiently using the simplex

algorithm, or an interior-point method, or an other existing

large scale approach if necessary. The number of constraints

in the linear program is of order O(NK) where N is the num-

ber of user profiles and K is the number of advertising cam-

paigns, and the number of variables is of order O(NK2).

The solution of the linear program, i.e., the assignment of

values to ai,k, j, indicates the number of displays that should be

allocated to each advertising campaign for each user profile

and in each interval, but it does not provide a specific way to

choose the advertising campaign to display to a particular vis-

itor from user profile Ui at time t. For this, we need a method

to calculate the display probability of each running advertis-

ing campaign from their corresponding allocated number of

displays.

Let âi,k, j = ai,k, j/
∑

Adk∈AI j
ai,k, j be the ratio of the alloca-

tion for user profile Ui and advertising campaign Adk in in-

terval I j to the total number of allocations for that user pro-

file in the same interval. One can either pick the advertis-

ing campaign having the highest ratio in the first interval,

i.e., argmaxk âi,k,0, which we will call the highest LP pol-

icy (HLP), or employ a stochastic selection method similar to

SEV in which the selection probability of a campaign Adk is

proportional to its ratio âi,k,0, which will be called the stochas-

tic LP policy (SLP); SLP introduces certain degree of explo-

ration which will be useful in more complex settings. Note

that, as we are planning for the entire timeline, the solution of

the linear program at time t may not allocate any advertising

campaigns to a particular user profile i, i.e., it may be the case

that ai,k, j = 0 for all k, simply suggesting not to display any

advertisement to a visitor from that user profile. In practice,

when the current user is from such a user profile, choosing an

advertising campaign with a low (or high) expected profit per

click would be a better option and likely to increase the total

profit at the end.

3.1.4 NOSEED: a two-phases, alternating algorithm

By defining and solving the linear program at each time step

0 � t < T for the current pool of non-expired advertising

campaigns (which depends on the visitors that have visited

the web site up until that time step, the advertising campaigns

displayed to them and visitors’ reactions to those displays),

and employing one of the policies mentioned above, adver-

tising campaigns can be displayed in such a way that the total

expected profit is maximized, ignoring the uncertainty in the

predictions of the future events (we will subsequently discuss

the issues related to uncertainty).

When the number of advertising campaigns, and conse-

quently the number of variables and constraints, is large, or

when there is a need for fast response time, solving the opti-

mization problem at each time step may not be feasible. An

alternative approach would be to solve it regularly, for exam-

ple, at the beginning for each interval or when an advertising

campaign fulfills its click budget, and use the resulting allo-

cation to determine the advertising campaigns to be displayed

until the next resolution. In short, the algorithm alternates

planning, with exploitation of this planning during multiple

steps. This can be accomplished by updating the allocated

number of advertising campaign displays as we move along

the timeline, reducing the allocation of the chosen advertis-

ing campaigns in the corresponding intervals, and calculat-

ing the ratios that determine the advertising campaign to be

displayed accordingly5). Note that in practice, the planning

step and the exploitation step can be asynchronous as long

5) The complete algorithm can be found in the appendix.



Sertan GIRGIN et al. Managing advertising campaigns – an approximate planning approach 7

as the events that have occurred from the time that planning

has started until its end are reflected properly to the result-

ing allocation. Such an algorithm belongs to the approximate

dynamic programming family.

3.2 Dealing with uncertainty in the static setting with full

information

The static setting with full information has two sources of

uncertainty:

(a) the user profiles of visitors are drawn from a categorical

distribution, and

(b) each advertising campaign display is a Bernoulli trial

with a certain probability, which is known, and the result is

either a success (i.e., click) or a failure (i.e., no click).

The aforementioned linear program solution of the optimiza-

tion problem focuses on what happens in the expectation.

Following the resulting policy in different instances of the

same problem6) may lead to different realizations of the total

profit that vary from its expected value (due to the fact that

the number of visitors from each user profile and the num-

ber of clicks on the displayed advertising campaigns will not

exactly match their expected values).

As a simple example, consider the case in which there is

a single user profile and two advertising campaigns Ad1 and

Ad2 both having the same unit profit per click and a lifetime

of 105 time steps, click probabilities of 0.001 and 0.002, and

total budgets of 50 and 100, respectively. The solution of the

linear program would allocate 50 000 displays to each adver-

tising campaign with an expected total profit of 150, thus sat-

isfying the budget demands. Figure 5 shows the cumulative

distribution of the total profit over 1 000 independent runs for

this problem using the stochastic LP policy and solving the

optimization problem once at the beginning. Although values

that are equal to or near the expected total profit are attained

in more than half of the runs, one can observe a substantial

amount of variability. In reality, reducing this variability may

also be important and could be considered as a secondary

objective to obtaining a high total profit. For the given ex-

ample, slightly increasing the display probability of Ad2 and

decreasing that of Ad1 would enable the accomplishment of

this objective by preventing the risk of receiving fewer clicks

than expected for Ad2 without considerably compromising

the outcome as the same risk also exists for Ad1. This leads

to the question of how to incorporate risk-awareness to our

formulation of the optimization problem.

When we look closely at the objective function and the

constraints of the linear program (Eqs. (4)–(6)), we can iden-

tify two sets of expressions of the form vil j and pi,kai,k, j; the

first one denotes the expected number of visitors from user

profile Ui during the time-span of interval I j, and the second

one denotes the expected number of clicks that would be re-

ceived if the advertising campaign Adk is displayed ai,k, j times

to the visitors from user profile Ui. Note that visits from a par-

ticular user profile Ui occur with a known average rate vi, and

each visit occurs independently of the time since the previous

visit. Therefore, the number of such visits in a fixed period of

time t can be considered a random variable having a Poisson

distribution with parameter λ = vit which is equal to the ex-

pected number of visits that occur during that time period.

Similarly, the number of clicks that would be received in a

fixed period of time if advertising campaign Adk is displayed

to the visitors from user profile Ui can also be considered a

random variable having a Poisson distribution with parameter

λ = pi,kt. Let Po(λ) denote a Poisson-distributed randomvari-

able with parameter λ. Replacing vil j and pi,kai,k, j terms with

the corresponding random variables, we can convert the lin-

ear program into the following stochastic optimization prob-

lem:

max
∑

I j∈A

∑

Adk∈AI j
cpkE[Po(pi,kai,k, j)], (7)

s.t.
∑

Adk∈AI j
ai,k, j � Po(vil j), ∀ Ui, I j ∈ A, (8)

∑

Ui

∑

I j∈IAk
Po(pi,kai,k, j) � rbk, ∀ Adk ∈ C. (9)

The summation of independent Poisson-distributed ran-

dom variables also follows a Poisson distribution whose pa-

rameter is the sum of the parameters of the random variables.

Assuming that Po(pi,kai,k, j) are independent, the budget con-

straints in Eq. (9) can be written as:

Po

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

Ui

∑

I j∈IAk

pi,kai,k, j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

� rbk, ∀ Adk ∈ C, (10)

which is equivalent to its linear program counterpart in ex-

pectation. The rationale behind this set of constraints is to

bound the total expected number of clicks for each advertis-

ing campaign (while at the same time trying to stay as close

as possible to the bounds due to maximization in the objective

function). Without loss of generality, assume that in the opti-

mal allocation the budget constraint of advertising campaign

Adk is met. This means that the expected total number of

clicks for Adk will be a Poisson-distributed random variable

with parameter rbk and in any particular instance of the prob-

lem the probability of realizing this expectation (our target)

would be 0.5. In order to increase the likelihood of reaching

6) An “instance” refers here to a certain realization of the random problem.
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the target expected total number of clicks, a possible option

would be to use a higher budget limit in the constraint. Let

Λk be our risk factor7) and Po(λk) be the Poisson-distributed

random variable having the smallest parameter λk such that

Pr(Po(λk) > rbk − 1) � Λk which is equivalent to

1 − Λk � FPo(λk)(rbk − 1),

where FPo(λk) is the cumulative distribution function of

Po(λk). Note that rbk and Λk are known, and λk can be found

using numerical methods. If we replace rbk with λk in the

budget constraint and solve the linear optimization problem

again, the expected total number of clicks for Adk based on

the new allocation would be greater than or equal to rbk and

will have an upper bound of λk. Following the same strategy,

one can derive new bounds for the user profile constraints

and replace vil j terms in Eq. (8) with the smallest value of

λi, j such that the Poisson-distributed random variable Po(λi, j)

satisfies 1 − Λi, j � FPo(λi, j)(vil j) and Λi, j is the risk factor. In

this case, an additional set of constraints defined below is nec-

essary to ensure that for each interval the sum of advertising

campaign allocations for all user profiles do not exceed the

length of the interval:
∑

Ui

∑

Adk∈AI j

ai,k, j � l j, ∀I j ∈ A . (11)

As presented in Fig. 5, in our simple example using a com-

mon risk factor of 0.95 results in a cumulative distribution

of total profit which is more concentrated toward the optimal

value compared to the regular linear program approach.

Fig. 5 The distribution of the total profit less than its expected value over
1000 independent runs on the toy example with two advertising campaigns;
the dark shaded bars depict SLP with a risk factor of 0.95. In reality, the re-
alization will be only one of the runs and therefore more concentration near
the maximum value is better (see text for more explanation)

3.3 Static setting with partial information

In the settings discussed so far, we have assumed that two

important sets of parameters, the visit probabilities of user

profiles {Ui} and their click probabilities for each advertising

campaign {pi,k} are known. However, this is a rather strong as-

sumption and in reality these probabilities are hardly known

in advance; instead, they have to be estimated based on ob-

servations, such as the profiles of the existing visitors, the

advertising campaigns that have been displayed to them and

their responsive actions (i.e., whether they have clicked on

a displayed advertisement or not). An accurate prediction of

these probabilities results in the display of more attractive ad-

vertisements to the web site visitors.

Once this estimation problem is solved, one has to deal

with probabilities to decide on which advertisement to dis-

play. This problem of decision making in face of uncertainty

raises the exploration/exploitation dilemma, one having to

balance the exploitation of what is already known, with the

exploration of new, potentially better, decisions.

We discuss these two issues in the next two sections.

3.3.1 Estimating the probabilities

The simplest way to estimate unknown probabilities would

be to use maximum likelihood estimation. In our problem,

the profile of a visitor can be considered a categorical random

variable U with profile Ui having an estimated visit probabil-

ity of v̂i, and the click of a visitor from user profile Ui on an

advertisement from advertising campaign Adk can be consid-

ered a Bernoulli random variable pi,k with success probability

p̂i,k.

Let visiti denote the total number of visitors from user pro-

file Ui that have visited the web site at time 0 � t, then the

maximum likelihood estimate of v̂i will be visiti/(t + 1), and

similarly the maximum likelihood estimate of p̂i,k at time t

will be clicki,k/displayi,k where clicki,k is the number of times

that visitors from user profile Ui clicked on advertisement

Adk and displayi,k is the number of times Adk had been dis-

played to them8) . Since visiti values are initially 0, the esti-

mates will also be 0 until we observe a visit from the cor-

responding user profiles. In order remedy this situation, it is

customary to assign a prior ϑi, e.g., 1, for each user profile

and define v̂i as

v̂i =
visiti + ϑi

t + 1 +
∑N

i=1 ϑi

.

The priors of click probabilities can also be assigned in a

similar manner. In practice, as the number of visits is high and

the number of user profiles is low, the maximum likelihood

estimates of visit probabilities will be quite accurate.

7) Typical values include 0.90, 0.95, and 0.99.
8) For brevity, the time indices have been dropped from visiti , displayi,k and clicki,k .
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Alternatively, we can employ Bayesian maximum a poste-

riori estimates using the conjugate priors. The conjugate pri-

ors of the categorical and Bernoulli distributions are Beta and

Dirichlet distributions, respectively. If Beta(αi,k, βi,k) is the

Beta prior with hyper-parameters αi,k and βi,k for click prob-

ability pi,k, then the posterior at time t is the Beta distribution

with hyper-parameters αi, j + clicki,k and βi, j + displayi,k −

clicki,k. Setting both hyper-parameters to 1 corresponds to

having a uniform prior. At time t, the posterior of the prior

Dirichlet distribution with hyper-parameters vi for U will

have hyper-parameters vi+visiti. The initial hyper-parameters

can be guessed or determined empirically based on historical

data. As we will see later in the experiment section, choosing

good priors may have a significant effect on the outcome.

By estimating probabilities at each time step (or periodi-

cally) and replacing the actual values with the corresponding

estimates, we can use the approach presented in the previous

section to determine allocations (optimal up to the accuracy

of the estimations) and choose advertising campaigns to dis-

play. For maximum a posteriori estimates, the mode of the

posterior distribution can be used as a point estimate and a

single instance of the problem can be solved, or several in-

stances of the problem can be generated by sampling proba-

bilities from the posterior distributions, solved separately and

then the resulting allocations can be merged (for example tak-

ing their mean; note that, in this case the final allocations will

likely be not bound to the initial constraints).

3.3.2 Exploration-exploitation trade-off

As in many online learning problems, one important issue

is the need for balancing the exploitation of the current es-

timates and exploration, i.e., estimation of the unknown or

less-known (e.g., with higher variance) parameters. Using the

solution of the optimization problem without introducing any

additional exploration may introduce substantial bias to the

results. This exploration/exploitation trade-off problem can

be formulated as a multi-arm bandit problem (with the adver-

tising campaigns in the role of arms). Based on the multi-arm

bandit framework, exploration can be introduced to the allo-

cation policy in various ways, among which we mention the

following two:

• Policy-modification

The existing non-exploratory policies can be augmented

with an additional mechanism in order to have exploration.

This may be achieved by an ε-greedy in which the under-

lying policy is followed with a high probability 1 − ε, and

a running advertising campaign is chosen at random with a

small probability ε. One can derive other possible solutions

from the bandit literature, such as the UCB rule [2]. Stand-

ing for Upper-Confidence Bound, UCB is a very simple way

to achieve asymptotically optimal policy to choose the best

action among a set of available actions. Each action is as-

sociated to a certain average return; the principle consists in

sampling each action, gathering for each its average observed

return r̄i, and the number of times each action has been se-

lected ni. After n actions have been performed, the next action

is selected as being the one that maximize the UCB bound:

ri +

√

C ln n
ni

, where C is an appropriately tuned constant.

• Estimation-modification

In this approach, the probability of click estimates are sys-

tematically modified (before solving the optimization prob-

lem) in order to favor the advertising campaign and user pro-

file couples according to the uncertainty on their estimation

based on the following principle: the more uncertain the es-

timate, the more exploration may be rewarding. By giving

them artificially a higher probability of click tends to favor

their use, and consequently the exploration. For this purpose,

[3] use Gittins indices. Similarly one can also use UCB in-

dices associated with the estimates, or with a value sampled

from the posterior Beta distribution over the expected reward

(see [4]). Empirically, this second way of increasing explo-

ration does not seem to work as well as the first one (for ex-

ample, ε-greedy with fine-tuned ε) especially if we do not

re-plan at each time step. We believe that the reason for this

situation is that such methods lead to solutions that only ex-

plore the most uncertain areas of the search space.

4 Dynamic setting

Under the static setting of the problem, there are two main

constraints: the set of advertising campaigns is known in ad-

vance and, consequently, the time horizon is fixed. In the

more general and realistic dynamic setting, we remove these

constraints. The time horizon is no longer fixed, i.e., does

not have a limited length T but instead it is assumed that T

is infinite; furthermore, new advertisement campaigns may

appear with time. Thus, to the 3 aforementioned categories

of advertising campaigns (scheduled, running, and expired),

we add a new category made of the yet-unknown campaigns,

that is, the advertising campaigns that will come into play in

the future, but which future existence is not yet known. In

contrast to these unknown advertising campaigns, scheduled,

running, and expired advertising campaigns will be qualified

as “known”.
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In the next two subsections, we will consider two main

cases in which either a generative model of advertising cam-

paigns is available, or not. Given a set of parameters and the

current state, a generative model generates a stream of adver-

tisement campaigns during a specified time period, together

with all related-information, such as, the click probabilities

of user profiles for each generated advertising campaign.

4.1 Model based resolution

When a generative model of advertising campaigns is avail-

able, it can be utilized to compensate for the uncertainty in

future events. In this case, in addition to the set of known

advertising campaigns, the model allows us to generate a set

of hypothetical unknown advertising campaigns, for exam-

ple, up to H
9)
max , simulating what may happen in future, and

include them in the planning phase of NOSEED. By omit-

ting allocations made for these hypothetical advertising cam-

paigns from the (optimal) allocation scheme found by solv-

ing the optimization problem, display probabilities that in-

herently take into consideration the effects of future events

can be calculated. Note that this would introduce a bias in the

resulting policies which can be reduced by running multiple

simulations and combining their results as discussed before.

4.2 Model free resolution

When a generative model is not available, we have an incom-

plete and uncertain image of the timeline; we only have infor-

mation about known advertising campaigns, and new adver-

tising campaigns appear periodically or randomly according

to a model which is unknown. In this setting, at any time step

t, the set of known advertising campaigns (running or sched-

uled) implies a maximum time horizon Hmax. Although, it is

possible to apply the aforementioned methods and calculate

the allocations for the known advertising campaigns, doing

so would ignore the possibility of the arrival of new advertis-

ing campaigns that may overlap and interact with the existing

ones; the resulting long-term policies may perform well if

the degree of dynamism in the environment is not high. On

the contrary, one can focus only on short or medium-term

conditions omitting the scheduled advertising campaigns that

start after a not-too-distant time H in the future, i.e., do plan-

ning for the advertising campaigns within the chosen plan-

ning horizon. The resulting policies will be greedier as H is

smaller and disregard the long-time interactions between the

existing advertising campaigns; however, they will also be

less likely to be affected by the arrival of new campaigns. An

example that demonstrates the effect of the planning horizon

on the resulting policies is presented in Fig. 6. For such poli-

cies, choosing the optimal value of the planning horizon is not

trivial due to the fact that it strongly depends on the unknown

underlying model. One possible way to overcome this prob-

lem would be to solve the problem for a set of different plan-

ning horizons H1, . . . ,Hu = Hmax, and then combine the re-

sulting probability distributions of advertising campaign dis-

plays (such as by majority voting).

Fig. 6 The effect of the planning horizon H. Ad1 and Ad2 start at time 0
and have the same unit profit per click. The click probabilities are p1,1 =

0.8, p1,2 = 0.1 for the user profile U1 and p2,1 = 0.8, p2,2 = 0.5 for the user
profile U2. Both profiles have the same visit probability

The sketch of NOSEED algorithm is presented in Fig. 7

and the complete algorithm can be found in the Appendix.

5 Related work

We review the existing work on the problem of advertisement

selection for display on web pages, and related problems. We

also discuss our own work in respect to these works.

The oldest reference we were able to spot is [5] who mixed

a linear program with a simple estimation of CTR to select

advertisements to display. In this work, no attention is paid

to the exploration/exploitation trade-off and more generally,

the problem of the estimation of the CTR is very crudely

addressed. Then, [3] introduce a multi-arm bandit approach

to balance exploration with exploitation. Their work is based

on display proportions, that is unlimited resources; they also

9) We will use H to denote the planning horizon and differentiate it from the time horizon of the problem T .
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Fig. 7 Sketch of the NOSEED algorithm: NOSEED selects advertising campaigns by solving the optimization problem from times to times,
and then exploiting its solution to display a certain amount of advertisements

deal with a static set of advertisements. This was later im-

proved by [6] who deal with the important problem of multi-

impression of advertisements on a single page; they also deal

with the exploration/exploitation trade-off by way of Gittins

indices. Ideas drawn from their work on multi-impression

may be introduced in ours to deal with that issue.

Aiming at directly optimizing the advertisement selection,

side information (information about the type of advertise-

ment, page, date of the request, ...) is used to improve the

accuracy of prediction in several recent papers [7–11]. Inter-

estingly, [12] also deals with the multi-impression problem.

However, all these works do not consider finite budget con-

straints, and finite lifetime constraints, as well as the contin-

uous creation of new advertising campaigns; they also do not

consider the CTR estimation problem. Recently, [11] focuses

on the exploration/exploitation trade-off and proposes inter-

esting ideas that may be combined to ours (varying ε in the

ε-greedy strategy, and taking into account the history of the

displays of an advertisement). Though not dealing with ad-

vertisement selection but news selection, which implies that

there is no profit maximization, and no click budget con-

straint, but merely maximization of the amount of clicks, [13,

14] investigate a multi-arm bandit approach.

Some works have specifically dealt with the accurate pre-

diction of the CTRs, either in a static setting [15], or dealing

with a dynamic setting, and non stationary CTRs [16]. [17,

18] also use a hierarchically organized side information on

advertisements and pages. Recently, the extent of the con-

tent relevance between the pages and the personal interests

of users based on intention and sentiment analysis are also

considered for improving the predictions [19].

A rather different approach is that of [20] who treated

this problem as an on-line bipartite matching problem with

daily budget constraints. However, it assumed that we have

no knowledge of the sequence of appearance of the profile,

whereas in practice we often have a good estimate of it.

[21] tried then to take advantage of such estimates while still

maintaining a reasonable competitive ratio, in case of inaccu-

rate estimates. Extensions to click budget were discussed in

the case of extra estimates about the click probabilities. Nev-

ertheless, the daily maximization of the income is not equiv-

alent to a global maximization.

6 Experiments

We do not see any way to provide a relevant theoretical as-

sessment of this work regarding the performance of the al-

gorithm. Indeed, the algorithm we propose is aimed at deal-

ing with large problems in an efficient way, efficient mean-

ing with the constraint of rather short answering time (“quasi

real-time”, that is in the order of the micro-second to decide

which advertisement to display). Clearly this constraint on

time requires an approximate solution to the problem we con-

sider; however, even if we remove this constraint on time,

we are unable to solve exactly the problem we wish to solve

within a reasonable amount of time, for a significant size of

the problem, so that we can not compare our results with the

optimal results. All this makes the experimental assessment a

necessity.

Assessing live the approach we propose is impossible; this

is a well-known issue of the community. Even if we plugged

NOSEED in a real advertisement server, we would have ab-

solutely no way to assess its performance in comparison with

an other algorithm. Some workarounds have been proposed
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(see e.g., [22]10)), but the issue is clearly not settled today.

So, we set up a set of experiments to study its performance,

and study how different tunings of the parameters, and how

different display policies affect the performance of the algo-

rithm. We report on these experiments in the next sections.

6.1 The generative model

To fit the real-world problem, our approach was tested on a

toy-model designed with experts from the research division

of Orange Labs. Orange Labs is an important commercial

web actor with tens of millions of page views per day over

multiple web sites. We took care that each advertising cam-

paign has its own characteristics that more or less appeal to

the different visitor profiles.

The model assumes that each advertising campaign Adk

has a base click probability pk that is sampled from a known

distribution (e.g., uniform in an interval, or normally dis-

tributed with a certain mean and variance). As clicking on

an advertisement is in general a rare event, the base click

probabilities are typically low (around 10−4). The click prob-

ability of a visitor from a particular user profile is then set

to pi,k = pkγ
d−1 where γ > 1 is a predefined multiplica-

tive coefficient, and the random variable d is sampled from

the discrete probability distribution with parameter n that

has the following probability mass function Pr[d = x] =

2n−x/(2n − 1), 1 � x � n. When n is small, all advertising

campaigns will have similar click probabilities that are close

to the base click probability; as n increases, some advertising

campaigns will have significantly higher click probabilities

for some but not all of the user profiles. Note that, the num-

ber of such assignments will be exponentially low; if γ is

taken as fixed, then there will be twice as many advertising

campaigns with click probability p compared to those with

click probability γp. This allows us to effectively model situ-

ations in which a small number of advertising campaigns end

up being popular in certain user profiles.

In the experiments we used two values for the γ parameter,

2 and 4; experts recommended the use of the latter value, but

as we will see shortly, having a higher value for γ may be

advantageous for the greedy policy. The value of n is varied

between 2 and 6.

6.2 The experiments

Similar to the way that we introduce the proposed method in

the previous sections, in the experiments we will also pro-

ceed from simpler settings to more complex ones. We opted

to focus on core measures and therefore omit some of the ex-

tensions that have been discussed in the text.

We begin with the static setting with full information, and

uncertainty (Section 2.1.2). In this setting, we consider a fixed

time horizon of one day which is assumed to be equivalent

to T = 4 × 106 page visits. The distribution of user profiles

is uniform and the budget and lifetime of advertising cam-

paigns are also sampled uniformly from fixed intervals. In or-

der to determine the starting times of advertising campaigns,

we partitioned the time horizon into M equally spaced inter-

vals (in our case 80) and set the starting time of each adver-

tisement campaign to the starting time of an interval chosen

randomly, such that the ending times do not exceed the fixed

time horizon. The base click probability is set to 10−4. We

solved the optimization problem every 104 steps.

First, we consider a setting in which there is a single user

profile (N = 1), and there are K = 40 advertising campaigns

with an average Lk =
1
10T , i.e., 1 tenth of the time horizon.

All advertising campaigns have the same budget Bk = B.

Figure 8 shows the relative performance of HLP policy with

respect to the HEV policy for different values of the click

probability generation parameter n and budgets. We can make

two observations: all other parameters being fixed, HLP is

more effective with increasing budgets, and the performance

gain depends mainly on the value of γ. For γ = 4, which is

Fig. 8 The relative performance of the HLP policy with respect to the HEV
policy for different values of the click probability generation parameter n and
budget under the static setting with one user profile and 40 advertising cam-
paigns. The value of γ is either 2 (a) or 4 (b) and the x-axis, i.e., budget B, is
in logarithmic scale

10) Also, Nicol O, Mary J, Preux P. ICML exploration & exploitation challenge: Keep it simple!, 2011, submitted.
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Fig. 9 The effect of the number of (a) user profiles N and (b) advertising
campaigns K when other parameters are kept constant and n and γ are set to
2 and 4, respectively

considered to be a realistic value by experts, and reasonable

budgets, the greedy policy would perform well. A similar

situation also arises when the number of advertising cam-

paigns (K) is low, whereas when the number of user pro-

files increases, non greedy policies taking longer terms con-

sequences are better (Fig. 9).

Then, in order to isolate and figure out the effect of the

overlapping of advertising campaigns on the performance of

the algorithms, we conducted another set of experiments in

which all advertising campaigns have high click probabili-

ties, and their budget vary depending on their lifetimes. We

set:

• n to 1 and sampled the base click probability pk from a

truncated Gaussian distribution with mean 1 and stan-

dard deviation 0.02,

• the lifetimes of advertising campaigns Lk are sampled

uniformly from 0.5% to 5% of the time horizon,

• the budget Bk of each advertising campaign is set to λ

times its lifetime,

• λ is sampled uniformly from the interval [a, b],

• a and b are the parameters of the experiment.

As in the previous case, the time horizon is assumed to be

T = 4 × 106 page visits. Figure 10 shows the relative perfor-

mances of HEV, SEV, HLP approaches, as well as the ran-

dom policy for K = 100 advertising campaigns and different

values of a and b. We can observe that when the budget to

lifetime ratios ( Bk

Lk
) of all campaigns are either low, or high,

the difference between the different approaches diminishes.

This is due to the fact that in both cases, there is no partic-

ular need for taking into account long term consequences:

when click probabilities are close to 1, the budget constraints

can be satisfied easily when ratios are small (in short, the ex-

pected clicks will be grabbed whatever the policy is: no need

to be smart), and when they are high choosing any running

campaign is likely to end up with a click (in short, whatever

the display policy is, however smart it is, budgets can not

be fulfilled). However, when the advertising campaigns have

diverse budget to lifetime ratios, the interactions between

advertising campaigns do matter, and can be exploited by

the planning-based approach, especially for low ratios (Fig.

10(a)). In this setting, similar to the toy example presented

in Section 3.1.2, the performance of the greedy policy turns

out to be inferior to that of random policy which chooses at

each time step one of the running advertising campaigns with

uniform probability (Fig.10(c)); hence, the stochastic version

of the greedy policy, SEV, performs better than HEV (Fig.

10(b)).

Next, we tried longer static settings of over one week

period with full, or partial information in which the adver-

tising campaign lifetimes and their budget are more realistic

(lifetimes ranging 2 – 5 days, budgets ranging from 500 to

4 000 clicks). The campaigns are generated on a daily basis at

the beginning of a simulation, i.e., a set of seven to nine new

advertisement are introduced every four million time steps.

We tested different values for the click probability generation

parameters. There were N = 8 user profiles with equal visit

probabilities (vi = 1/8). As presented in Fig. 11, in this set-

ting although HLP policy performs better than the greedy pol-

icy, the performance gain remains limited. While the greedy

policy quickly exploits and consumes new advertisements

as they arrive, HLP tends to keep a consistent and uniform

click rate at the beginning, and progressively becomes more

greedy towards the end of the period (Fig. 12). Figure 13

shows the effect of the planning horizon H: H tunes whether

we focus on the campaigns running in the near future (small

value of H), or also take into account campaigns that will run

in a more remote future (larger value of H). For this exper-

iment, we increased the time horizon from one week to two

weeks, and the planning horizon is varied from one day up to

the entire time horizon. Note that, the intensity of the interac-

tions between advertising campaigns, in terms of overlapping

intervals, and their propagation through time are the main fac-

tors that determine the influence of the upcoming campaigns
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Fig. 10 The relative performances of different approaches for different budget ratios. Each curve presents the case in which the budget of each
advertising campaign is set to λ times its lifetime such that λ is sampled uniformly from the interval [a, b], where a is the value that corresponds
to the curve and b is the value at the x-axis. (a) HLP vs. HEV, (b) HLP vs. SEV, and (c) HEV vs. random policy with 100 advertising campaigns;
HLP vs. HEV with (d) 200 and (e) 50 advertising campaigns

over the display allocations for the currently running cam-

paigns; in this and other experiments we observed that being

very far-sighted may not be necessary.

As discussed in Section 3.3.2, when we move to the more

realistic setting of partial information, the visits and click

probabilities are not known in advance but instead are esti-

mated online. In this setting, without sufficient exploration

there is a risk of getting stuck in a local optima; we define

local optima as a situation in which the values of some of the

options are underestimated and these estimates cannot be im-

proved because the corresponding options are not considered

in the search process due to their seemingly low values.

To deal with the exploration-exploitation trade-off, we im-

plemented two approaches: ε-greedy policy, and a UCB

based approach. We studied their behavior under various set-

tings in which:

• to increase the variance of the click probabilities, in-

stead of using a fixed value, the base click probabili-

ties pk of the advertising campaigns are sampled from

a Gaussian distribution with mean 0.001 and standard

deviation 0.0002,
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Fig. 11 The performance of the random (dark gray and lowest) and the
HLP (light gray and highest) policies with respect to the HES policy un-
der the seven days static setting for different budget (500 to 4 000), lifetime
(2 — 5 days) and generation parameter n values. The three sets of bars in
each group corresponds to the case where n is taken as to 2, 4, and 6 in that
order

Fig. 12 The moving average of click rate for different policies under the
seven day static setting; the lifetime of advertising campaigns is five days
and their budgets are either 2 000 (top) or 4 000 (bottom)

• the time horizon is set to T = 4 × 106 page visits,

• there are K = 100 advertising campaigns,

• their lifetimes Lk falls in the range 0.5% and 5% of the

time horizon,

• budget to lifetime ratios Bk

Lk
falls in the interval [0.1, 0.5],

• the multiplicative coefficient γ is set to 2.

We employed simple maximum likelihood estimates to

estimate click probabilities. Figure 14 shows the results

Fig. 13 The effect of horizon H (1, 2, 4, 7 and 14 days) in the 14 days static
setting with full information; using less information than available hinders
the performance

obtained using both approaches with HEV and HLP policies

as a function of ε and the UCB tuning coefficientC. Each sub-

figure depicts the relative performances of these policies un-

der partial information settings compared to the performance

of the HLP policy assuming that the true click probabilities

are known (i.e., full information case) for a certain value of

click probability generation parameter n, ranging from 1 to

6. The figures highlight that although the performance of ε-

greedy varies as a function of ε, for a wide range of val-

ues, it performs better than the UCB approach. The perfor-

mance of the UCB approach is observed to be less sensitive

to its tuning coefficient, especially with the HLP policy. It

may still be possible that the UCB approach performs better

than the ε-greedy approach for a particular value of the tun-

ing coefficient (or a small interval), but fine-tuning the coef-

ficient seems to be more challenging. Furthermore, although

ε-greedy has a generally consistent pattern of performance

across the full range of n for both HEV and HLP policies, in

the UCB approach the performance of the HEV policy deteri-

orates relative to the HLP policy as n increases, that is, under

conditions where the advertising campaigns end up having

a wider range of non-homogeneous click probabilities. These

results indicate that policy-modificationmay be a more viable

option for balancing the exploitation of the current estimates

and exploration.

Finally, we conducted experiments in the dynamic set-

ting with partial information where the probabilities are not

known in advance but estimated online. We employed an

ε-greedy exploration mechanism with different values of ε

and maximum a posteriori estimation with Beta priors. We

used the same set of parameters as in two weeks static set-

ting with full information, except that rather than generating

all advertising campaigns at the beginning of the simula-

tion, they are generated on a daily basis at the beginning of

each day, i.e., a set of seven to nine new advertisement are
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Fig. 14 The performances of HEV and HLP policies with ε-greedy (a) and UCB (b) selection in partial information case relative to the
performance of the HLP policy with full information for different values of ε and UCB tuning coefficient; the click probability generation
parameter n varies from 1 (top) to 6 (bottom)

introduced every 4 million time steps; the planning is done

over all known advertising campaigns. The results presented

in Fig. 15 show that HLP can perform better than HEV; how-

ever for both policies, the chosen set of hyper-parameters in-

fluences the outcome.

Fig. 15 The performance of HEV and HLP algorithms in the dynamic set-
ting with partial information using ε-greedy exploration. The numbers in
parentheses denote the values of the hyper-parameters of the Beta prior (α
and β parameters are set to be equal to each other) and ε

7 Conclusion and future work

In this paper, we considered the advertisement selection prob-

lem for display on web pages. Aiming at considering the

problem in the most realistic setting, and providing effective

and efficient algorithms to perform this selection on a produc-

tion system, we have formalized the problem by providing a

series of increasing complexity settings. This let us discuss

various algorithmic approaches, and clearly identify the is-

sues. While defining this set of problems, we provided a way

to effectively tackle this problem, and provided an experi-

mental study of some of their key features. The experimental

study is based on a realistic model, carefully designed with a

major commercial Internet portal.

We have shown that optimizing advertisement display han-

dling finite budgets and finite lifetimes in a dynamic and non

stationary setting, is feasible within realistic computational

time constraints. We have also given some insights in what

can be gained by handling this constraint, depending on the

properties of the advertisements to display. We have also ex-

hibited that lifetime of the advertisements impact the overall

performance, and so should be taken into account into the

pricing policy. Moreover our work may be seen as a part of

a decision aid tool. For instance, it can help to price the ad-

vertisements in the case in which a fraction of the advertising

campaigns are in the “cost per display” model, while the rest

is in the cost per click model. This is rather easy because the

LP solution provides an estimation of the profit for each visi-

tor profile.

Our work shows that depending on the parameters and

characteristics of the existing or prospective advertising cam-
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paigns, a simple greedy approach may perform well or one

can benefit from using a more advanced solution, such as

NOSEED, that takes into consideration the long term gains.

Figure 8 illustrates how these parameters interact. To sum-

marize, we may say that if there are few overlapping adver-

tisements, or many advertisements with long lifetimes and

good click rates, then we should be greedy. Between these

two extreme solutions, one should consider the constraints

associated to each advertising campaign.

This work calls for many further developments. A possi-

bility is to solve the problem from the perspective of the ad-

vertiser, i.e., help the advertiser to set the value of a click, and

adjust it optimally with respect to his/her expected number of

visitors. It would be equivalent to a local sensitivity analysis

of the LP problem. A more difficult issue is that of handling

multiple advertisement displays on the same page. It may be

possible to handle them by estimating the correlation between

the advertisements, and trying to update multiple click prob-

abilities at the same time. Some recent developments in the

bandit setting [23] are interesting in this regard.

We are willing to draw some theoretical results on how

far from the optimal strategy we are. Dealing with finite re-

sources, under finite time constraints, in a dynamic setting

makes that kind of study very difficult. An other work orig-

inates from the analysis of some real web server logs. We

have already been very slightly using such source of infor-

mation, but much more has to be done. We also think that it

is important to go towards learning on-line the profiles of the

visitors depending on their click behavior instead of having

pre-existing ones.
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Appendixes

Notations

Indices

t Current time

i Index of a user profile

k Index of an advertising campaign

j Index of a time interval

User profile

N # user profiles (Sec. 2)

Ui User profile i (Sec. 2)

vi Probability that a certain visitor belongs to Ui (Sec. 2)

Advertising campaign

C The set of known (running) advertising campaigns at a given time (Sec. 3.1.2)

K # of advertising campaigns (Sec. 3.1)

Adk Advertising campaign k (Sec. 2)

S k Starting time of Adk (Sec. @2)

Lk Lifetime of Adk (Sec. 2)

Bk Budget of Adk (Sec. 2)

cpk Click profit of Adk (Sec. 2)

rbk � Bk: remaining budget of Adk (Sec. 2)

Ek Ending time of Adk (Ek = S k + Lk, Sec. 3.1.3)

pi,k Probability that a visitor ∈ Ui clicks on an advertisement ∈ Adk (Sec. 2)
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Time

T Time horizon of the problem (Sec. 2.1.1.1)

H Time horizon of the resolution (planning, Sec. 2.2.1)

M # of time intervals (Sec. 3.1.3)

I j Time interval j (Sec. 3.1.3)

AI j The set of running advertising campaigns in I j (Sec. 3.1.3)

IAk The set of time interval is which Adk is running (Sec. 3.1.3)

visiti # of visit ∈ Ui for time � t (Sec. 3.3.1)

clicki,k # of times a user ∈ Ui clicked on Adk, for time � t (Sec. 3.3.1)

displayi,k # of times an Adk has been displayed to a visitor ∈ Ui for time � t (Sec. 3.3.1)

Display allocation (Sec. 3.1.3)

ai,k, j # of advertisement displays allocated to Adk in interval I j for user profile Ui

âi,k, j = ai,k, j/
∑

Adk∈AI j
ai,k, j is the ratio of allocation of displays for Ui and Adk during I j to the total allocations for that user

profile in the same interval (forming a categorical distribution)

Exploration policy parameters (Sec. 3.3.2)

ε Parameter of the ε greedy-policy

C Parameter of the UCB policy

Miscellaneous

s A state of the MDP (Sec. 3.1.1)

ϑi Prior for the maximum likelihood estimation of vi

λ (λk, λi, j ) Parameters of the Poisson distribution (its interpretation is a risk ratio, Sec. 3.2)

Λk Risk ratio threshold (Sec. 3.2)

αi,k , βi,k Parameters of the Beta distribution (Sec. 3.3.1)

pk Base click probability for advertisements ∈ Adk (Sec. 6.1)

γ, n, [a, b] Parameters of the generative model (Sec. 6.1 and 6.2)

The NOSEED algorithm

Input: N: number of user profiles; T : time horizon; H: planning horizon; C: set of known advertising campaigns; hyper-parameters of
click and visit probability estimators, (e.g. αi,k , βi,k for the Beta distributions).

Additional variables: Clast: set of known advertising campaigns at last planning; p̂i,k: probability distribution for the estimate of pi,k (a
Beta distribution).

1: procedure CFNC

2: for all Adk ∈ C and Adk � Clast /* New campaigns */ do

3: for i = 1 to N do

4: p̂i,k = Beta(αi,k, βi,k) /* Initial click probability estimates */

5: clicki,k = displayi,k = 0

6: end for

7: end for

8: end procedure

9:

10: /*C: set of advertising campaigns; rb: remaining budgets of advertising campaigns in C, rbk denotes the remaining budget of

Adk */

11: function FA (t,C, rb)

12: boundaries = {min(t, S k)} ∪ {Ek},∀Adk ∈ C such that S k � t + H.

13: Let t0, . . . , tM is the sorted list of the elements of boundaries and define intervals I j = [t j−1, t j], 1 � j � M.

14: for j = 1 to M do
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15: l j = t j − t j−1 /*length of the interval */

16: AI j = {Adk|S k < t j � Ek} /*the set of campaigns in each interval */

17: end for

18: for all Adk ∈ C do

19: IAk = {I j|Adk ∈ AI j} /*the set of intervals that cover Adk */

20: end for

21: A = {I j|AI j � ∅} /*non-empty intervals */

22: Let ai,k, j denote the number of displays allocated to the campaign Adk in interval I j for the user profile Ui.

23: Solve the linear program maximize
∑

I j∈A

∑

Adk∈AI j
cpk pi,kai,k, j with the set of constraints

24: (a)
∑

Adk∈AI j
ai,k, j � vil j,∀ Ui, I j ∈ A

25: (b)
∑

Ui

∑

I j∈IAk
pi,kai,k, j � rbk,∀ Adk ∈ C

26: (c)
∑

Ui

∑

Adk∈AI j
ai,k, j � l j,∀I j ∈ A

27: Let intervals be the list of intervals I j and allocations be the list of display allocations ai,k, j .

28: return [intervals, allocations]

29: end function

30:

31: function DP (t)

32: Clast = C /*Save the current set of advertising campaigns */

33: if a generative model is available then

34: Generate a set of hypothetical campaigns C′. /* up to time t + H */

35: Ccurrent = C ∪ C
′

36: else

37: Ccurrent = C

38: end if

39: Update click probability estimates, i.e., p̂i,k = Beta(αi,k + clicki,k , βi,k + displayi,k)

40: if using estimation-modification approach

41: Modify p̂i,k, e.g. using Gittins or UCB indices /* see Section 3.3.2 */

42: end if

43: for all Adk ∈ Ccurrent do

44: if risk factor Λk < 1 them /*Modify budget limits for dealing with uncertainty, see Section 3.2 */

45: rb′
k
= argminλ Pr(Po(λ) > rbk − 1) � Λk

46: else

47: rb′
k
= rbk

48: end if

49: end for

50: return FA (t,Ccurrent , rb
′)

51: end function

52:

53: /* Ui is the profile of a visitor. intervals and allocations are the list of intervals and display allocations in each interval as deter-

mined in the planning phase, i.e. DoPlanning function, respectively; I j denotes the jth interval, and ai, j,k denotes the number of

advertisement displays allocated to Adk ∈ I j for Ui. */

54: function CC t,Ui, intervals, allocations

55: Determine I j = [t j−1, t j] ∈ intervals such that t j−1 � t < t j /* current interval */

56: Let AI j ⊆ C be the set of running campaigns that span I j.

57: if AI j = ∅ then

58: return ∅ /* There is no running advertising campaign */

59: end if

60: āi, j =
∑

Adk∈AI j
ai,k, j /* Total allocations in this interval */
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61: if āi, j > 0 then

62: for all Adk ∈ AI j do

63: âi,k, j = ai,k, j/āi, j /* Calculate display probabilities */

64: end for

65: Choose an advertising campaign Adk based on âi,k, j /* e.g. using HLP or SLP with exploration, if any */

66: ai,k, j = ai,k, j − 1 /* Update the allocation for Adk */

67: else

68: Choose a campaign Adk from AI j (e.g. randomly). /* No allocations to display for this user profile */

69: end if

70: return k

71: end function

72:

73: /* The main loop */

74: Clast = ∅

75: for i = 1 to N do /* Initialize visit probability estimates */

76: visiti = 1, vi = 1/N /* ϑi = 1 */

77: end for

78: t = 0 /* Set time to 0 */

79: while there is a request do

80: Let Ui be the user profile of the current visitor.

81: CFNC

82: if t = 0 or planning is required /* e.g. when an advertising campaign expires or periodically */ then

83: [intervals, allocations] =DP (t)

84: end if

85: k =CC (t,Ui, intervals, allocations)

86: if Adk � ∅ then

87: displayi,k = displayi,k + 1

88: if visitor clicks on Adk then

89: clicki,k = clicki,k + 1 /* Update the click count of the user profile */

90: rbk = rbk − 1 /*Update the remaining budget of the advertising campaign */

91: end if

92: end if

93: t = t + 1

94: /* Update the visit probability estimates */

95: visiti = visiti + 1

96: for i = 1 to N do

97: vi = visiti/(t + N)

98: end for

99: end while
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