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Abstract In supervised classification, data representation is usually considered at the

dataset level: one looks for the “best” representation of data assuming it to be the same

for all the data in the data space. We propose a different approach where the representations

used for classification are tailored to each datum in the data space. One immediate goal is

to obtain sparse datum-wise representations: our approach learns to build a representation

specific to each datum that contains only a small subset of the features, thus allowing classifi-

cation to be fast and efficient. This representation is obtained by way of a sequential decision

process that sequentially chooses which features to acquire before classifying a particular

point; this process is learned through algorithms based on Reinforcement Learning.

The proposed method performs well on an ensemble of medium-sized sparse classifica-

tion problems. It offers an alternative to global sparsity approaches, and is a natural frame-

work for sequential classification problems. The method extends easily to a whole family of

sparsity-related problem which would otherwise require developing specific solutions. This

is the case in particular for cost-sensitive and limited-budget classification, where feature

acquisition is costly and is often performed sequentially. Finally, our approach can handle

non-differentiable loss functions or combinatorial optimization encountered in more com-

plex feature selection problems.
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1 Introduction

Feature Selection is one of the main contemporary issues in Machine Learning and has

been approached from many directions. One modern approach to feature selection in linear

models consists in minimizing an L0 regularized empirical risk. This particular risk en-

courages the model to have a good balance between a low classification error and a high

sparsity (where only a few features are used for classification). As the L0 regularized prob-

lem is combinatorial, many approaches such as the LASSO (Tibshirani 1994) try to address

the combinatorial problem by using more practical norms such as L1. These classical ap-

proaches to sparsity aim at finding a sparse representation of the feature space that is global

to the entire dataset.

We propose a new approach to sparsity where the goal is to limit the number of features

per datapoint classified, thus datum-wise sparse classification model (DWSM). Our ap-

proach allows the choice of features used for classification to vary relative to each datapoint;

data points that are easy to classify can be inferred on with only a few features, and others

which might require more information can be classified using more features. The underlying

motivation is that, while classical approaches balance between accuracy and sparsity at the

dataset level, our approach optimizes this balance at the individual datum level.

This approach differs from the usual feature selection paradigm which operates at a

global level on the dataset. We believe that several problems could benefit from our ap-

proach. For many applications, a decision could be taken by observing only a few features

for most items, whereas other items would require closer examination. In these situations,

datum-wise approaches can achieve higher overall sparsity than classical methods. In our

opinion, however, this is not the only important aspect of this model, as there are two pri-

mary domains where this alternative approach to sparsity can also be beneficial. First, this is

a natural framework for sequential classification tasks, where a decision regarding an item

class is taken as soon as enough information has been gathered on this item (Louradour and

Kermorvant 2011; Dulac-Arnold et al. 2011). Second, the proposed framework naturally

adapts to a variety of sparsity or feature selection problems that would require new specific

solutions with classical approaches. It also allows for the handling of situations where the

loss function is not continuous—situations that are difficult to cope with through classical

optimization. It can be easily adapted, for example, to limited budget or cost sensitive prob-

lems where the acquisition of features is costly, as it is often the case in domains such as

diagnosis, medicine, biology or even for information extraction problems (Kanani and Mc-

Callum 2012). DWSM also allows handling easily complex problems where features admit

a certain inherent structure.

In order to solve the combinatorial feature selection problem, we propose to model fea-

ture selection and classification as a single sequential Markov Decision Process (MDP).

A scoring function associated to the MDP policy will return at any time the best possible ac-

tion. Each action consists either in choosing a new feature for a given datum or in deciding on

the class of x if enough information is available for deciding so. During inference, this score

function will allow us to greedily choose which features to use for classifying each particu-

lar datum. Learning the policy is performed using an algorithm inspired by Reinforcement

Learning (Sutton and Barto 1998). In this sequential decision process, datum-wise sparsity

is obtained by introducing a penalizing reward when the agent chooses to incorporate an
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additional feature into the decision process. We show that an optimal policy in this MDP

corresponds to an optimal classifier w.r.t. the datum wise loss function which incorporates a

sparsity inducing term.

The contributions of the paper are as follows:

1. We formally introduce the concept of datum-wise sparse classification, and propose a

new classifier model whose goal is two-fold: maximize the classification accuracy, while

using as few features as possible to represent each datum. The model considers classifi-

cation as a sequential process, where the model’s choice of features is dependent on the

current datum’s values.

2. We formalize this sequential model using a Markov Decision Process. This allows us to

use an MDP, we show the equivalence between learning to maximize a reward function

and minimizing a datum-wise loss function. This new approach results in a model that

obtains good performance in terms of classification while maximizing datum-wise spar-

sity, i.e. the mean number of features used for classifying the whole dataset. Our model

also naturally handles multi-class classification problems, solving them by using as few

features as possible for all classes combined.

3. We propose a series of extensions to our base model that allow us to deal with variants

of the feature selection problem, such as: hard budget classification, group features, cost-

sensitive classification, and relational features. These extensions aim at showing that the

proposed sequential model is more than a classical sparse classifier, but can be easily

adapted to many different classification tasks where the features selection/acquisition

process is complex, all while maintaining good classification accuracy.

4. We perform a series of experiments on many different corpora: 13 for the base model and

additional corpora for the extensions. Then we compare the model with those obtained

by optimizing the LASSO problem (Efron et al. 2004), an L1-regularized SVM, and

CART decision trees. This provides a qualitative study of the behavior of our algorithm.

Additionally, we perform a series of experiments to demonstrate the potential of the

various extensions proposed to our model.

The paper is organized as follows: First, we define the notion of datum-wise sparse clas-

sifiers and explain the interest of such models in Sect. 2. We then describe our sequential

approach to classification and detail the learning algorithm in Sect. 3. We then proceed to ex-

plain how the model described in Sect. 3 can be extended to handle more complex problems

such as cost-sensitive classification in Sect. 4. e discuss the algorithm complexity in Sect. 5

and its scalability to large datasets. We detail experiments and also give a qualitative analy-

sis of the behavior of this base model and the extensions in Sect. 6. Finally, a state-of-the-art

in sparsity, as well as an overview of related work is presented in Sect. 7.

2 Datum-wise sparse classifiers

We consider the problem of supervised multi-class classification1 where one wants to learn

a classification function fθ : X → Y . The function fθ associates one category y ∈ Y to a

vector x ∈ X , with X = R
n, n being the dimension of the input vectors. θ is the set of pa-

rameters learned from a training set composed of input/output pairs Ttrain = {(xi, yi)}i∈[1..N].

1Note that this includes the binary supervised classification problem as a special case.
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These parameters are commonly found by minimizing the empirical risk defined by:

θ∗ = argmin
θ

1

N

N
∑

i=1

Δ
(

fθ (xi), yi

)

, (1)

where Δ is the loss associated to a prediction error, defined as:

Δ(x,y) =

{

0 if x = y,

1 if x �= y.

This empirical risk minimization problem does not consider any prior assumption or con-

straint concerning the form of the solution and can result in overfitting models. Moreover,

when facing a very large number of features, obtained solutions usually need to perform

computations on all the features for classifying each datum, thus negatively impacting the

model’s classification speed. We propose a different risk minimization problem where we

add a penalization term that encourages the obtained classifier to classify using on aver-

age as few features as possible. In comparison to classical L0 or L1 regularized approaches

where the goal is to constrain the number of features used at the dataset level, our approach

performs sparsity at the datum level, allowing the classifier to use different features when

classifying different inputs. This results in a datum-wise sparse classifier that, when pos-

sible, only uses a few features for classifying easy inputs, and more features for classifying

difficult or ambiguous ones.

We consider a classifier function that, in addition to predicting a label y given an input

x, also provides information about which features have been used for classification. Let us

denote Z = {0;1}n. We define a datum-wise classification function f of parameters θ as:

fθ :

{

X → Y × Z,

fθ (x) = (y, z),

where y is the predicted output and z is a n-dimensional vector z = (z1, . . . , zn), such that

zi = 1 implies that feature i has been taken into consideration for computing label y on

datum x. By convention, we denote the predicted label as yθ (x) and the corresponding z-

vector as zθ (x). Thus, if zi
θ (x) = 1, feature i has been used for classifying x into category

yθ (x).

This definition of data-wise classifiers has two main advantages: First, as we will see in

the next section, because fθ can explain its use of features with zθ (x), we can add constraints

on the features used for classification. This allows us to encourage datum-wise sparsity

which we define below. Second, experimental analysis of zθ (x) gives a qualitative explana-

tion of how the classification decision has been made, which we discuss in Sect. 6. Note

that the way we define datum-wise classification is an extension to the usual definition of a

classifier.

2.1 Datum-wise sparsity

Datum-wise sparsity is obtained by adding a penalization term to the empirical loss defined

in Eq. (1) that limits the average number of features used for classifying:

θ∗ = argmin
θ

1

N

N
∑

i=1

Δ
(

yθ (xi), yi

)

+ λ
1

N

N
∑

i=1

∥

∥zθ (xi)
∥

∥

0
. (2)
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The term ‖zθ (xi)‖0 is the L0 norm2 of zθ (xi), i.e. the number of features selected for clas-

sifying xi. In the general case, the minimization of this new risk results in a classifier that

on average selects only a few features for classifying, but may use a different set of features

w.r.t. to the input being classified. We consider this to be the crux of the DWSM model: the

classifier takes each datum into consideration differently during the inference process.

Note that the optimization of the loss defined in Eq. (2) is a combinatorial problem that

becomes quickly intractable. In the next section, we propose an original way to deal with

this problem, based on a Markov Decision Process.

3 Datum-wise sparse sequential classification

In the next couple of pages, we begin by proposing a model that allows us to solve the

problem posed in Eq. (2). Then we explain how we can use this model to classify in a

sequential manner that allows for datum-wise sparsity.

3.1 Markov decision process

We consider a Markov Decision Process (MDP, Puterman 1994)3 to classify an input x ∈ R
n.

At first, we have no information about x, that is, we have no attribute/feature values. Then,

step-by-step, we can choose to either acquire a particular feature of x or to classify x. The act

of classifying x in the category y ends an “episode” of the sequential process. This process

is illustrated with an example MDP in Fig. 1. The classification process is a deterministic

process defined by:

– A set of states X × Z , where the tuple (x, z) corresponds to the state where the agent is

considering datum x and has selected features specified by z. The number of currently

selected features is thus ‖z‖0.

– A set of actions A where A(x, z) denotes the set of possible actions in state (x, z). We

consider two types of actions:

– Af is the set of feature selection actions such that, for a ∈ Af , choosing action a =

aj corresponds to choosing feature fj . Note that the set of possible feature selection

actions on state (x, z), denoted Af (x, z), is equal to the subset of currently unselected

features, i.e. Af (x, z) = {aj ∈ Af , s.t. zj = 0}.

– Ay is the set of classification actions—one action for each possible class—that corre-

spond to assigning a label to the current datum. Classification actions stop the sequen-

tial decision process.

– A transition function defined only for feature selection actions (since classification actions

are terminal):

T :

{

X × Z × Af → X × Z,

T ((x, z), a) = (x, z′)

where z′ is an updated version of z such that for a = aj , z′ = z + ej with ej as the vector

whose value is 1 for component j and 0 for the other components.

2The L0 ‘norm’ is not a proper norm, but we will refer to it as the L0 norm in this paper, as is common in

the sparsity community.

3The MDP is deterministic in our case.



92 Mach Learn (2012) 89:87–122

Fig. 1 The sequential process for a problem with 4 features (f1, . . . , f4) and 3 possible categories

(y1, . . . , y3). Top: The leftmost circle is the initial state for one particular input x. Classification actions

are terminal, and therefore end the decision process. In this example, the classification has been made by

sequentially choosing to acquire feature 2, feature 4, feature 3 and then classifying x in category y2 . The bold

(orange) arrows correspond to the trajectory made by the current policy. Bottom: The values of z(x) for the

different states are illustrated. The value on the arrows corresponds to the immediate reward received by the

agent assuming that x belongs to category y2 . At the end of the process, the agent has received a total reward

of −3λ

3.1.1 Policy

We define a parameterized policy πθ , which, for each state (x, z), returns the best action as

defined by a scoring function sθ (x, z, a):

πθ : X × Z → A and πθ (x, z) = argmax
a

sθ (x, z, a).

The policy πθ decides which action to take by applying the scoring function to every action

possible from state (x, z) and greedily taking the highest scoring action. The scoring function

reflects the overall quality of taking action a in state (x, z), which corresponds to the total
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reward obtained by taking action a in (x, z) and thereafter following policy πθ :4

sθ (x, z, a) = r(x, z, a) +

T
∑

t=1

r t
θ

∣

∣

(

(x, z), a
)

. (3)

Here,
∑T

t=1 r t
θ |((x, z), a) corresponds to the cumulative reward when starting in state (x, z),

choosing action a, and following policy πθ until classification.

Here r t
θ | ((x, z), a) corresponds to the reward obtained at step t . Taking the sum of these

rewards gives us the total reward from state (x, z) until the end of the episode. Since the

policy is deterministic, we may refer to a parameterized policy using only θ . Note that the

optimal parameterization θ∗ obtained after learning (see Sect. 3.4) is the parameterization

that maximizes the expected reward over all possible state-action pairs.

In practice, the initial state of such a process for an input x corresponds to an empty z

vector where no feature has been selected. The policy θ sequentially picks, one by one, a

set of features pertinent to the classification task, and then chooses to classify once enough

features have been considered.

3.1.2 Reward

The reward function reflects the immediate quality of taking action a in state (x, z) relative to

the problem at hand. We define a reward function R : X × Z × A → R for (xi, yi) ∈ Ttrain:

– If a corresponds to a feature selection action i.e. a ∈ Af :

r(xi, z, a) = −λ.

– If a corresponds to a classification action i.e. a ∈ Ay :

r(xi, z, a) =

{

0 if a = yi,

−1 if a �= yi .

With the reward function defined in this way, correctly classifying an input xi by acquiring

f features results in obtaining a reward of −f · λ while an incorrect classification results in

a reward of −f · λ− 1. A good rule of thumb is to keep λ < 1/n in order to avoid situations

where classifying incorrectly is a better decision than choosing sufficient features. Of course

depending on the particular application and desired sparsity, on can choose larger values

for λ.

3.2 Reward maximization and loss minimization

As explained in Sect. 2, our ultimate goal is to find the parameterization θ∗ that minimizes

the datum-wise empirical loss defined in Eq. (2). Let us therefore show that maximizing the

expected reward is equivalent to minimizing the datum-wise empirical loss.

4This corresponds to the classical Q-function in Reinforcement Learning. We have however removed the

expectation since our MDP is deterministic.
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θ∗ = argmax
θ

1

N

N
∑

i=1

Tθ (xi)+1
∑

t=1

r
(

xi, z
(t)
θ (xi),πθ

(

xi, z
(t)
θ

))

= argmax
θ

1

N

N
∑

i=1

{

0 − λ · ‖zθ (xi)‖0 if y = yi

−1 − λ · ‖zθ (xi)‖0 if y �= yi

= argmax
θ

1

N

N
∑

i=1

(

−Δ
(

yθ (xi), yi

)

− λ
∥

∥zθ (xi)
∥

∥

0

)

= argmin
θ

1

N

N
∑

i=1

(

Δ
(

yθ (xi), yi

)

+ λ
∥

∥zθ (xi)
∥

∥

0

)

= argmin
θ

1

N

N
∑

i=1

Δ
(

yθ (xi), yi

)

+ λ
1

N

N
∑

i=1

∥

∥zθ (xi)
∥

∥

0
. (4)

Here, πθ (xi, z
(t)
θ ) is the action taken at time t by the policy πθ for the training example xi

and Tθ (xi) is the number of features acquired by πθ before classifying xi.

Such an equivalence between risk minimization and reward maximization shows that the

optimal classifier θ∗ corresponds to the optimal policy in the MDP defined previously. This

equivalence allows us to use classical MDP resolution algorithms (Sutton and Barto 1998)

in order to find the best classifier. We detail the learning procedure in Sect. 3.4.

3.3 Inference and approximated decision processes

Due to the infinite number of possible inputs x, the number of states is also infinite. More-

over, the reward function r(x, z, a) is only known for the values of x that are in the training

set and cannot be computed for any other datum. For these two reasons, it is not possible to

compute the score function for all state-action pairs in a tabular manner, and this function

has to be approximated.

The scoring function that underlies the policy sθ (x, z, a) is approximated with a linear

model:

s(x, z, a) =
〈

Φ(x, z, a); θ
〉

.

The policy defined by such a function consists in taking in state (x, z) the action a′ that

maximizes the scoring function i.e. a′ = argmaxa∈A
〈Φ(x, z, a); θ〉. The scoring function

s(x, z, a) is thus the function which chooses which action to take in any state of the decision

process: it decides which features to acquire and when to classify a particular input. In our

experiments we have chosen to restrict ourselves to a linear scoring function. The choice of a

linear function is natural to be able to compare ourselves with the classification performance

of L1-regularized linear models. Our work could easily be extended to non-linear cases by

changing the regression machine’s nature. Note that, as explained in Sect. 5, using linear

machines allows one to have a very low inference complexity.

The state-action pairs are represented in a feature space. We note Φ(x, z, a) the featur-

ized representation of the ((x, z), a) state-action pair. Many definitions may be used for this

feature representation, but we propose a simple projection. To begin with, let us restrict the

representation of x to only the selected features. Let μ(x, z) be the restriction of x according
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to z:

μ(x, z)i =

{

xi if zi = 1,

0 elsewhere.

To be able to differentiate between an attribute of x that is not yet known, and an attribute

of x that is simply equal to 0, we must keep this information present in z. Let φ(x, z) =

(z,μ(x, z)) be the intermediate representation that corresponds to the concatenation of z

with μ(x, z). Now we simply need to keep the information present in a such that each action

can be easily distinguished by a linear classifier. To do this, we use block-vectors (Har-Peled

et al. 2002). This consists in projecting φ(x, z) into a higher dimensional space, such that

the position of φ(x, z) inside the global vector Φ(x, z, a) is dependent on action a:

Φ(x, z, a) =
(

0, . . . ,0, φ(x, z),0, . . . ,0
)

.

In Φ(x, z, a), the block φ(x, z) is at position ia · |φ(x, z)| where ia is the index of action a

in the set of all the possible actions. Thus, φ(x, z) is offset by an amount dependent on the

action a. This equates to having a different linear classifier for each possible action in the

MDP.

3.4 Learning

The goal of the learning phase is to find an optimal policy parameterization θ∗ which max-

imizes the expected reward, thus minimizing the datum-wise regularized loss defined in

Eq. (2). The combinatorial space consisting of all possible feature subsets for each individ-

ual datum in the training set is extremely large. Therefore, we cannot exhaustively explore

the state space during training, and thus use a Monte-Carlo approach to sample example

states from the learning space.

In order to find the optimal policy parameterization θ∗—which maximizes the expected

reward, thus minimizing the regularized empirical loss defined in Eq. (2)—we propose to

use an Approximate Policy Iteration learning approach based on Rollouts Classification Pol-

icy Iteration (RCPI) (Lagoudakis and Parr 2003). Sampling state-action pairs according to

a previous policy πθ (t−1) , RCPI consists in iteratively learning a better policy πθ (t) by itera-

tively improving estimations of sθ as defined in Eq. (3). The RCPI algorithm is composed

of three main steps that are iteratively repeated:

1. The algorithm begins by sampling a set of random states: the x vector is sampled from a

uniform distribution in the training set, and z is also sampled using a uniform binomial

distribution.

2. For each sampled state, the policy πθ (t−1) is used to compute the expected reward of

choosing each possible action from that state. We now have a feature vector Φ(x, z, a)

for each state-action pair in the sampled set, and the corresponding expected reward

denoted Rθ (t−1)(x, z, a).

3. The parameters θ (t) of the new policy are then computed using classical linear regres-

sion on the set of feature vectors—Φ(x, z, a)—and corresponding expected rewards—

Rθ (t−1)(x, z, a)—as regression targets. This classifier gives an estimated score to state-

action pairs even if we have never seen them previously.

After a certain number of iterations, the parameterized policy converges to a final policy πθ̂

which is used for inference. Convergence is not guaranteed by Approximate Policy Iteration

algorithms, but in practice occurs after only a few iterations. Termination of the learning
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algorithm happens once performance of a new policy no longer significantly improves over

the previous iteration’s policy.

RCPI is based on two different hyper-parameters that have to be tuned manually: the

number of states used for Monte-Carlo Simulation and the number of rollout trajectories

sampled for each state-action pair. These parameters have a direct influence over the per-

formances of the algorithm and the time spent for learning. As explained in Lazaric et al.

(2010), a good choice consists in choosing a high value of sampled state with only a few

sampling trajectories. This is the choice we have made for the experiments.

4 Model extensions

So far, we have introduced the concept of datum-wise sparsity, and showed how it can be

modeled as a Sequential Decision Process. Let us now show how DWSM can be extended to

tackle other types of feature selection problems. This section aims to show that the proposed

DWSM model is very general and can easily be adapted for many new feature selection

problems, while keeping its datum-wise properties. We show how we can address the follow-

ing classification tasks: hard budget feature selection, cost-sensitive feature acquisition,

group feature sparsity, and relational feature sparsity. All of these problems have been

derived from real-world applications and have been explored separately in different publi-

cations where problem is solved by a particular approach. We show that our model allows

us to address all these tasks by making only a few changes to the original formulation.

We begin by providing an informal description of each of these tasks and describing

the corresponding losses that are to be minimized on a training set. Note that these loss

minimization problems are datum-wise variants inspired by losses found in the literature,

and are therefore slightly different. We then describe how these losses can be solved by

making simple modifications to the structure of the decision process described in Sect. 3.

Experimental results are presented in Sect. 6.3.

4.1 Definitions

Here are descriptions of the different problems we address, and the corresponding datum-

wise loss minimization problems:

– Hard budget feature selection (Kapoor and Greiner 2005) considers that there is a fixed

budget on feature acquisition, be it during the training, the inference, per-datum, or glob-

ally. We choose to put in place this constraint as a per-datum hard budget during inference.

The goal is to maximize classification accuracy while respecting this strict limit on the

feature budget. The corresponding loss minimization problem can be written as:

θ∗ = argmin
θ

1

N

N
∑

i=1

Δ
(

yθ (xi), yi

)

+ λ
1

N

N
∑

i=1

∥

∥zθ (xi)
∥

∥

0
,

subject to
∥

∥zθ (xi)
∥

∥

0
≤ M. (5)

– Cost-sensitive feature acquisition and classification (Turney 1995; Greiner 2002; Ji

and Carin 2007) is an important domain in both feature selection and active learning. The

problem is defined by assigning a fixed cost to each feature the classifier can consider.

Moreover, the cost of misclassification errors depends on the error made. For example,

false positive errors will have a different cost than false negatives. The goal is thus to
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minimize the overall cost which is composed of both the misclassification cost and also

the sum of the cost of all the features acquired for classifying. This task is well-suited for

some medical applications where there is a cost associated with each medical procedure

(blood test, x-ray, etc.) and a cost depending on the quality of the final diagnosis.

Let us denote ξ the vector that contains the cost of each of the possible features, the

datum-wise minimization problem can be written as:

θ∗ = argmin
θ

1

N

N
∑

i=1

Δcost

(

yθ (xi), yi

)

+
1

N

N
∑

i=1

〈

ξ ; zθ (xi)
〉

, (6)

where Δcost is a cost-sensitive error loss. Let C be a classification cost matrix such that

Ci,j is the cost of classifying a datum as i when its real class is j . This cost is generally

positive5 for i �= j , and negative or zero for i = j . We can thus define Δcost as:

Δcost (i, j) = Ci,j . (7)

The matrix C is defined a priori by the problems one wants to solve.

– Group feature selection has been previously considered in the context of the Group

Lasso (Yuan and Lin 2006). In this problem, feature selection is considered in the con-

text of groups of features; the classifier can choose to use a certain number of groups

of features, but cannot select individual features. Many feature selection tasks present a

certain organization in the feature space. For example, a subset of features fs may all be

somehow correlated, and need to be selected together. For example, fs may represent a

discretized real variable, or an ensemble of values that correspond to a single physical

test. These groups can either be defined relative to a certain structure already present in

the data (Jenatton et al. 2011), or can be used to reduce the dimensionality of the prob-

lem. Let us consider the set of n features denoted F and a set of g groups of features

denoted F1 . . . Fg such that
⋃g

i=1 Fi = F . Let us define the set of selected features for

a particular datum xi as Zθ (xi) = {j ∈ F s.t. z
j

θ (xi) = 1}. The corresponding datum-wise

loss, inspired by the Group Lasso, can be now be written as:

θ∗ = argmin
θ

1

N

N
∑

i=1

Δ
(

yθ (xi), yi

)

+ λ
1

N

N
∑

i=1

g
∑

t=1

1
(

Ft ⊂ Zθ (xi)
)

. (8)

This loss tries to minimize the number of Ft groups present in the actual set of selected

features. We use 1(·) as a truth function:

1(P ) =

{

1 if P True,

0 otherwise.

This allows us to quantify the number of groups that have been chosen in Zθ (xi), so that

we may minimize their number.

– Relational feature selection: Finally, we consider a more complex problem where fea-

tures are organized in a complex structure. This problem, which we call relational feature

selection, is inspired by structured sparsity (Huang et al. 2009). We imagine a couple of

problems that can fall into this category:

5Note that a positive cost implies a penalty in the minimization sense.
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Table 1 Proposed tasks and corresponding learning problems

Task Loss minimization problem

Hard budget θ∗ = argminθ
1
N

∑N
i=1 Δ(yθ (xi), yi ) + λ 1

N

∑N
i=1 ‖zθ (xi)‖0

subject to ‖zθ (xi)‖0 ≤ M

Cost-sensitive θ∗ = argminθ
1
N

∑N
i=1 Δ(yθ (xi), yi ) + 1

N

∑N
i=1〈ξ ; zθ (xi)〉

Grouped features θ∗ = argminθ
1
N

∑N
i=1 Δ(yθ (xi), yi ) + λ 1

N

∑N
i=1

∑g
t=1

1(Ft ⊂ Zθ (xi))

Relational features θ∗ = argminθ
1
N

∑N
i=1 Δ(yθ (xi), yi )

+ 1
N

∑N
i=1

∑

f,f ′∈Zθ (xi )
Related(f,f ′)(λ − γ ) + γ

– Conditional features, where one or a subset of features can only be selected depending

on the previously acquired features.

– Constrained features, where the cost of acquiring a particular feature depends on the

previously acquired features. For example, in computer vision, one can constrain a

system to acquire values of pixels that are close in an image—see Sect. 6.3.3.

Let us define a boolean function that tells us if two features are related:

Related:

{

Af × Af → {1,0},

Related(f,f ′) = 1 if related, else 0.
(9)

In the case of this function, the relation can be any imaginable constraint that can be

calculated simply by considering f and f ′.

The underlying idea is that acquiring features that are somehow related is less expen-

sive than acquiring features that do not share a relation. The corresponding loss can be

written as:

θ∗ = argmin
θ

1

N

N
∑

i=1

Δ
(

yθ (xi), yi

)

+
1

N

N
∑

i=1

∑

f,f ′∈Zθ (xi )

Related
(

f,f ′
)

(λ − γ ) + γ. (10)

Here, the term Related(f,f ′)(λ − γ ) + γ equals λ if f and f ′ are related, and γ other-

wise. In that definition, the cost of acquiring non related features is γ while the cost of

related features is λ. Therefore, to encourage the use of related features, one simply needs

to set γ > λ.

The different problems are summarized in Table 1.

4.2 Adapting the datum-wise classifier

In the rest of this section, we will show how these different tasks can be easily solved by

making slight modifications to the model proposed in Sect. 3. We will first cover the general

idea underlying these modifications, and then detail for each of the previously described

tasks how they can be handled by the sequential process. This section aims at showing

that our approach is not only a novel way to compute sparse models, but also an original
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Table 2 Summary of the modifications made for incorporating the different variants in the original model

Task Decision process modification Commentary

Hard budget A(x, z) =

{

Af (x, z) ∪ Ay (x, z) if ‖z‖0 < M

Ay (x, z) if ‖z‖0 = M
Allows users to choose a minimum

level of sparsity. Reduces training

complexity.

Cost-

sensitive

r(xi, z, a) =

{

−ξi if a ∈ Af

−Ca,yi
if a ∈ Ay

Well-suited for features with

variable costs.

Grouped

features

Af = Agroup

T
(

(x, z), aj

)

=

(

x, z +
∑

i∈Fj
ei

)

Well adapted to features presenting

a grouped nature. Complexity is

reduced.

Relational

features

r(x, z, aj ) =

{

−λ if ∀f ∈ Z(x),Related(fj , f ) = 1

−γ otherwise
Naturally suited for complex feature

inter-dependencies.

and flexible approach that allows one to easily imagine many different models for solving

complex classification problems.

4.2.1 General idea

Our model is based on the idea6 of proposing a sequential decision process where the long

term reward obtained by a policy is equal to the negative loss obtained by the corresponding

classifier. With such an equivalence, the optimal policy obtained through learning is thus

equivalent to an optimal classifier for the particular loss considered. In order to deal with the

previously proposed classification problems, we simply modify DWSM’s MDP in order to

correspond to the new loss function.

The main advantage of making only small changes to the structure of the decision process

is that we do not need to change the principles of the learning and inference algorithms, thus

resulting in new classifiers that are very simple to specify and implement. We believe that

this approach is well suited for solving real-world classification tasks that often corresponds

to complex loss functions.

In order to deal with the four different proposed tasks, we have to make modifications

to the MDP by changing: the reward function r(·, ·, ·), the action set A(·, ·), and/or the

transition function T (·, ·).

To be able to adapt our model to these new problems, we do not need to modify either

the feature projector, Φ(·, ·), the actual definition of the state space, the learning algorithm,

or the inference algorithm.

In the next part, we detail which modifications we have made on the original decision

process for each of the four new tasks. We do not detail the derivation for the equivalence

between the long term reward and the optimized loss function. However, these derivations

are easy to achieve following the steps presented in Sect. 3.2. A summary of the modifica-

tions is made in Table 2.

6See Sect. 3.
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4.2.2 Hard budget

In order to integrate the hard budget constraint into our model, we modify the set of possible

actions A(x, z) such that:

A(x, z) =

{

Af (x, z) ∪ Ay(x, z) if ‖z‖0 < M,

Ay(x, z) if ‖z‖0 = M.

This new action set function allows the model to either choose a new feature, or classify

if the number of selected features ‖z‖0 is inferior to M . When M − 1 features have been

selected, only classification actions may be performed by the classifier.

One advantage of this constraint is to reduce the complexity of the training algorithm,

since the maximum size of a trajectory in the decision process is now M . This has the effect

of limiting the length of each rollout, thus making the training simulation much faster to

compute.

4.2.3 Cost-sensitive

We express variable feature costs in our model by modifying the reward function. While

DWSM uses a −λ reward for all feature actions, we use a variable reward depending on

the feature being selected. Additionally, we modify the reward obtained when classifying to

make it dependent on the cost matrix C. The reward function can now be written as:

r(xi, z, a) =

{

−ξi if a ∈ Af ,

−Ca,yi
if a ∈ Ay,

where ξi is the cost of acquiring feature i, as used in Eq. (6), and C is the cost-sensitive error

loss defined in Eq. (7).

4.2.4 Group features

In the context of our model, implementing group features corresponds only to a slight mod-

ification of the action space. We simply define a mapping that allows a specific feature

selection action to correspond to the addition of a whole subset of actual datum attributes.

To do this, let us define a new set of features actions Agroup which will replace Af :

Agroup =
{

a′
1, . . . , a

′
n′

}

,

where each a′
j corresponds to acquiring the j th group of features—instead of the j th feature.

To allow this simultaneous acquisition of features, we can modify the transition function T ,

and define a new transition function for grouped features:

T
(

(x, z), aj

)

=

(

x, z +
∑

i∈Fj

ei

)

,

where Fj is the j th group of features as defined previously in Sect. 4.1. The new set of

possible actions is then the union between Agroup and Ay , allowing the classification process

to choose, at each step, to either classify or acquire simultaneously a whole group of features.

Because the size of Agroup is inferior to the size of Af , the new MDP corresponds to a

learning and inference complexity which is greatly reduced relative to he original problem.

This aspect allows us to deal both with datasets where features are “naturally” grouped, but

also, to deal with datasets with large number of features, by artificially grouping the features

into groups. We consider both of these approaches experimentally in Sect. 6.3.3.
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4.2.5 Relational features

Contrary to group features where the classifier can choose amongst a set of predefined

groups of features, constrained features allow the classifier to discover coherent groups of

features in the feature space. This type of constraint is more interesting for particular datasets

that represent a spatial or relational representation. For every action aj ∈ Af ,7 let us define

the reward as:

r(x, z, aj ) =

{

−λ if ∀f ∈ Z(x), Related(fj , f ) = 1,

−γ otherwise.

Thus, the classifier is encouraged to choose features that are related to the features previously

chosen. Nevertheless, for a certain penalty γ > λ, the classifier can choose to start a new,

unrelated feature group. One can use a very high value for γ in order to force the classifier to

choose only related features. In that case, the relational features can be easily implemented

by reducing the set of the possible features acquisition actions, reducing the complexity of

the system. This variant is not described in this paper.

4.3 Overview of model extensions

As we have seen in this section, our model is easily adaptable to a large set of sparsity-

inspired problems. What we believe to be of particular interest is not only that our model

can function under complex constraints, but that adapting it for these constraints is relatively

straightforward. Indeed, one can imagine many more sparsity-inspired problems requiring

constraints that are not easily dealt with traditional classification approaches, yet that could

be easily expressed with our model. For this reason, we strongly believe that our model’s

adaptability to more complex problems is one of its strong points.

5 Complexity analysis and scaling

Let us focus on the analysis of the complexity of the proposed model. We detail the com-

plexity concerning the initial datum-wise sparse model proposed in Sect. 2, and then detail

the complexity of each proposed extension. We discuss the ability of our approach to deal

with datasets with a large number of features and propose different possible extensions for

reducing the complexity of the approach.

5.1 Complexity of the datum-wise sparse classifier

Inference complexity Inference on an input x consists in sequentially choosing features,

and then classifying x. Having acquired t features, on a dataset with n features and c cate-

gories in total, one has to perform (n − t) + c linear computations through the sθ function

in order to choose the best action at each state. The inference complexity is thus O(Nf · n),

where Nf is the mean number of features chosen by the system before classifying. In fact,

due to the shape of the Φ function presented in Sect. 3.3 and the linear nature of sθ , the

score of the actions can be efficiently incrementally computed at each step of the process by

only adding the contribution of the newly added feature to each action’s score. This com-

plexity makes the model able to quickly classify very large datasets with many examples.

The inference complexity is the same for all the proposed variants.

7This corresponds to choosing feature fj .
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Table 3 Learning complexity of the different variants of the Datum-Wise Model. n is the number of features,

c the number of classes, Ns is the number of states used for rollouts

Variant Learning complexity Remarks

Sparse model O(Ns · T · (n + c)2) Limited to hundreds of features, T ≈ n.

Hard budget O(Ns · T̄ · (n + c)2) Same complexity as the base model, shorter learning

time with the budget T̄ ≪ n.

Grouped

features

O(Ns · T · (n̄ + c)2) Same complexity as the base model, much shorter

learning time with the number of groups n̄ ≪ n, and

T ≈ n̄.

Relational

features

O(Ns · T · (n + c)2)

to O(Ns · T · c2)

The complexity depends on the structure of the

features. In the extreme case, where features have to

be acquired in a fixed order, the complexitya is

O(Ns · T · c2) and allows the model to scale linearly

relative to features.

aSince there is no choice in the features, the number of actions is only 1 + c

Learning complexity As detailed in Sect. 3.4, the learning method is based on Rollouts

Classification Policy Iteration. The computational cost of one iteration of RCPI is composed

of a simulation cost which corresponds to the time spent making Monte Carlo Simulation

using the current policy. This cost takes the following general form:

Cost(RCPI) = NsA × T A.

A = (n + c) is the total number of actions in the MDP (feature selection plus classification

actions), T A is therefore the cost of evaluating one trajectory of length T , where each of the

T state transition requires querying the value of each of the A actions from the scoring func-

tion sθ . NsA×T A is the overall cost of executing the Monte Carlo simulation by evaluating

a trajectory for each of the A actions of each of the Ns states.

The complexity of each iteration is therefore O(Ns · T · (n + c)2), with T ≈ n. This

implies a learning method which is quasi-cubic w.r.t. the number of features; the base variant

of our method is limited to problems with features in the hundreds. The extensions proposed

have different learning complexities presented in Table 3; this allows some of them to be

used with datasets containing thousands of features.

5.2 Scalability

If the learning complexity of our model is higher than baseline global linear methods, in-

ference is linear. In practice, during training, most of the baseline methods select a subset

of variables in a couple seconds to a couple minutes, whereas our method is an order of

magnitude slower. The problem encountered is the increase in training time relative to the

number of features. Inference, however, is indeed performed at the same speed as baseline

methods, which is in our opinion the important factor.

The proposed approach is clearly more suitable for dealing with classification where

the problem is complex, involving for example cost-sensitive features, relational features

or features that naturally present some structure. There are nevertheless a couple ways to

handle datasets with many features using our method:

– The complexity of the hard budget variant is clearly an order of magnitude lower than the

complexity of the initial model. This variant is useful when one wants to obtain a very
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high sparsity by limiting the maximum number of used features to ten or twenty. In this

case, this model is faster than the DWSM model and can be learned on larger datasets

– The grouped-features model has a complexity which depends on the number of groups

of features. So one possible solution when dealing with many features, is to group these

features in a hundred of packets. These groups can be formed randomly, or by hand if the

features are naturally organized in a complex structure. Such a use of the model on a large

dataset is illustrated in Table 7.

– When dealing with sparse datasets, the learning algorithm can be easily adapted for re-

ducing its complexity. This acquisition of features can thus be restricted (during learning)

to the subset of non-null values, strongly reducing the number of possible actions in the

MDP to the number of non-null features.

– At last, the use of faster Reinforcement Learning techniques can be a possible solution

to fasten the learning phase. Recent techniques have been developed (Dulac-Arnold et al.

2012) allowing to reduce the complexity of our model from O(Ns · (n + c)3) to O(Ns ·

log(n+ c)) at the price of a final sub-optimal classification policy. These methods will be

tested on this task in a future work

6 Experiments

The experimental section is organized as follows: First, we present the results obtained by

basic DWSM on 8 binary classification datasets in Sect. 6.1. We analyze the performance

and behavior of this algorithm and compare with state-of-the-art methods. We then present

results for multiclass classification with this base model in Sect. 6.2. After that, we describe

experiments performed with the four extensions to the base model proposed in Sect. 4 on the

binary datasets and additional corpora. For brevity, we present only representative results in

the core article, while providing results obtained on all binary dataset with the DWSM and

its variants in the Appendix.

6.1 Sparse binary classification

The first set of experiments focuses on binary classification. Experiments were run on 8

different UCI (Frank and Asuncion 2010) datasets obtained from the LibSVM Website.8

The datasets are described in Table 4. For each dataset, we randomly sampled different

training sets by taking 10 %, 20 %, 50 % and 90 % of the examples as training examples,

with the remaining examples being kept for testing. This sampling was performed 30 times,

thus generating 30 train/test pairs for each split of the dataset. We did not use k-fold cross-

validation as it imposes the number of possible train/test splits for a particular percentage

split, and is therefore not applicable in our situation.

We performed experiments with four different models:

– LARS was used as a baseline linear model with L2 loss and L1 regularization.

– L1-SVM is an SVM classifier with L1 regularization, effectively providing LASSO-like

sparsity.9

– CART (Breiman et al. 1984) was used as a baseline decision tree model.

– Datum-Wise Sequential Model (DWSM) is the Datum-Wise Sparse model presented

above.

8http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

9Using LIBLINEAR (Fan et al. 2008).

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 4 Binary classification datasets characteristics

Name Number of features Number of examples Number of classes Task

Australian 14 690 2 Binary

Breast Cancer 10 683 2 Binary

Diabetes 8 768 2 Binary

Heart 13 270 2 Binary

Ionosphere 34 351 2 Binary

Liver Disorders 6 345 2 Binary

Sonar 60 208 2 Binary

Splice 60 1,000 2 Binary

For evaluation, we used a classical accuracy measure which corresponds to 1-error rate

on the test set of each dataset. The sparsity has been measured as the proportion of features

not used for the LARS and SVM-L1 models, and the mean proportion of features not used

to classify testing examples in DWSM and CART. Each model was run with many different

hyper-parameters values—the C and ǫ values for LARS and SVM-L1, the pruning value for

CART and λ for DWSM.

Concerning our method, the number of rollout states (step 1 of the learning algorithm)

is set to ten states for each learning example and the number of policy iterations is set to

ten.10 Note that experiments with more rollout states and/or more iterations give similar

results. Experiments were made using an α-mixture policy11 with α = 0.7 to ensure the

stability of the learning process—a lower α-value involves less stability while a higher value

makes more learning iterations necessary for convergence. The following figures present

accuracy/sparsity curves averaged over the 30 runs and also show the variance obtained

over the 30 runs.

Figures within this experimental section present average accuracies over the 30 different

splits. In the case of L1-SVM and LARS, models have a fixed number of features, however,

in the case of DWSM or decision trees, where the number of features is variable, results

are actually representative of multiple sparsities within a same experiment. Horizontal error

bars are therefore presented for our models.

By looking at the different curves presented in Appendix,12 one can see that DWSM

outperforms SVM-L1 and LARS at equivalent sparsity on 7 of the 8 binary datasets. Figure 2

illustrates two sparsity/accuracy curves comparing L1 approaches with DWSM while Fig. 3

also compare results obtained with CART to L1 approaches and DWSM.

– On Fig. 2 (left)—corresponding to experiments on the breast cancer dataset—one can

see that at a level of sparsity of 70 %, we obtain 96 % accuracy while the two baselines

obtain about 88 % to 90 %. The same observation also holds for other datasets as shown on

Fig. 2 (right). Looking at all the curves given in the Appendix, one can see that our model

tends to outperform L1 models—LARS and SVM-L1—on seven of eight datasets.13 In

these cases, at similar levels of global sparsity, our approach tends to maintain higher

10Stability of the learned policy is usually obtained after 4 to 5 iterations

11θ t is chosen with probability 1 − α, otherwise the previous α-mixture policy is used.

12As said before, only representative results are proposed in the core article.

13Those datasets are: Australian, breast-cancer, diabetes, heart, ionosphere, sonar and liver.
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Fig. 2 DWSM vs L1 models: accuracy w.r.t. to sparsity. In both plots, the left side on the x-axis corresponds

to a low sparsity, while the right side corresponds to a high sparsity. The performance of the models is usually

decreasing when the sparsity increases, except in case of overfitting

accuracy.14 These results show that DWSM can be competitive w.r.t. L1 methods, and

can outperform these baseline methods on a certain number of datasets.

– We have also compared DWSM with CART. The latter shares some similarities with our

sequential approach in the sense that, for both algorithms only some of the features will

be considered before classifying a data point. Aside from this point, the two methods

have strong differences; in particular, CART builds a global tree with a fixed number of

possible paths whereas, DWSM adaptively decides for each pattern which features to use.

Note that CART does not incorporate a specific sparsity mechanism and has never been

fully compared to L1 based methods in term of accuracy and sparsity. Figure 3 gives two

illustrative results obtained on two datasets. On Fig. 3 (left), one can see that our method

outperforms decision trees in term of accuracy at the same level of sparsity. Moreover,

DWSM allows one to easily obtain different models at different levels of sparsity, while

this is not the case for CART where sparsity could only be controlled indirectly by the

pruning mechanism. For some datasets, CART outperforms both DWSM and L1 based

models. An example is given in Fig. 3 (right), where at the 0.9 level of sparsity, CART

achieves about 90 % in term of accuracy, while DWSM achieves similar performance to

the baseline methods. CART’s advantage is most certainly linked to its ability to create a

highly non-linear decision boundary.

Qualitative results Figure 4 gives qualitative results on the breast-cancer dataset obtained

by two models (DWSM and LARS) for a sparsity level of 50 %. This figure is representative

of the behavior of the methods on most datasets. The left histogram gives the proportion of

testing examples classified by DWSM and L1 models using a particular feature. The right

part of the figure represents the proportion of testing examples that have been classified

using a given number of features. From the left histogram, one can see that, whereas some

features are used for all data with DWSM (as they are for the global LARS), many others

are evenly distributed among the samples. This shows a clear difference in the behavior of

global and sequential methods. This would also suggest that global methods do not make

the best use of the features. Note that the features that are used for every datum by DWSM

14DWSM outperforms L1-norm based approaches when blue curves are above red and black curves.
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Fig. 3 DWSM and decision trees: while CART can sometimes obtain a better accuracy, control over sparsity

is difficult to achieve

Fig. 4 Qualitative results: Left: The distribution of use of each feature for label prediction. For example,

LARS uses feature 2 for classifying 100 % of the test examples while DWSM uses feature 2 for only 88 % of

the test examples. Right: The mean proportion of features used for classifying. For example DWSM classifies

20 % of the examples using exactly 2 features while LARS uses 5 features for all the test examples

are also features used by L1 based approaches. For this example, the sparsity gain w.r.t. the

baseline model is obtained through features 1 and 9 that are used only for about 20 % of the

DWSM decisions, while they are used in 100 % of the decisions of the LARS model.

The histogram in Fig. 4 (Right) describes the average number of testing examples clas-

sified with a particular amount of acquired features. For example, DWSM classifies around

60 % of the examples using no more than 3 features. DWSM mainly uses 1, 2, 3 or 10

features, meaning that it identifies two “levels of difficulty”; some easy examples can be

classified using less than 3 features, while for the hard to classify examples, all the features

have to be used. A deeper analysis of this behavior shows that almost all the classification

mistakes have been made after looking at all 10 features.

Note that DWSM is able to attain better accuracy than the LARS for equivalent sparsity

levels. This is due to the fact that DWSM is not bound to a strict set of features for classi-

fication, whereas the LARS is. Therefore, it can request more features than the LARS has

available for a particularly ambiguous datum. This allows DWSM to have more information

in difficult regions of the decision space, while maintaining sparsity for a “simple” datum.

We have analyzed the correlation between the value of λ and the obtained sparsity—

Fig. 5. The higher λ is, the higher the sparsity. It is interesting to note that, when the value of

λ is too high, the model chooses to select no features and associates each input to the larger

category.
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Fig. 5 This plot shows the value

of λ for all the experiments run

with DWSM, and their

corresponding sparsity. The

average sparsities are calculated

for each λ; they are biased

towards a sparsity of 1 by the

large number of experiments with

no selected features, especially

for large values of λ. There are

an equal amount of experiments

for each value of λ.

λ ∈ {0,0.001,0.01,0.1,0.15,0.2,

0.3}. The two yellow hexagons on

the left actually represent 2

different values of λ: 0, and 0.001

Table 5 Multiclass classification datasets

Name Number of features Number of examples Number of classes

Segment 19 2,310 7

Vehicle 18 846 4

Vowel 10 1,000 11

Wine 13 178 3

6.2 Sparse multiclass classification

Multiclass experiments were performed with the same experimental protocal as in Sect. 6.1.

The baseline method is a One-vs-All L1-regularized SVM, and experiments were performed

on four different datasets described in Table 5. The experiments show the same general

behavior as for the binary datasets. The full results on the four datasets is presented in the

Annex. Figure 6 shows example performance for the Wine and Vowel datasets. Sparsity

for the SVM-L1 model is calculated using the total number of features considered while

classifying a datum.

The sequential model is particularly interesting with low sparsities, as it is able to main-

tain good accuracy even with high sparsity. We can see this in Fig. 6 (left), with DWSM able

to maintain ∼90 % accuracy while at sparsity of 0.8, whereas the SVM-L1 model has al-

ready sharply decreased in performance. Additionally, extending the model to the multiclass

case is completely natural and requires nothing more than adding additional classification

actions to the MDP.

6.3 Model extensions

In this section we will present a series of results for the model extensions described in

Sect. 4. Contrary to what was done for the base model, we did not attempt to perform ex-

tensive comparisons with baseline models but rather wanted to show—using some of the

datasets used previously—that the extensions were indeed sound and efficient. The reason
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Fig. 6 DWSM vs L1 models in multiclass: accuracy w.r.t. to sparsity. We can see that as sparsity de-

creases, performance converges. However, for intermediate sparsities, performance decreases more rapidly

with SVM-L1 models

for this is twofold: First, there is no baseline able to cope with all the extensions, so com-

parison would require for each problem a specific algorithm for each extension. Second, for

some of the extensions, not all the datasets are pertinent.

6.3.1 Hard budget

To demonstrate the effects of a hard feature budget, we have set hard budget limits on the

datasets described in Table 4. All experiments were performed with λ = 0, since sparsity

in this extension is controlled through the value of M . We have run experiments for M ∈

{2,5,10,20}. Figure 7 presents the results obtained on two particular datasets—all other

results are provided in the Appendix. In many cases, the addition of a hard constraint allows

us to obtain an equivalent or better accuracy relative to the original model, particularly for

high levels of sparsity. For example, on Fig. 7 (left), with M = 5 and a level of sparsity of

0.8, the hard budget model achieves 77 % in term of accuracy while LARS is about 72 % and

L1-SVM 65 %. The same effect can be seen on Fig. 7 (right). The Hard Budget extension

allows for much finer-grained control of sparsity within the model, and this is indeed what

is expressed in these figures. The Hard Budget model allows us to increase the accuracy of

the DWSM while reducing its learning and inference complexity: this model is many times

faster to learn and to infer with—its complexity is O(M · (n+ c)) instead of O(Nf · (n+ c))

where M is the budget, n the input dimension, c the number of classes and Nf the mean

number of features used by the base DWSM model. Hard budget can be suitable for datasets

with many features when one wants to obtain a high sparsity.

6.3.2 Cost-sensitive feature acquisition

For the cost sensitive extension, we perform experiments on the diabetes dataset, as it has

already been used by different authors for cost sensitive classification tasks. This dataset

defines one feature extraction cost and one misclassification cost—see Sect. 4.2.3. Experi-

ments were performed with the cost table used by Ji and Carin (2007), originally established

by Turney (1995).15 We used 5-fold cross-validation, and produced the results in Table 6.

15We did not use Turney’s actual costs as they are difficult to compare to with our metrics.
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Fig. 7 Hard Budget: Hard Budget models corresponding to different feature budgets M , with λ = 0. Hard

Budget models with a low value of M outperform DWSM and LARS models at high level of sparsity while

reducing the learning and inference complexity. Hard-Budget models also allow a more specific tuning of the

model’s sparsity

Table 6 This table presents results obtained on the cost-sensitive Pima Diabetes dataset. As a reference,

results from one of the cost-parameterization of Li and Carin is presented as well

Classifier Error penalty Average cost Accuracy

DWSM 800 181 0.75

DWSM 400 74 0.76

Li and Carin 800 180a 0.75a

Li and Carin 400 75a 0.75a

aNumerical values from Li and Carin are estimated graphically from their paper

Experiments were run with two different misclassification costs16 of 400 and 800. We refer

to this cost as “Error Penalty” in the results table. We use “Average Cost” to refer to the

average per-datum cost, where per-datum cost corresponds to the sum of incurred feature

acquisition costs plus the cost of classification. Finally, “Accuracy” is the standard measure

of accuracy.17 In this situation, a smaller cost is better.

The reference results in Table 6 were extracted from page 18 of the article (Ji and Carin

2007). We can see that our cost-sensitive model obtains, in each of the two cases18 the

same average cost as the one obtained by Li and Carin. Accuracy is also equivalent for both

models, showing that DWSM is competitive w.r.t. to a cost-sensitive-specific algorithm,

while only needing a slight modification to its MDP.

6.3.3 Grouped and relational features

In order to test the ability of our approach to deal with grouped and relational features, we

have performed three sets of experiments:

16Misclassification cost corresponds to Ca,yi
for a �= yi—see Sect. 4.2.3.

17Note that the classifier’s goal is to optimize per-datum cost as in Eq. (6), and not accuracy.

18Misclassification cost is 800 or 400.
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Table 7 This table describes group-feature results for the Gisette and Adult datasets

Classifier Dataset # groups λ Sparsity # of features Accuracy

DWSM Gisette 10 0.000 0.255 7.4 groups 0.932

0.005 0.308 6.9 groups 0.937

0.010 0.310 6.9 groups 0.926

0.100 0.549 4.5 groups 0.898

LASSO Gisette *** *** 0.98 100 features 0.962

DWSM Adult 14 0.000 0.41 8.75 groups 0.82

0.005 0.677 4.83 groups 0.79

0.010 1.0 0 groups 0.76a

LASSO Adult *** *** 0.32 95 features 0.83

aThe final accuracy for the Adult dataset represents the default accuracy of putting all test elements into the

biggest class

Artificial random groups The first set consists in considering artificial groups of features

on binary classification datasets. These groups of features have been generated randomly

and we aim to show that our model is able to learn with grouped features. Although not

detailed here, results are generally lower than that of the base models. For example, the

best accuracy obtained by Grouped DWSM on the Sonar set is of 75 % with 3 groups,

which is 5 points lower than both the baseline and standard DWSM. This is not a surprise

since groups of features have been chosen randomly and relevant features can be present

in different groups; the model may need to acquire all the groups in order to acquire the

necessary features, thus decreasing the sparsity of the obtained model. The advantage of

grouped features is to decrease the complexity of the model which now only depends on the

number of groups, instead of the number of features, thus allowing the model to be trained on

datasets with many features. The resulting complexity is O(Ng · (Ng + c)) in comparison to

O(n · (n+c)), where Ng is the number of groups. All these experiments only involve a small

number of features. In order to test the ability of the Grouped model to handle many features,

we performed experiments using the Gisette dataset created by Isabelle Guyon for the NIPS

2003 Feature Selection Challenge (Guyon et al. 2005). This is a 2-class dataset with 5000

features. We used 10 feature groups—with each group therefore containing 500 features—

to train DWSM on Gisette. Results for varying values of λ can be found in Table 7. Note

that we do not aim at comparing ourselves with the state of the art on this dataset (which

can be found on the challenge website19 or in the results analysis Guyon et al. 2005) as the

best techniques are obtained by complex kernelized methods. From Table 7, we can see that

our model obtains good performance ranging from 90 % to 93.2 % accuracy while using

on average 4.5 to 7.4 groups of features. Note that Gisette contains many probe features

that do not carry any information about the category. This explains why a classical LASSO

model is able to obtain a very low sparsity while the grouped model—which learns to select

groups that contain relevant features—has a lower sparsity: when a group contains one or

more relevant features, it also contains many probe features.

Grouped features based on the structure of the features One advantage of the Grouped

Features model is that it can consider datasets where features are naturally organized into

19http://www.nipsfsc.ecs.soton.ac.uk/results/?ds=gisette.

http://www.nipsfsc.ecs.soton.ac.uk/results/?ds=gisette
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groups. This is for example the case for the Adult20 dataset from UCI, which has 14 at-

tributes, some of which are categorical. These categorical attributes have been expanded to

continuous features using discretized quantiles—each quantile is represented by a binary

feature. The set of features that corresponds to the quantile of a particular categorical at-

tribute naturally corresponds to a group of features. The continuous dataset is composed

of 123 real features grouped in 14 groups. We have created a mapping from the expanded

dataset back to the original set of features, and run experiments using this feature grouping.

We use the LASSO as a baseline. Table 7 presents the results obtained by our model at three

different levels of sparsity and show that our method achieves a 79 % accuracy while select-

ing on average 4.83 of the 14 groups of features. Results for the LASSO are also presented,

although the LASSO’s results are not constrained to respect the group structure, and fur-

thermore its sparsity corresponds to the sparsity obtained on the expanded dataset, not the

sparsity over the initial dataset.

Relational features Finally, we present an experiment performed on image data which al-

lows us to consider both group and relational constraints. Experiments have been performed

on the MNIST (LeCun et al. 1998) dataset with the relational model described in Sect. 4.2.5.

We have used the following two constraints: (i) First, we have put in place a group mapping

on the pixels that corresponds to a 4 × 4 grid of blocks. (ii) Secondly, we have forced the

model to focus on contiguous blocks of pixels i.e. the cost of acquiring a block of pixels

touching a previously acquired block is lower than the cost of acquiring a block which is

Fig. 8 Average utilization of each feature block for correctly classified data, grouped by class. The corre-

sponding sparsity is below the image. Lighter squares represent more frequent usage

20http://archive.ics.uci.edu/ml/datasets/Adult.

http://archive.ics.uci.edu/ml/datasets/Adult
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further away. We then make use of spatial relations between groups of pixels. Referring to

the relational model in Sect. 4.2.5, the Related(·, ·) function tells us whether two feature

blocks are contiguous in the image.

A visualization of the feature acquisition frequencies is presented in Fig. 8. For a given

class (a digit 0–9) we compute the mean selection frequency of each block in the image

for all correctly identified images. We then represent this frequency overlaid onto a sample

image. For a given sample, the brighter a block of pixels, the more it has been used for

classifying this digit. Thus, we can see what information the classifier is attempting to access

when it is correctly classifying a datum into a particular class. For example: The number 1

is quickly identified by just looking at the two central blocks of features, while the system

tends to explore all the possible blocks of features when classifying a 5, which is a more

complex digit.

7 Related work

We begin by providing an overview of feature selection techniques that correspond that are

close to the datum-wise sparse model presented in Sect. 2. Then, for each of the proposed

extensions, we describe the works that address similar problems. Note that none of the fol-

lowing citations correspond to a model that can deal with all these classification problem in

an unified way.

Features selection and sparsity Datum-Wise Feature Selection positions itself in the field

of feature selection, a field that has seen a good share of approaches (Guyon and Elisseefi

2003). Our approach positions itself between two main veins in feature selection: embedded

approaches and wrapper approaches.

Embedded approaches include feature selection as part of the learning machine. These

include algorithms solving the LASSO problem (Tibshirani 1994), and other linear models

involving a regularizer with a sparsity-inducing norm (Lp∈[0;1]-norms such as Elastic Net,

Zou and Hastie 2005 and group LASSO, Yuan and Lin 2006). These methods are very

different from our proposed method, and rely on the direct minimization of a regularized

empirical risk. These approaches are very effective at these specific tasks, but are difficult

to extend to more complex risks that are neither continuous nor differentiable. Nevertheless,

some interesting work has been done along the lines of finding surrogate losses for more

structured forms of sparsity (Jenatton et al. 2011). We believe our method is nevertheless

more naturally expressive for these types of problems, as its optimization criteria is not

subject to any constraints on continuity or derivability.

Wrapper approaches aim at searching the feature space for an optimal subset of fea-

tures that maximizes the classifier’s performance. Searching the entire feature space is very

quickly intractable and therefore various recent approaches have been proposed to restrict

the search using genetic programming (Girgin and Preux 2008) or UCT-based algorithms

(Gaudel and Sebag 2010). We were encouraged by these works, as the use of a learning

approach to direct the search for feature subsets in the feature graph is very similar in spirit

to our approach. We differentiate our approach from these through its datum-wise nature,

which is not considered by either of the aforementioned articles.

Regarding the datum-wise nature of our algorithm, the classical model that shares some

similarities in terms of inference process is the Decision Tree (Quinlan 1993). During in-

ference with a Decision Tree, feature usage is in effect datum-dependent. In contrast to our

method, Decision Trees are highly non-linear and as far as we know, have never been studied
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in terms of sparsity. Moreover, the learning algorithm is very different to the one proposed

in this paper, and Decision Trees are not easily generalizable to more complex problems de-

scribed in Sect. 4. Nevertheless, Decision Trees prove to be perform very well in situations

where strong sparsity is imposed.

Cost sensitive classification The particular extensions presented in Sect. 4 have been in-

spired by various recent works. Cost-sensitive classification problems have been studied by

Turney (1995) and Greiner (2002). The model proposed by Turney (1995) is an extension of

decision trees to cost-sensitive problems, using a certain heuristic to discourage the use of

costly features. Greiner (2002) models this task as a sequential problem. However, the for-

malism used by Greiner is different from the one we propose, and restricted to cost-sensitive

problems.

Hard budget classification Hard Budget classification has been considered before, Kapoor

and Greiner (2005), in the context of Active Learning. Modelization as an MDP is suggested

in the article, but is not performed. Hard Budget classification is primarily motivated by its

more fine-grained ability to tune the sparsity, as well as the inherent speedups it provides in

the complexity of the learning phase.

Grouped features Many datasets inherently provide some form of group or relational struc-

ture, and grouped features have been recently proposed as an extension to the LASSO prob-

lem called Group-LASSO (Yuan and Lin 2006). Relational features have also been studied

in different papers about structured sparsity (Huang et al. 2009; Jenatton et al. 2011), which

also base themselves on LASSO-derived resolution algorithms. Additionally, these papers

consider global sparsity and are not datum-wise. They are based on a continuous convex

formulation of the sparse L1 regularized loss and are thus very different from our approach.

DWSM provides a much richer expressivity relative to these methods, at the cost of a more

complex resolution algorithm.

All the different approaches to our extensions have not been previously brought together

under one framework as far as we can tell, additionally many more extensions can be imag-

ined, with the ability to adapt to the fine-grained constraints of real-world problems.

Classification as a sequential problem At last, the idea of using sequential models for

classical machine learning tasks has recently seen a surge of interest. For example, there

have been sequential models proposed for structured classification (Daumé and Marcu 2005;

Maes et al. 2009). These methods leverage Reinforcement Learning approaches to solved

more ‘traditional’ Structured Prediction tasks. Although they are specialized in the predic-

tion of structured data, and do not concentrate on aspects of sparsity or feature selection, the

general idea of applying RL to ML tasks is in the same vein of work as DWSM.

The authors have previously presented an original sequential model for text classification

(Dulac-Arnold et al. 2011), and there has been similar work using Reinforcement Learning

techniques for self-terminating anytime classification (Póczos et al. 2009). These approaches

can be considered as more constrained versions of the problem proposed in this paper, since

the only criteria being learned is when to stop asking for more information, but not what

information to ask for. Nevertheless, these approaches provide the base intuition for datum-

wise approaches.

The most similar Reinforcement Learning works are the paper by Ji and Carin (2007)

and the (still unpublished) paper by Rückstieß et al. (2011) which proposes MDP models

for cost-sensitive classification. Both of these papers have formalizations that are similar

to ours, yet concentrate on cost-sensitive problems. We compare ourselves to experiments

performed by Ji and Carin in Sect. 6.3.2.
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8 Conclusion

In this article we have introduced the concept of datum-wise classification, where we learn

simultaneously a classifier and a sparse representation of the data that adapts to each new

datum being classified. For solving the combinatorial feature selection problem, we have

proposed a sequential approach where we have modeled the selection—classification prob-

lem as a MDP. Learning this MDP is performed using an algorithm inspired by Reinforce-

ment Learning. Solving the MDP is shown to be equivalent to minimizing a L0 datum wise

regularized loss for the classification problem.

This base model has then been extended to different families of feature selection prob-

lems: cost-sensitive, grouped features, hard budget and structured features. The proposed

formalism can be easily adapted to any of these problems and thus provides a fairly general

framework for datum wise sparsity.

Experimental results on 12 datasets have shown that the base model is indeed able to

learn data dependent sparse classifiers while maintaining a good classification accuracy.

The potential of the 4 extensions to the base model, has been demonstrated on different

datasets. All of them solve a specific sparsity problem while requiring only slight changes

to the initial model. We believe that this model might be easily adapted to other complex

classification problems while requiring only slight changes to the MDP.

For inference, the model complexity is similar to a classical—non datum dependent—

sparse classifier. Training the MDP remains however more costly than for global classifi-

cation approaches. A couple of directions for future work are being considered: the first

one consists in using more efficient RL-inspired algorithm such as Fitted Q-Learning,

which could greatly reduce the time spent during training. Another possible extension is

to remove—during learning—features that are generally judged as irrelevant by the system

i.e. features that are never or rarely used for classifying data. In that case, the system only

keeps in memory a subset of the possible features and thus reduces the dimensionality of

the training space. Finally, a more prospective research direction is to consider a sequential

process that is also able to create new features—by combining existing features—opening

the way to feature construction.
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Appendix

This appendix provide all the accuracy/sparsity curves obtained for the 8 binary datasets, on

4 different training sizes. The models presented in the curves are:

– The two L1-based models: LARS and SVM-L1.

– The base sparse sequential model: DWSM.

– The CART decision trees.

– The Hard Budget model HB with budget values in {2,5,10,20}. For these models, we

only report the values obtained with λ = 0.

– For the multiclass datasets, the DWSM model has been run with λ ∈ {0,0.01,0.05,0.1}

over the 30 runs.

In short, when the blue curves are above the red and black curves, our datum-wise model

outperforms classical L1 based models. When the gray curve is above the other curves,

it means that CART is the best sparse algorithm. For each dataset, we present 4 figures

corresponding to 4 different training sizes.
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