
HAL Id: hal-00748208
https://hal.inria.fr/hal-00748208

Submitted on 29 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path similarity evaluation using Bloom filters
B. Donnet, B. Gueye, Mohamed Ali Kaafar

To cite this version:
B. Donnet, B. Gueye, Mohamed Ali Kaafar. Path similarity evaluation using Bloom filters. Computer
Networks, Elsevier, 2011, �10.1016/j.comnet.2011.11.003�. �hal-00748208�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49851675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00748208
https://hal.archives-ouvertes.fr

Path Similarity Evaluation Using Bloom

Filters

Benoit Donnet a,∗, Bamba Gueye b, Mohamed Ali Kaafar c

aUniversité catholique de Louvain, Louvain-la-Neuve–Belgium

bUniversité de Liège, Liège–Belgium

cINRIA Rhone-Alpes, Grenoble – France

Abstract

The performance of several Internet applications often relies on the measurabil-
ity of path similarity between different participants. In particular, the performance
of content distribution networks mainly relies on the awareness of content sources
topology information. It is commonly admitted nowadays that, in order to ensure
either path redundancy or efficient content replication, topological similarities be-
tween sources is evaluated by exchanging raw traceroute data, and by a hop by hop
comparison of the IP topology observed from the sources to the several hundred or
thousands of destinations.

In this paper, based on real data we collected, we advocate that path similar-
ity comparisons between different Internet entities can be much simplified using
lossy coding techniques, such as Bloom filters, to exchange compressed topology
information. The technique we introduce to evaluate path similarity enforces both
scalability and data confidentiality while maintaining a high level of accuracy. In ad-
dition, we demonstrate that our technique is scalable as it requires a small amount
of active probing and is not targets dependent.

Key words: Traceroute, topology, Bloom filter, similarity

∗ Corresponding author. Tel: +32 (0)10 478718 ; fax: +32 (0)10 450345
Email addresses: benoit.donnet@uclouvain.be (Benoit Donnet),

gueye@run.montefiore.ulg.ac.be (Bamba Gueye),
mohamed-ali.kaafar@inrialpes.fr (Mohamed Ali Kaafar).

Preprint submitted to Elsevier 3 September 2009

1 Introduction

Intuitively, the path similarity between two nodes is defined as the IP paths
overlap when those two nodes infer their paths towards an arbitrary third one.
Two nodes are considered as being similar if they observe a large portion of
overlapping paths (or path segments) towards a set of destinations.

Path similarity is very useful for many Internet applications, ranging from
efficient distributed systems deployment to content location selection. In the
context of Content Distribution Networks, for instance, providers could use
path similarity to achieve both optimal performance path selection and path
redundancy insurance, the path selection being obtained through similarity,
while redundancy by non similarity.

Similarity and non similarity might find also a suitable usage in the deploy-
ment of large-scale measurement infrastructure. In particular, in the context
of the Internet topology discovery [1] based on traceroute [2], it is impor-
tant that monitors are well diversified in the network. An infrastructure such
as the recently introduced Archipelago [3] or the Internet monitoring project
grenouille.com [?] would benefit from similarity/non similarity when deploy-
ing a new monitor. Indeed, if two vantage points share a large path similarity,
it is obvious that they will collect redundant data, making their contribution
marginal. On the contrary, if two monitors are quite non similar, data collected
should lead to a broader view of the network. In the same way, monitoring dis-
tributed systems from a set of vantage points can benefit from path similarity
information in order to diversify monitoring locations [4,7,17,18].

Finally, as previously mentioned by Hu and Steenkiste, path similarity might
be used in the context of available bandwidth estimation [5]. Indeed, if several
monitors are similar, it is very likely they will share the same bottleneck, and
as most of the end-hosts encounter bottleneck at the first or the last four
hops [6], it would be sufficient to collect bandwidth information from a single
of these monitors.

Path similarity between monitors is evaluated based on actively collected data.
A monitor probes a portion of the Internet, using traceroute, and sends the
discovered topology to other monitors in the system for comparison. It should
however be noted that current “raw” paths comparison for route similarity
only achieve desirable accuracy, reliability and sensitivity properties at the
expense of scalability and high overhead issues [7,5]. In other words, several
monitors that would like to compare mutual similarities may need to exchange
a huge amount of “raw” traceroute data, which can prove to be very onerous in
terms of overhead, and may lead to severe under performances of the network,
especially when considering thousands of monitors, probing millions of IP

2

destinations.

Further, exchanging “raw” traceroute data reveals most, if not all, of the net-
work topology information of monitors, that are often controlled by Content
Distribution Networks (CDN) [8,9]. Such an information is of primary eco-
nomic and security importance for CDNs. Encryption could of course help
with such confidentiality issue, but it does not solve any of the scalability
issues.

Such non scalable and cumbersome properties are then a compelling case for a
lossy coding technique that would be used to exchange compressed data while
maintaining both accuracy and confidentiality about path similarity.

In this paper, we propose to apply Bloom filters [10] for allowing monitors to
exchange path information. A Bloom filter is a lossy summary technique based
on a bit vector and a set of hash functions. While, Bloom filters have found
numerous usages, particularly in networking due to their bandwidth saving
capabilities [11,12], our approach uses them for encoding links discovered by
a monitor during its probing (i.e., tracerouting) phase. The compressed path
information is then exchanged between monitors and the bit vectors are com-
pared by each monitor for evaluating its similarity with others. Scalability is
achieved through the exchange of much lower amount of data, while confi-
dentiality is maintained without encryption, as hop by hop information that
would reveal networks topology is hashed by the Bloom filter. We provide
methods for comparing two Bloom filters and infer, from this comparison, the
similarity level between monitors.

Nevertheless, if a Bloom filter has the advantage of compressing the infor-
mation, it comes with the drawback of triggering false positives. It would be
a matter of concern if the bandwidth advantages of Bloom filters would be
overcome by those false positives. A tradeoff must thus be found between
compression, false positives, and similarity accuracy.

In this paper, we tackle also issues related to such tradeoffs. Based on real
traceroutes we collected from PlanetLab monitors towards sets of thousands of
destinations 1 , we examine the benefits of applying Bloom filters, and compare
the efficiency of similarity results obtained by exchanging compact traceroute
data. We first demonstrate that our Bloom filter-based approach allows one
to reduce bandwidth consumption by more than, at least, four order of mag-
nitude in terms of exchanged information, compared to traditional proposals
quantifying path similarity. We also examine the effects of the Bloom filter
parameters on the similarity results, showing that, as long as we consider a
reasonable compression ratio, we provide accurate similarity results.

1 Our dataset is freely available. See http://planete.inrialpes.fr/

similarity_data/Traceroute-Similarity.tar.gz

3

h1(b)

h2(b)h2(a)

h1(a)

1 1 1 0000000

Fig. 1. A Bloom filter with two hash functions

We finally demonstrate that our approach is scalable, reducing so the risk of
the probing phase from various monitors to turn out into a distributed denial-
of-service (DDoS) attack. Indeed, we show that our technique is independent
from the number of traceroutes performed, as well as from the overlapping of
destinations (i.e., monitors in the system do not necessarily require to tracer-
oute exactly the same destinations).

The remainder of this paper is organized as follows: Sec. 2 provides the required
background on Bloom filters and explains how they can be applied to study
Internet paths similarity; Sec. 3 formally describes the similarity metrics we
introduce in this paper; Sec. 4 evaluates our lossy similarity technique; Sec. 5
positions this paper regarding the state of the art; finally, Sec. 6 concludes this
paper by summarizing its main contributions and discussing future directions.

2 Bloom Filter

In this section, we briefly remind the Bloom filters theory (Sec. 2.1) and, then,
explain how they can be used for coding path similarity information (Sec. 2.2).

2.1 Theory

A Bloom filter [10] is a vector v of m bits that codes the membership of a
subset A = {a1, a2, . . . , an} of n elements of a universe U consisting of N

elements. Typically, the size of the universe is not specified [10,11]. However,
Bloom filters are only useful if the size of U is much larger than the size of A.

The idea is to initialize this vector v to ‘0’, and then take a set H = {h1, h2, . . . , hk}
of k independent hash functions h1, h2, . . . , hk, each with range {1, . . . ,m}. For
each element a ∈ A, the bits at positions h1(a), h2(a), . . . , hk(a) in v are set to
‘1’. Note that a particular bit can be set to 1 several times. This is illustrated
in Fig. 1.

To check if an element b of the universe U belongs to the set A, all one has to
do is check that the k bits at positions h1(b), h2(b), . . . , hk(b) are all set to 1. If
at least one bit is set to 0, we are sure that b does not belong to A. If all bits

4

are set to 1, b possibly belongs to A. There is always a non-zero probability
that b does not belong to A. In such a case, a false positives is raised.

In order to calculate the false positive rate, one can assume that all hash
functions map each item in the universe into a random number uniformly
over the range {1, . . . ,m}. As a consequence, the probability that a specific
bit is set to 1 after the application of one hash function to one element of A

is 1

m
and the probability that this specific bit is left to ‘0’ is 1 − 1

m
. After all

elements of A are coded in the Bloom filter, the probability that a specific bit
is always equal to ‘0’ is

p0 =
(

1 −
1

m

)kn

. (1)

As m becomes large, 1

m
is close to zero and p0 can be approximated by e−

kn
m .

The probability that a specific bit is set to ‘1’ can thus be expressed as

p1 = 1 − p0. (2)

The false positive rate can then be estimated by the probability that each of
the k array positions computed by the hash functions is 1. fP is then given by

fP = pk
1

=
(

1 −
(

1 − 1

m

)kn
)k

≈
(

1 − e−
kn
m

)k
.

(3)

The false positive rate fP is thus a function of three parameters: n the size of
subset A, m the size of the filter, and k the number of hash functions.

In networking, Bloom filters find a suitable usage in overlay and peer-to-peer
networks, resource routing, packet routing, and measurement infrastructures.
Although Bloom filters allow false positives, for many applications the space
savings outweigh this drawback when the probability of an error is sufficiently
low (see Mitzenmacher and Broder for details [11]).

The question arises now on how to use Bloom filters in the context of path
similarity, and hence profit from the compression benefits while maintaining
sufficiently accurate similarity detection.

5

2.2 Application to Similarity

Any entity (let us call it monitor) wanting to evaluate its path similarity with
others considers a set of probing targets (i.e., the destinations) and launches
traceroutes towards those targets. Once the traceroutes have been collected,
a monitor has a list of links, i.e., hop-by-hop connections.

This set of links is then encoded in a Bloom filter, as described in Sec. 2.1.
That is, our universe U is supposed to be the set of all possible pairs of
IP addresses in the Internet while the subset A is the links discovered by the
monitor during the exploration phase. All links are then mapped to k positions
in the bit vector using H, the set of hash functions. The resulting bit vector
is then exchanged between the various monitors. How a monitor can compare
two bit vectors and retrieve path similarity information is discussed in Sec. 3.

This scheme has the obvious advantage of completely hiding topological infor-
mation collected by a monitor. Of course, it is still possible to determine which
links are encoded in the filter but it requires to test the whole universe, i.e.,
232 × 232 tests. And the risk of false positives when querying the filter cannot
guarantee to retrieve the exact set of links. The compression advantage of a
Bloom filter is difficult to determine a priori and must be rather evaluated on
a case study basis. This will be done in Sec. 2.

Coding hop-by-hop information in a Bloom filter and retrieving path similarity
information from it might work if and only if two Bloom filters are comparable.
This requires the set of hash functions used must be the same for all monitors.
And, by extension, all the bit vectors must have the same size.

Such a situation requires that all monitors in the system reach an agreement
on the Bloom filter tuning, given that a trade-off must be found between
a good compression ratio of the links set and the false positive rate. If the
monitors use the same set of destinations (or, at least, probe the same number
of destination), one can infer the average of the number of links discovered.
This average might then be used to tune the bit vector size.

3 Similarity Metrics

In the remainder of this paper, we refer by M, to the set of monitors and Mi

denotes any monitor in M measuring paths towards a set of destinations D .

Hu and Steenkiste [5] define path similarity as the percentage of links shared
by routes from two monitors, Mi and Mj, to the set of destinations D. This

6

metric, called RSIM is defined as follows:

RSIM(Mi,Mj, D) =

∑

d∈D 2 × Common(Mi,Mj, d)
∑

d∈D Total(Mi,Mj, d)
. (4)

Intuitively, closer to one RSIM(Mi,Mj, D), the more similar paths issued
from Mi and Mj.

This metric however assumes that both upstream and downstream paths share
a unique path from monitors to destinations and vice versa. The RSIM(·, ·, ·)
metric considers “raw” traceroute data sharing. As it does not require any lossy
compression technique, it will then be used as reference point for comparison
with Bloom filters.

If monitors have to rely on Bloom filters to compare their similarity, new
metrics comparing those filters should be added. In the following, we introduce
such metrics and compare their respective performances in Sec. 4.

Let ~mi be the bit vector for monitor Mi, constructed as described in Sec. 2.2.

Since the filters that the monitors compare are a set of bit vectors, a straight
way to compare them is to use the Hamming distance between them. Such a
distance counts the number of positions where vectors elements differ. In other
words, the Hamming distance measures the minimum number of bits that
need to be substituted to change one Bloom filter into the other. To consider
a ratio of the differences that do exist between the filters, we normalize by the
bit vector size of the compared filters. We define then the relative Hamming

distance as follows:

rH(Mi,Mj) =
H(~mi, ~mj)

| ~mi|
. (5)

where H(~mi, ~mj) provides the Hamming distance between both bit vectors.
Put simply, the relative Hamming distance between two Bloom filters, of the
same size and created with the same hash functions, can be used as a measure
of the non-similarity of the underlying sets (IP hops from monitors to a set of
destinations). A trend of rH(Mi,Mj) towards 0 (respectively 1) implies that
paths from these two monitors are similar (respectively non similar).

To observe the number of positions where both vectors ~mi and ~mj are identical,
we compute the Relative Inverse Hamming distance as:

rH(Mi,Mj) =
H(~mi, ~mj)

| ~mj|
. (6)

7

where H(~mi, ~mj) is the inverse of the Hamming distance. The larger rH(Mi,Mj),
the more similar paths issued from Mi and Mj.

It is important to note though that the Hamming distance, in case of binary
sequences comparison (as it is the case for our Bloom filters), is equal to a
XOR operation. In other words, the relative Hamming distance provides the
percentage of cases where links are coded with different values in the same
positions. The inverse relative Hamming distance provides the percentage of
cases where the filters contain the same values at the same positions (either
the value is set to ‘1’ or ‘0’).

However, recall from Sec. 2, that the Bloom filters are initialized to ‘0’, and
that elements are set to ‘1’ and added to positions that correspond to the hash
of that particular element. In order to alleviate the impact of the initialization
process on the comparison of the filters, one can compare the positions identi-
cally set to ‘1’ in both filters, as an indication of similarity. We introduce the
so-called Bloom Distance, defined as the following:

B(Mi,Mj) =
One(And(~mi, ~mj))

| ~mi|
. (7)

where, And(~mi, ~mj) performs a logical AND between both vectors and One(·)
counts the number of ‘1’ in the bit vector in argument.

In this case, the optimum similarity value is given by the theoretical proba-
bility of filling the bit vector with ones, which can be easily calculated using
Eqn. 2. The closer B(Mi,Mj) to this probability, the more similar paths issued
from Mi and Mj are.

4 Analysis

In this section, we evaluate the performance of our three metrics for retrieving
path similarity information from Bloom filters. We first discuss our methodol-
ogy, in particular how we actively collected data (Sec. 4.1). We next describe
the performance metrics we use throughout this evaluation (Sec. 4.2). Sec. 4.3
discusses the results while Sec. 4.4 provides a summary of the main achieve-
ments of this section.

8

4.1 Methodology

For the purpose of our studies in this paper, we collected data using traceroute
from 30 PlanetLab machines towards sets of 1,000 destinations. The measure-
ment campaign was done between March 31st, 2009 and April 5th, 2009. All
these experiments were run concurrently so as to experience the same network
conditions. We used the native PlanetLab traceroute. Our dataset is freely
available 2 . Regarding the geographical situation of PlanetLab monitors used
during the probing phase, Europe was the most represented continent, with
25 monitors, followed by America (four monitors in the United States), and
Asia (a single monitor in China).

The traceroute destinations were randomly selected within the Archipelago set
of 3,000,000 destinations [3]. Archipelago is skitter’ successor and has been
deployed since September 2007. Destinations in Archipelago are selected from
all routed /24’s. As we will be, in the following, interested in the impact of
overlapping destinations, i.e., monitors in the system share entirely the same
set of destinations or a given proportion of destinations in their set of targets,
we defined nine different destinations sets.

From our dataset, we removed one monitor, located in Europe (Italy), as it was
unable to perform correctly the traceroutes: it stopped discovering interfaces
after the second hop. Note that, for the rest of the monitors, on average, 85%
of the paths were incomplete, i.e., did not terminate at the destination.

When tracerouting, some routers along the path might reply with invalid ad-
dress, typically because of mis-configuration, or might not respond to probes.
For our study, we chose to remove links containing at least one invalid ad-
dress and links containing at least one non responding node. The addresses
that we consider as invalid are a subset of the special-use IPv4 addresses de-
scribed in RFC 3330 [13]. Specifically, we eliminate visits to the private IP
address blocks 10.0.0./8, 172.16.0.0/12, and 192.168.0.0/16. We also remove
the loopback address block 127.0.0.0/8. On average, 15% of links discovered
by a monitor were categorized as invalid.

Regarding Bloom filters, the hashing was emulated with random numbers. We
simulated randomness with the Mersenne Twister MT19937 pseudo-random
number generator [14].

2 See http://planete.inrialpes.fr/similarity_data/

Traceroute-Similarity.tar.gz

9

4.2 Performance Metrics

To characterize the performance of our similarity tests, we use the classi-
cal false/true positives/negatives indicators. Let us first define specifically
what would be defined as a monitor similar to another one. First, we use
the RSIM(·, ·, ·) metric as a reference of path similarity, as it uses ‘raw data’
exchange to compare routes in a hop by hop way (see Eqn. 4, Sec. 3). Since
our Bloom filters-based algorithms compact exchanged data, and as such, the
metrics we introduce alike should be evaluated considering raw data similarity
as a reference. We then consider that monitors routes are actually similar if
the RSIM(·, ·, ·) metric returns the maximum value. It can also happen that
we look for the n most similar monitors to another one. In this case, we con-
sider the set of RSIM(·, ·, ·) values corresponding to the highest n values, and
we refer to those monitors by T OPn.

When looking for the monitor that is the most similar to its observations, a
monitor Mi looks for the monitor Mj which corresponds to maxMj∈MRSIM(Mi,Mj, D).
When looking for the set of T OPn similar monitors, the most similar monitors
involve those which returns the first top n RSIM(·, ·, ·) values.

A negative is a non similar monitor, according to the RSIM(·, ·, ·) metric,
which should therefore be rejected by the similarity test. In others words, a
negative is a monitor for which the RSIM(·, ·, ·) value compared to another
monitor is not the maximum (or not within the set of n values if addressing the
T OPn similarity). On the other hand, a positive is a monitor that has been
considered as similar to another monitor by the RSIM(·, ·, ·) metric, i.e., that
has the maximum RSIM value compared to the set of other monitors. The
number of negatives (respectively positives) in the population comprising all
the monitors comparisons is PN (respectively PP).

For each metric, we identify a false positive as the case when a non-similar
monitor has been wrongly identified by the specific metric as similar to the
monitor in consideration. A false negative is a similar monitor that has been
wrongly rejected by the specific metric as a non similar monitor. True posi-
tives (respectively true negatives) are positives (respectively negatives) that
have been correctly reported by the specific metric and therefore identified as
similar monitors to the monitors to which they are compared. The number of
false negatives (respectively false positives, true negatives and true positives)
reported by the metrics is TFN (respectively TFP , TTN and TTP).

We use the notion of false negative rate (FNR) which is the proportion of all
the similar monitors that have been wrongly reported as non similar (nega-
tives) by the metric. The FNR is defined as:

10

FNR =
TFN

PP

. (8)

The false positive rate (FPR) is the proportion of all the non similar monitors
that have been wrongly reported as similar (positives) by the metric and is
defined as

FPR =
TFP

PN

. (9)

Similarly, the true positive rate (TPR) is the proportion of similar monitors
that have been rightly reported as similar by the metric.

TPR =
TTP

PP

. (10)

Finally, the true positive test fraction (TPTF) is the proportion of positive
tests that correctly identified similar monitors:

TPTF =
TTP

(TTP + TFP)
. (11)

4.3 Results

In this section, we discuss the relevance of using Bloom filters for compacting
path similarity information as well as the accuracy of our metrics for retrieving
path similarity information from Bloom filters. We first show the advantage of
Bloom filters in terms of compression (Sec. 4.3.1) and, next, evaluate factors
that can influence the accuracy of our metrics for detecting compact path
similarity. These factors are: the Bloom filter parameters (Sec. 4.3.2), the
proportion of destinations overlap (Sec. 4.3.3), and the number of destinations
probed by monitors (Sec. 4.3.3). In order to avoid biased statistical study, as
these factors are interdependent, the factor being studied changes and the
remaining are fixed. For example, evaluation of Bloom filter parameters may
ignore changes in the overlapping proportion.

4.3.1 Bloom Filters Gain

Fig. 2 provides an insight into the gain of using Bloom filters instead of ex-
changing a list of links between monitors. The horizontal axis gives the 29
monitors, while the vertical axis gives the amount of bits sent by a given

11

Fig. 2. Compression with Bloom filters

H
H

H
H

HH
m

k
1 3 5 10

4,500 0.5979 0.81744 0.9485 0.9988

45,000 0.0871 0.01361 0.0065 0.0058

450,000 0.0091 1 × 10−5 1 × 10−7 2 × 10−12

Table 1
Bloom filter parameters and false positive rate

monitor. The curve labeled “list” is calculated based on the average number
of links discovered by a given monitor over the nine destinations sets. This
mean is then multiplied by 64, i.e., two 32-bits IP addresses. We determined
the 95% confidence interval for the mean based on the Student t distribution.
However, these confidence intervals, although being plotted in Fig. 2, are too
tight to clearly appear.

As expected, the usage of Bloom filter provides an interesting compression
ratio. With a vector made of 45,000 bits (a value selected for providing a very
low false positive rate), we are already able to reduce the bandwidth con-
sumption by a factor of 4. Note that, obviously, using a smaller bit vector will
provide a stronger compression ratio. It is also worth to notice that some addi-
tional savings are possible by applying the compression techniques described
by Mitzenmacher [12].

However, it would be a matter of concern if an higher compression ratio comes
with an accuracy loss in the path similarity information. This is exactly the
point we investigate in the following section.

4.3.2 Bloom Filter Parameters

In this section, we study the impact of varying the Bloom filter parameters
on the similarity accuracy.

12

(a) T OP1 (b) T OP5

Fig. 3. Effects of Bloom filter parameters for a full overlap of destinations

As explained in Sec. 2, a Bloom filter is driven by two key parameters: m, the
bit vector size, and k, the number of hash functions. Depending on the number
of elements to record in the filter, these parameters have an impact on the false
positive rate of the filter. Typically, smaller the filter (i.e., a high compression
ratio), larger the false positive rate. Table 1 gives the correspondence between
the values we selected for tuning the filter and the theoretical false positive
rate. This correspondence is calculated using Eqn. 3.

When tuning the Bloom filter according to the values given in Table 1, we
consider a complete overlap of destinations between monitors and each monitor
probes a set of 1,000 destinations. On average, this leads to the insertion of
4,100 links in the filter.

For each filter parameter, we plot the TPTF values for the T OP1 and T OP5

most similar monitors. This is given by Fig. 3. Each TPTF value is obtained
as explained in Sec. 4.2, i.e., the total number of true positives and false
negatives over all monitors for a given similarity metric. It is worth to notice
that Fig. 3(a) and 3(b) are classified into four portions according to the used
number of hash functions (k ∈ {1, 3, 5, 10}). Each point located within a
given portion, for a given similarity metric, depicts m, the bit vector size.
That means that for instance the first dotted point (respectively second, and
third), within a given portion in figure 3(a), corresponds to a m value of 4, 500
(respectively 45, 000, and 450, 000).

The main observation retrieved from Fig. 3 is that, an acceptable compres-
sion ratio (e.g., m = 45, 000) always provides high TPTF. We see that the
proportion of positive tests that are true positives is constantly high, regard-
less of the number of hash functions chosen, for moderate to quite significant
compression ratios used by the filters.

However, the proportion of correct positive tests decreases each time we con-

13

(a) T OP1 (b) T OP5

Fig. 4. Impact of destination sets on similarity

sider a too high compression ratio. It should be noted that if a small bit vector
size is used (m = 4, 500), the proportion of true positives is not acceptable.
Even if in the first portion, using k = 1, we observe a high TPTF, we still
consider the test performance as non acceptable since the false positive rates
of the filter in this case are too high (see Table 1).

In the light of this, we can conclude that as long as the compression ratio is
not too high, whatever the number of hash functions is (i.e., even k = 1), the
three metrics we propose produce a large number of positive tests, catching
most of the similarities among monitors. For the remainder of this paper, we
arbitrarily tune a Bloom filter with m = 45, 000 and k = 5.

4.3.3 Destination Sensitivity

In this section, we evaluate how sensitive are the B(·, ·), rH(·, ·), and rH(·, ·)
metrics to destinations. We evaluate this sensitivity on two planes: the desti-
nations choice between monitors and the number of destinations probed. The
destinations choice is expressed by the overlapping of destinations sets between
monitors. To this end, we picked nine different destinations sets, each of them
corresponding to a certain proportion of destinations overlap. We considered
an overlap of 0% (i.e., all the monitors probe different destinations), 5%, 10%,
25%, 50%, 75%, 90%, 95%, and 100% (i.e., all the monitors probe the same
destinations set).

Fig. 4 illustrates how our metrics are sensitive to the choice of destinations
with respect to different overlapping proportion, each monitor probing a set of
1,000 destinations. Each curve plots the TPTF values for the nine destinations
overlaps.

As expected, a large overlapping proportion results in more accurate metrics,

14

(a) T OP1 (b) T OP5

Fig. 5. Destinations measurability

classifying correctly a larger portion of monitors as similar. This is exemplified
in Fig. 4(a) with the increase trend of the B(·, ·) curve. Despite the fact that
the true positive test fraction curves clearly exhibit positive slopes, one should
note that these rates increase much slower than the increase in overlapping
proportions. That is to say that as long as we consider a non completely
independent set of destinations, that is probed by monitors, it is very likely
that the three metrics achieve constant similarity detection, that are roughly
equal to 70%.

To further evaluate the impact of overlapping proportion on the Bloom filter-
based similarity metrics, and to evaluate the efficiency of the similarity clas-
sification test, we plot in Fig. 5 the receiver operating characteristic (ROC)
curves for different overlapping proportions.

These plots show, for each metric, the point corresponding to the false positive
rate (FPR) along the X-axis and to the true positive rate (TPR) along the
Y-axis, with one portion for each destinations overlapping (90%, 95%, and
100%). The TPR and the FPR values are obtained by comparing the similar-
ity computed over all monitors by rH(·, ·), rH(·, ·), and B(·, ·) metrics with
respect to RSIM(·, ·, ·). Obviously, the closer to the upper left corner of the
graph a point, the better, since such points correspond to high true positive
rates (i.e., a high proportion of positives being reported as such by the test)
for low false positive rates (i.e., a small proportion of negatives incorrectly
reported as positives).

We observe in Fig. 5 that, from this perspective, as already suggested in Fig. 4,
our metrics for evaluating the path similarity through Bloom filters perform
very well. Indeed, The FPR is very low (i.e., less than 2%) while the TPR
is high (i.e., above 65%). In particular, rH(·, ·) and rH(·, ·) reach 80% of
TPR when looking for the T OP5 most similar monitors for a full overlap of
destinations.

15

(a) T OP1 (b) T OP5

Fig. 6. Effects of the number of destinations probed

It is worth to notice the very low FPR rate obtained by the three metrics,
giving with a high level of certainty the most similar monitor to another one,
if detected as such, and providing also with a high confidence with the set of
monitors that are more similar than others to the considered one.

Comparing the three metrics, in both Fig. 4 and 5, we see that that B(·, ·)
performs worst compared to rH(·, ·) and rH(·, ·). Although, in Fig. 5(a), the
false positive rates exhibited by the test in all the metrics are roughly similar
- such values are too small to notice any significant difference-, better perfor-
mances of the rH(·, ·) and rH(·, ·) metrics are particularly obvious for T OP1

(Fig. 4(a)). We see that B(·, ·) is quiet sensitive to the destinations choice,
detecting on average 15% less true positives than the two other metrics. On
the contrary, rH(·, ·) and rH(·, ·), provide mostly a constant true positive test
fraction of 70% with little sensitivity to destinations choice.

The reason that either rH(·, ·) and rH(·, ·) outperform B(·, ·) is due to the
fact that the B(·, ·) metric takes into account partial information in the filters
(only bits set to 1’) whereas rH(·, ·) and rH(·, ·) metrics consider the whole
bit vector, a bit set to ‘0’ being a valuable information as it indicates that no
information has been recorded in that position in the filter.

So far, the path similarity study consisted in each monitor probing a set of one
thousand destinations. It would also be important to determine if the number
of destinations to be probed has some influences on the path similarity between
monitors. This might potentially lead to a scalability issue. Indeed, it might
be a concern if, for providing quite accurate results, a large set of destinations
must be probed, traceroute being known to be intrusive. On the contrary, if
probing a small set of destinations is enough to obtain accurate results, this
would be an incentive for the deployment of any system requiring the estimate
of similarity.

16

Actually, the number of destinations parameter needs to be studied from two
sides: a first side is related to the coding of paths towards the set of destina-
tions, and hence the impact of the number of destinations on the exchanged
Bloom filters among monitors. The first question to answer is then how the
number of destinations can impact the accuracy of the metrics we propose to
detect similarity between monitors. The second aspect of the problem is much
more related to path similarity itself, and what we need to answer is “what
is the number of destinations monitors need to probe in order to achieve de-
sirable similarity results, in terms of high true positive detection of similarity
and low false positives”.

To study the first aspect, we consider a full overlap of destinations and vary the
number of destinations probed. We take into account the following destinations
set cardinality: 1, 10, 25, 50, 75, 100, 250, 500, 750, and 1,000. Fig. 6 shows
the TPTF (vertical axis) when the number of destinations probed varies (hor-
izontal axis). In this first experiment, similarity metrics we propose are again
considered having as a reference the similarity as returned by the RSIM(·, ·, ·)
metric. Note that the TPTF values in Fig. 6 show how accurate rH(·, ·),
rH(·, ·), and B(·, ·) are if monitors probe different set of destinations, while
assuming that such a choice is not impacting the RSIM(·, ·, ·) metric itself.

The first interesting observation is that the accuracy of similarity detection
in terms of true positives test fraction and false positive rates (not shown),
is slightly constant if we consider a minimum number of 500 destinations.
This gives to the three metrics a high utility if we consider that the overhead
gained by not exchanging traceroute data is quadrupled when using Bloom
filters. As expected, when monitors probe a small set of destinations, the accu-
racy is low. However, acceptable similarity detection can be considered when
monitors probe sets of overall a hundred of destinations. This observation is
generalized when looking for the T OP5 most similar monitors. In essence,
when considering a very small number of destinations, the similarity as com-
puted by the metrics rH(·, ·), rH(·, ·), and B(·, ·) are skewed by outliers inside
the set of destinations. However, a set of destinations that are close to 100,
is closely representative enough of the overall population of traceroute that a
monitor can perform, being not shadowed by outliers while preserving a high
degree of generality.

The choice of the optimal number of destinations to be probed would then
require a compromise between the number of destinations where the Bloom
filter-based metrics are not impacted, and the number of destinations where
similarity using “raw” data would actually provide accurate results.

Table 2 and 3 provides the proportion of monitors finding the same T OP1

(Table 2) most similar monitor and the same T OP5 (Table 3) most similar
monitors when probing different sets of destinations. Each column (respec-

17

destinations 1 10 25 50 75 100 250 500 750 1,000

1 1.00

10 0.42 1.00

25 0.42 0.53 1.00

50 0.42 0.50 0.75 1.00

75 0.42 0.53 0.85 0.89 1.00

100 0.39 0.53 0.67 0.78 0.78 1.00

250 0.39 0.53 0.71 0.71 0.75 0.89 1.00

500 0.39 0.50 0.64 0.71 0.67 0.82 0.82 1.00

750 0.39 0.50 0.67 0.78 0.71 0.85 0.85 0.89 1.00

1,000 0.39 0.46 0.60 0.71 0.64 0.82 0.82 0.82 0.89 1.00

Table 2
T OP1: Incidence of the number of destinations (rH(·, ·))

destinations 1 10 25 50 75 100 250 500 750 1,000

1 1.00

10 0.39 1.00

25 0.40 0.54 1.00

50 0.37 0.53 0.67 1.00

75 0.38 0.52 0.71 0.75 1.00

100 0.41 0.50 0.67 0.73 0.76 1.00

250 0.33 0.46 0.62 0.68 0.70 0.71 1.00

500 0.31 0.47 0.61 0.68 0.69 0.68 0.86 1.00

750 0.32 0.48 0.60 0.70 0.67 0.66 0.82 0.89 1.00

1,000 0.33 0.47 0.61 0.71 0.67 0.68 0.83 0.88 0.93 1.00

Table 3
T OP5: Incidence of the number of destinations (rH(·, ·))

tively row) in both tables represents the number of destinations probed by a
monitor. Each cell Tij gives the proportion of monitors that return the same
most similar monitors when probing a set of i destinations or a set of j desti-
nations. Table 2 and 3 indicates results for the rH(·, ·) metric.

A first global look at Table 2 and 3 suggests that, for obtaining accurate
results, a certain amount of probing must be done, on the order of hundred
of destinations. Probing so would allow one to obtain, in 80% of the cases,
the same T OP1 most similar monitor as larger probing campaign. On the

18

Plane Accuracy

Bloom filter
k ∅

m > 4, 500

Destination
overlap ∅

quantity [100–250]

Table 4
Summary

contrary, retrieving the T OP5 most similar monitors implies more probing,
at least 250 destinations, for reaching the same accuracy level than T OP1.

A conclusion from Table 2 and 3 is that once a certain threshold of destinations
probed has been reached (100 T OP1 for and 250 for T OP5), it is not necessary
to burden more the network as it will not increase so much the similarity
accuracy.

Note that we found similar results for the two other metrics, i.e., rH(·, ·) and
B(·, ·).

4.4 Summary

In Sec. 4.3, we evaluated the behavior of our metrics for comparing several
large sets of information encoded as Bloom filters. Those sets were made of
topological data (i.e., links between routers) collected through traceroute.

During our analysis, we mostly focused on two planes: Bloom filters and des-
tination sensitivity. For both planes, we showed that the metrics rH(·, ·) and
rH(·, ·) provide globally better performance results than B(·, ·).

Table 4 aims at highlighting the main lessons learned from Sec. 4.3. Regarding
the Bloom filter plane, the number of hash functions does not impact the ac-
curacy. On the contrary, the bit vector size, m, has some influence. A too high
compression ratio would lead to bad performance. For the destination plane,
it is sufficient to probe between 100 and 250 destinations, while the over-
lap of destinations sets between monitors does not influence the performance
accuracy.

Despite, on average, 85% of the paths were incomplete in our data set, all
above observations indicate that the data set used in this paper can plausibly
represent a rich cross-section of the whole situation on today’s Internet, and
thus allow us to quantify path similarity with high accuracy.

19

5 Related Work

Since the late 90’s, the topology discovery has been an extensive research
field [1]. This research activity focused mostly on developing efficient traceroute-
like tool or on modeling the Internet topology. Although there are many po-
tential applications, the problem of path similarity does not appear to have
been the subject of much study. Only a few work has been done on path
similarity or diversity.

For instance, Teixeira et al. evaluate the IP-level path diversity between Points

of Presence (PoPs), i.e., a collection of routers owned by an AS in a specific
location (city or suburb). Based on real ISP dataset, Teixeira et al. found that
all pairs of PoPs have, at least, two disjoint paths between them. However,
Teixeira et al. do not discuss if this diversity might be observed at the Internet
scale, neither how a given application might use this diversity.

Hu and Steenkiste propose a metric, RSIM, for evaluating end-to-end path
similarity. This metric is based on the number of common links between two
monitors. A specificity of RSIM is that it is a bi-directional metric, i.e., it
provides the similarity between monitor A and B, but also between B and A.
An application of RSIM is for scalable bandwidth estimation [15]. However, it
is not explained how this similarity information might be exchanged between
monitors. Pathak et al. use path similarity at the AS and router level for
evaluating the asymmetry of delay in the Internet [16]. Roughly, they propose
a metric somewhat equivalent to RSIM but without taking into account the
bi-directionality of links.

Works has also been done on identifying relays for alternative paths in large
scale networks to increase route diversity [17,18]. Indeed, multipath routing
has been proposed to better reduce maximum load on nodes and congestion.
The use of alternatives paths improves the quality of service of communications
across the Internet. For instance, Agapi et al. seek to find good relay nodes by
using path similarity-based synthetic coordinates [18]. The key idea is based
on the assumption that if a relay is suitable for a given path, it is also likely
to be good for other similar paths. They define path similarity between paths
P1 and P2 as the probability that a relay that is good for P1 is also good for
P2. Note that a set of relay could be exchanged between nodes using Bloom
filters. This has not been investigated by Agapi et al.

Bloom filters have been extensively studied, particularly in networking due
to their capacities in bandwidth savings when membership information must
be exchanged between monitors [11]. Recent works used Bloom filters for ex-
changing topology information between traceroute-like monitors [19,?]. How-
ever, authors do not investigate how these Bloom filters might be used to

20

evaluate path similarity.

6 Conclusions and Future Work

In this paper, we presented a Bloom filter-based approach to measure and
exchange Internet path similarity between monitors. Our solution aims at
considerably decreasing the amount of data sent through the network and
ensuring the secrecy of topology information, while maintaining a high level
of confidence in the measurability of path similarity.

It is based on compacting traceroute data through the use of Bloom filters,
exchange those Bloom filters, and then compute similarities or dissimilarities
based on a set of metrics to compare each pair of monitors’ Bloom filters. Our
approach does not rely on destination overlapping, and as such is unaffected
by the choice of the set of destinations that the monitors can probe. In fact,
we have shown that for different percentages of destinations overlaps, and for
even an acceptable low number of probed destinations, our metrics still provide
very good performance, distinguishing clearly between similar monitors paths.

To the best of our knowledge, this is the first such general method capable of
providing accurate results while maintaining a very low overhead in exchanging
traceroute information. Optionally, our method allows one to hide the network
topology from monitors to the set of destinations they are monitoring. Since
hops are hashed through the Bloom filters, topological information is then
hidden and immune from any malicious data sniffing activity. Encryption of
raw data provides also efficient confidentiality for data, but does not resolve
the problem of overhead.

In practice, we introduced a simple way to study path similarity between
monitors through compacted traceroute information. We choose to illustrate
this study through traceroute information, which is at the very core of any
Internet topology. This leads us to believe that our proposed similarity de-
tection approach can effectively identify similar monitors in very many CDNs
monitors deployment without any major software change. However, the way
to code “raw” information and the metrics introduced to compare Bloom fil-
ters are generic enough to allow for their application on very many other
topology characteristics information needed to be exchanged. We could, for
instance, include information describing available bandwidth estimation for
paths, as complementary to traceroute paths, and encode such an information
into Bloom filters. Again, the gain in terms of reduced overhead would allow
an easier and more practical information exchange among monitors. Note that,
despite we performed measurement in an IPv4 environment, our technique is
independent of the used IP version. This means that in a world where IPv6

21

would be largely deployed, our technique would present stronger interest in
term of compression.

The measurements collected in this paper were deliberately tested on mon-
itors and destinations chosen at random in the real Internet, with a real-
istic high percentage of non complete traceroute, although their similarities
or dissimilarities increase with traceroute paths fullness. Despite the possible
non optimal similarity measurements resulting from such a choice, the results
obtained show the effectiveness of our method in characterizing path simi-
larity with very low overhead. Nevertheless, given the gain afforded by our
approach, one can envisage that CDNs may readily want to deploy monitors
within their network to offer enhanced services to their customers, and to se-
lect well suited set of controlled destinations inside the core network. Such
business driven strategic deployment can only improve the measurability of
our similarity metrics and thus improve the path similarity accuracy, with
much higher similarity detection rates than the lower bound reported in this
paper. We have also shown that the false positive rates are very low, promising
not considering monitors to be similar while it is not actually the case. This
feature can be exploited when deploying redundant backup content servers.
In this case, we insure (with very high confidence) that the backup server, if
solicited, will continue to serve customers under the same conditions than the
previous server.

The schemes presented in this paper are generic and might be applied in any
context in which large sets of information must be exchanged and compared.
Future work should reveal the efficiency of our techniques under those con-
texts. We further aim at evaluating them in a geolocalisation context.

Acknowledgements

This work has been partially supported by the European Commission-funded
223936 ECODE project and the European Commission-fund 27489 ANA project.

Mr. Donnet’s work is supported by the FNRS (Fonds National de la Recherche
Scientifique, rue d’Egmont 5 – 1000 Bruxelles, Belgium.).

22

References

[1] B. Donnet, T. Friedman, Internet topology discovery: a survey, IEEE
Communications Surveys and Tutorials 9 (4) (2007) 2–15.

[2] V. Jacobson et al., traceroute, man page, UNIX, see source code: ftp://ftp.
ee.lbl.gov/traceroute.tar.gz (1989).

[3] k. claffy, Y. Hyun, K. Keys, M. Fomenkov, Internet mapping: from art to science,
in: Proc. IEEE Cybersecurity Applications and Technologies Conference for
Homeland Security (CATCH), 2009.

[4] P. Radoslavov, H. Tangmunarunkit, H. Yu, R. Govindan, S. Shenker, D. Estrin,
On characterizing network topologies and analyzing their impact on protocol
design, USC–CS–TR 00–731, Computer Science Department, University of
Southern California (February 2000).

[5] N. Hu, P. Steenkiste, Quantifying Internet end-to-end route similarity, in: Proc.
Passive and Active Measurement Workshop (PAM), 2006.

[6] N. Hu, O. Spatscheck, J. Wang, P. Steenkiste, Optimizing network performance
in replicated hosting, in: Proc. Web Caching and Content Distribution
Workshop (WCW), 2005.

[7] R. Teixeira, K. Marzullo, S. Savage, G. Voelker, In search of path diversity in
ISP networks, in: Proc. ACM SIGCOMM Internet Measurement Conference
(IMC), 2003.

[8] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, Topologically-aware overlay
construction and server selection, in: Proc. IEEE INFOCOM, 2002.

[9] S. Bakira, Approximate server selection algorithms in content distribution
networks, in: Proc. IEEE International Conference on Communications (ICC),
2005.

[10] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM 13 (7) (1970) 422–426.

[11] A. Broder, M. Mitzenmacher, Network applications of Bloom filters: A survey,
Internet Mathematics 1 (4).

[12] M. Mitzenmacher, Compressed Bloom filters, IEEE/ACM Transactions on
Networking 10 (5).

[13] IANA, Special-use IPv4 addresses, RFC 3330, Internet Engineering Task Force
(September 2002).

[14] M. Matsumoto, T. Nishimura, Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator, ACM Transactions
on Modeling and Computer Simulation 8 (1) (1998) 3–30.

[15] N. Hu, P. Steenkiste, Exploiting Internet route sharing for large scale available
bandwidth estimation, in: Proc. Internet Measurement Conference (IMC), 2005.

23

[16] A. Pathak, H. Pucha, Y. Zhang, C. Hu, M. Mao, A measurement study
of Internet delay asymmetry, in: Proc. Passive and Active Measurement
Conference (PAM), 2008.

[17] T. Fei, S. Tao, L. Gao, R. Guerin, How to select a good alternate path in large
peer-to-peer systems?, in: Proc. IEEE INFOCOM, 2006.

[18] A. Agapi, T. Kielmann, H. Bal, Synthetic coordinates for disjoint multipath
routing over the Internet, in: Proc. CoreGRID Symposium, 2007.

[19] B. Donnet, T. Friedman, M. Crovella, Improved algorithms for network
topology discovery, in: Proc. Passive and Active Measurement Workshop
(PAM), 2005.

24

