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COMPARISON OF KERNEL DENSITY ESTIMATORS WITH ASSUMPTION ON

NUMBER OF MODES

RAPHAËL COUDRET, GILLES DURRIEU, AND JÉRÔME SARACCO

Abstract. A data-driven bandwidth choice for a kernel density estimator called critical bandwidth is

investigated. This procedure allows the estimation to have as many modes as assumed for the density

to estimate. Both Gaussian and uniform kernels are considered. For the Gaussian kernel, asymptotic

results are given. For the uniform kernel, an argument against these properties is mentioned. These

theoretical results are illustrated with a simulation study which compare the kernel estimators that

rely on critical bandwidth with another one which uses a plug-in method to select its bandwidth.

An estimator that consists in estimates of density contour clusters and takes assumptions on number

of modes into account is also considered. Finally, the methodology is illustrated using environment

monitoring data.

Keywords: Bandwidth, Kernel density estimator, Mode, Numerical study, Valvometry

1. Introduction

Since the seminal papers of Parzen (1962) and Rosenblatt (1956), the use of kernels to find an

estimate f̂K,h of a density function f of a random variableX is widely studied because of the advantages

of the nonparametric point of view. Let (X1, . . . Xn) be a vector of independent and identically

distributed random variables generated from f . For t ∈ R, the kernel density estimator f̂K,h(t) of f(t)

can be defined as

(1) f̂K,h(t) =
1

nh

n
∑

i=1

K

(

t−Xi

h

)

where K is the kernel and h is the bandwidth on which the amount of smoothness of f̂K,h relies. Most

of the time, K is a probability density function and h is a positive real. The larger the bandwidth,

the smoother the estimate is. The choice of the bandwidth h is an important area in kernel estimators

research field. Even if it exists a sufficiently large interval around the optimal bandwidth where f̂K,h

stays roughly the same (Scott (1992), p. 161), h needs to be carefully determined. To perform this
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choice, one can use biased or unbiased cross-validation (Rudemo (1982); Scott and Terrell (1987)) as

well as plug-in methods (Sheather and Jones (1991)) among other approaches.

In practical situations, the scientist that brings the data to analyze is able to determine if the

estimated density function is smooth enough or not. In this paper, we are interested in using this

information on the necessary amount of smoothing in order to set the corresponding bandwidth h

for the estimator f̂K,h. More precisely, we will assume a fixed number N(f) of modes of f . We will

introduce and study the bandwidth hcrit,k which is the smallest one such that the estimator f̂K,h has

k ≥ N(f) modes. Thus, the definition of hcrit,k is:

(2) hcrit,k := min
N(f̂K,h)≤k

h, with k ≥ N(f).

We will precise why this definition is available for the different kernels we will consider. The link

between h and N(f̂K,h) has been studied by several authors. With a Gaussian kernel (i.e. K is the

density function of the standardized normal distribution), according to Silverman (1981), the function

h 7→ N(f̂K,h) is decreasing, which allows him and Mammen et al. (1991) to test the number of modes of

f . For many other kernels among those with bounded support, we do not have these kind of properties,

but we have at our disposal a visualization tool called the “mode tree” (see for details Minnotte and

Scott (1993) or Minnotte et al. (1998)). Other theoretical results are also available in the literature,

see for instance Hall et al. (2004). Let also define hcrit := hcrit,N(f). A method to find an estimate of

f based on this kind of assumptions already exists (Polonik (1995a)). This estimate will be compared

with f̂K,hcrit
, in a simulation study.

The paper is organized as follows. In Section 2, we give asymptotic results for the density kernel

estimator f̂K,hcrit,k where K is the Gaussian kernel. We also present theoretical results for the uniform

kernel. In Section 3, we present a simulation study in order to compare numerical performances of

various density estimators based or not on the assumption on the number of modes. Then, in Section 4,

we describe how to use hcrit,k in the context of mixture models. We apply it to environment monitoring

data in Section 5. Lastly, concluding remarks are given in Section 6.

2. Estimating a density with N(f) modes

In this section we study the kernel density estimator f̂K,h given in (1) with the bandwidth hcrit,k

defined in (2). For our purpose, we only consider two kernels:

• the uniform kernel defined for t ∈ R as K(t) = 1[− 1
2 ,

1
2 ]
(t),
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• and the Gaussian kernel defined for t ∈ R as K(t) = 1√
2π
e−

1
2 t

2

.

The first kernel has a bounded support, this is not the case for the Gaussian kernel. We also describe

two alternatives of f̂K,hcrit,k
which are respectively f̂K,hSJ

, where hSJ is the bandwidth given by

Sheather and Jones (1991) plug-in method (see Section 2.4) and Polonik (1995a) estimator based on

density contour clusters (see Section 2.5).

2.1. Assumptions on the density f of X. We need the following assumptions on the density f of

X in order to have a density with N(f) modes which can be properly estimated.

(H1) f is uniformly continuous on R.

(H2) ∃(r, s), −∞ < r < s < +∞, f(x) 6= 0 ⇒ x ∈ [r, s] and x ∈]r, s[⇒ f(x) 6= 0.

(H3) ∃! (z1, z2, . . . , z2N(f)−1) ∈ ]r, s[2N(f)−1, ∀i ∈ {1, 2, . . . , 2N(f)− 1},

f (1)(zi) = 0 and sign(f (2)) = (−1)i,

where f (q) is the qth derivative of f .

(H4) f ∈ C2(]r, s[).

(H5) limt↓r f (1)(t) > 0 and limt↑s f (1)(t) < 0.

(H6) ∀x ∈]r, s[ that verifies f (1)(x) = 0, f (2)(x) 6= 0.

Remark 1. (H1) follows Devroye and Wagner (1980) that gives an asymptotic result with the L∞

norm, that we discuss in Section 2.3. (H2) - (H6) are taken from Mammen et al. (1991).

2.2. A computable bandwidth. For the Gaussian kernel, some interesting results on hcrit,k already

exist. They underline that the bandwidth hcrit,k is easily computable. Indeed, Silverman (1981) shows

that the function h 7→ N(f̂K,h) is decreasing and right continuous. This ensures computability of

hcrit,k with the desired accuracy by a dichotomous search. With the assumption that hcrit,k ∈ [h1, h2],

and if we want to obtain it with an error less than h2−h1

2m , we have to compute N(f̂K,h), m times, for

various h. If for each h, to determine N(f̂K,h), f̂K,h is computed in ñ points, then the computational

complexity of the whole algorithm to find hcrit,k is equal to O(nñm). In our simulations, we often take

ñ = 10000 and m ≤ 30.

For the uniform kernel, we provide a similar result in Propositions 1 and 2 by explaining that

h 7→ N(f̂K,h) is piecewise constant and has at most n(n−1)
2 jumps. Besides, if

{

X(i)

}

i∈{1,...,n} is a

set of ordered random variables from which we want to compute f̂K,hcrit,k
, the locations of the jumps
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are in
{

X(j) −X(i)

}

i∈{1,...,n−1},j∈{i+1,...,n}. This means that we are able to find hcrit,k by analyzing

values of f̂K,h between jumps.

Let us first introduce some additional notations. Let Ah = ∪n
i=1{Xi − h

2 } =
{

ah,(i)
}

i∈{1,...,card(Ah)}

and Bh = ∪n
i=1{Xi +

h
2 } =

{

bh,(i)
}

i∈{1,...,card(Bh)}. In order to deduce the value of N(f̂K,h), we only

need to investigate how the points in Ah ∪Bh are ordered because of Proposition 1 below. Note that

w := card(Ah ∪Bh) ≤ 2n. We set
{

ch,(i)
}

i∈{1,...,w} as the ordered points in Ah ∪Bh. Let us also write

ch,(0) = −∞ and ch,(w+1) = +∞.

Proposition 1. Let (X1, . . . Xn) be a vector of independent random variables generated from f . Let

f̂K,h be the kernel estimator of f for the uniform kernel K. Then, ∀h > 0, ∀i ∈ {0, 1, . . . , w}, the

function f̂K,h is constant on ]ch,(i), ch,(i+1)[.

The proof is given in Appendix A.1.

Remark 2. Applying arguments similar to that used in the proof of Proposition 1, we obtain the

following results:

• ∀i ∈ {1, . . . , w}, ch,(i) ∈ Ah ⇔ ∀u ∈]ch,(i−1), ch,(i)[, f(u) = f(ch,(i))− γ
nh , with γ ∈ N

∗,

• ∀i ∈ {1, . . . , w} , ch,(i) ∈ Bh ⇔ ∀u ∈]ch,(i), ch,(i+1)[, f(u) = f(ch,(i))− γ
nh , with γ ∈ N

∗,

• ∀i ∈ {1, . . . , w}, ch,(i) /∈ Ah ⇔ ∀u ∈]ch,(i−1), ch,(i)[, f(u) = f(ch,(i)),

• ∀i ∈ {1, . . . , w} , ch,(i) /∈ Bh ⇔ ∀u ∈]ch,(i), ch,(i+1)[, f(u) = f(ch,(i)).

Proposition 2. Let (X1, . . . Xn) be a vector of independent random variables generated from f . Let

f̂K,h be the kernel estimator of f for the uniform kernel K. The number of modes N(f̂K,h) of f̂K,h is

such that

N(f̂K,h) = card
({

(i, j) : ah,(i) ∈]bh,(j−1), bh,(j)] and bh,(j) ∈ [ah,(i), ah,(i+1)[
})

.

The proof is given in Appendix A.2.

For h small enough, the sequence
{

ch,(k)
}

k∈{1,...,w} is equal to
{

ah,(1), bh,(1), . . . , ah,(n), bh,(n)
}

. For

h large enough, this sequence is equal to
{

ah,(1), . . . , ah,(n), bh,(1), . . . , bh,(n)
}

. Between a bandwidth

h and a bandwidth h + ε, with ε > 0, the only change in the order that can occur is that: for a

set J ⊂ {1, . . . n− 1} and a nonempty set I ⊂ {j + 1, . . . , n}, ∀j ∈ J , ∀i ∈ I, bh,(j) < ah,(i) and

ah+ε,(i) ≤ bh+ε,(j). Because of Proposition 2, differences in the order of the
{

ah,(i)
}

i∈{1,...,card(Ah)} ∪
{

bh,(i)
}

i∈{1,...,card(Bh)} is the only cause of differences between N(f̂K,h) and N(f̂K,h+ε). Even for h
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very small and for a given bh,(j), this event occurs at most (n − j) times. This implies that for all

bh,(j), we can observe it at most n(n−1)
2 times and that is why the function h 7→ N(f̂K,h) has at most

n(n−1)
2 jumps.

Remark 3. The number of jumps in h 7→ N(f̂K,h) is not bounded by n(n−1)
2 for every kernel. Indeed

Hall et al. (2004) studied the set of points X(ω) = (−1, 0, 1) and drew N(f̂Kθ,h), with Kθ(x) =

Cθ(1 − x2)θ1[−1,1](x) in function of h and θ, where Cθ ensures that ‖Kθ‖L1
= 1. For example for

θ = 1.5, one can find 4 different values in h 7→ N(f̂Kθ,h), which is greater than n(n−1)
2 = 3.

When events like those previously described occur, it means that for some (i, j) ∈ {j + 1, . . . , n} ×

{1, . . . , n− 1}, X(j)+
h
2 < X(i)− h

2 and X(j)+
h+ε
2 ≥ X(i)− h+ε

2 , or equivalently h < X(i)−X(j) ≤ h+ε.

This leads to a procedure to plot h 7→ N(f̂K,h). We write H = ∪n−1
j=1 ∪n

i=j+1

{

X(i) −X(j)

}

. Let h(γ) be

an element of the ordered sequence of the elements of H. Choose any h(0) such that h(0) < h(1). Set

l := card (H). With the sequence
{

N(f̂K,h(γ)
)
}

γ∈{0,...,l}
, we can deduce the value of h 7→ N(f̂K,h) for

any h. Consequently, we can find hcrit,k. Note that because of the inequality h < X(i) −X(j) ≤ h+ ε,

the function h 7→ N(f̂K,h) is right continuous.

Remark 4. If we consider the example from Hall et al. (2004) with the uniform kernel, we have X(ω) =

(−1, 0, 1). We have h(1) = 1 and h(2) = 2. We choose h(0) = 0.5. Then,
{

N(f̂K,h(i)
)
}

i∈{0,...,l}
=

(3, 2, 1), and

N(f̂K,h) =























3 for h ∈ [0, 1[,

2 for h ∈ [1, 2[,

1 for h ∈ [1,∞[.

The number of jumps of h 7→ N(f̂K,h) is equal to 2 ≤ n(n−1)
2 = 3.

2.3. Asymptotic results on f̂K,hcrit,k
. Proof of consistency for this estimator toward f is not trivial

since hcrit,k is data-driven. However, for the Gaussian kernel, we have the pointwise convergence

in probability, among others. To explain this result, we first find conditions for a given data-driven

bandwidth hn under which some asymptotic properties can be shown for f̂K,hn
. This is realized in

Theorem A by combining Theorem 2 of Devroye and Wagner (1980) about the L∞ distance between

f̂K,hn and f and Theorem 3.3 from Devroye (1987, p. 38), concerning the L1 distance.

Theorem A (Devroye and Wagner (1980), Devroye (1987)). Let f be a probability density satisfying

(H1), hn a random bandwidth depending on X. If we assume the following hypotheses:
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(F1) K is a Riemann integrable probability density,

(F2) supx∈RK(x) <∞,

(F3)
´∞
0

sup|x|≥zK(x)dz <∞,

(F4) ∀ε > 0, P(hn > ε) → 0, when n→ ∞,

(F5) ∀A > 0, P(nhn > A) → 1, when n→ ∞,

then, we have, for n→ ∞,

P

(

sup
t∈R

∣

∣

∣f̂K,hn
(t)− f(t)

∣

∣

∣ > ε

)

→ 0,

and

P

(
ˆ

R

∣

∣

∣f̂K,hn(t)− f(t)
∣

∣

∣ dt > ε

)

→ 0.

Mammen et al. (1991) prove (F4) and (F5) for hcrit,k, and we have the following theorem on the

consistency of f̂K,hcrit for a Gaussian kernel.

Theorem 1. Let f be a density satisfying (H1) − (H6) and let f̂K,hcrit,k
be the estimator of f with

the Gaussian kernel K and the bandwidth hcrit,k given in (2). Then we have, for n→ ∞,

P

(

sup
t∈R

∣

∣

∣f̂K,hcrit,k
(t)− f(t)

∣

∣

∣ > ε

)

→ 0,

and

P

(
ˆ

R

∣

∣

∣f̂K,hcrit,k
(t)− f(t)

∣

∣

∣ dt > ε

)

→ 0.

The proof is given in Appendix A.3.

Assuming some regularity conditions on the kernel, Hall et al. (2004) proved similar results in their

Theorems 3.1 and 3.2 (pp. 2130–2131). These conditions on the kernel are stronger than continuity

on R and thus the uniform kernel does not satisfy them. In that case, we prove that we cannot have

(F4) in the following theorem.

Theorem 2. For any probability density function f of X, let f̂K,hcrit,k
be the estimator of f when K

is the uniform kernel with hcrit,k given in (2). Then we have hcrit,k increasing with n.

The proof is given in Appendix A.4.

2.4. Sheather and Jones’ plug-in method to choose a bandwidth. In the more general context

of estimating a density without assumption on the number of its modes, algorithms that provide a
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suitable bandwidth h are of particular interest. Among a large selection of procedure, we focus on the

plug-in method developed by Sheather and Jones (1991) (see also Jones and Sheather (1991)), which

leads to the bandwidth hSJ . We chose it because hSJ has good asymptotic properties and is easy

to compute. This bandwidth is designed to minimize the asymptotic mean integrated squared error

(AMISE) between f̂K,h and f , defined as:

AMISE(h) =
R(K)

nh
+

1

4
σ4
Kh

4R(f (2)),

where for any function ψ, R(ψ) =
´∞
−∞ ψ(x)2dx and σ2

K is the variance of a random variable of density

K. To minimize AMISE(h), R(f (2)) must be estimated. For this purpose, modifying an estimator

studied by Hall and Marron (1987), Sheather and Jones (1991) used the following one:

(3) R̂(f (2)) =
1

n(n− 1)h̃5

n
∑

i=1

n
∑

j=1

K̃(4)

(

Xi −Xj

h̃

)

,

where K̃ is allowed to be different from the kernel K used in the estimate of f , K̃(4) is the fourth

derivative of K̃ and h̃ =
[

2K(4)(0)

nσ2
KR̂(f(3))

]1/7

. Estimator R̂(f (3)) of R(f (3)) is similar to the one in (3). It

requires a new bandwidth ȟ chosen to be equal to 0.912λ̂n−1/9, where λ̂ is the sample interquartile

range. Finally,

hSJ = argmin
h

(

R(K)

nh
+

1

4
σ4
Kh

4R̂(f (2))

)

.

Let hopt = argminh(MISE(h)), Sheather and Jones (1991) showed that

hSJ

hopt
= 1 +OP (n

−5/14).

This means that hSJ is close to the bandwidth that minimizes the expected L2 distance between a

kernel density estimator and the true density. Note that, for the Gaussian kernel, this result is valid

for a density with three derivatives and which verifies for all x and y:

∃Z > 0,
∣

∣

∣f (3)(x)− f (3)(y)
∣

∣

∣ ≤ Z |x− y| 14 .

2.5. Polonik’s estimator based on excess mass location. The kernel density estimator f̂K,h

aims to associate a fixed point t with a value f̂K,h(t) as close as possible to f(t). Another approach,

described in this subsection, tries to determine for every given λ ∈ [0,∞[, the set Γ̂n,C(λ) which

is the most similar to Γ(λ) := {t : f(t) ≥ λ}, where C is a set of unions of disjoint intervals of R

chosen such that for every λ ∈ [0,∞[, Γ(λ) lies in C. In our case, C is made of every unions of
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at most N(f) disjoint intervals. This procedure was developed by Polonik (1995a,b) and is related

to the test for multimodality introduced by Müller and Sawitzki (1991). It leads to an estimator of

f(t) =
´∞
0

1Γ(λ)(t)dλ defined by:

f̂P (t) :=

ˆ ∞

0

1Γ̂n,C(λ)
(t)dλ,

where Γ̂n,C(λ), the so-called empirical generalized λ-cluster in C, verifies

Γ̂n,C(λ) = arg max
{C(i)}i∈{0,...n}

(

i

n
− λµ(C(i))

)

.

For every C ∈ C, µ(C) is the sum of the length of all disjoint closed intervals in C. C(i) is one of the

narrowest elements of C(i), which means that ∀C ∈ C(i), µ(C(i)) ≤ µ(C), where C(i) is the subset

of C such that ∀C ∈ C(i),
∑n

j=1 1C(Xj) = i. Then, if
´

R
f̂P (t)dt = 1, Polonik (1995a, Theorem 3.1)

gives that:

P

(

lim
n→∞

ˆ

R

∣

∣

∣f̂P (t)− f(t)
∣

∣

∣ dt = 0

)

= 1.

We have
´

R
f̂P (t)dt = n−1

n , but, the proof of Theorem 3.1 from Polonik (1995a) still works for
´

R
f̂P (t)dt ≤ 1. Thus, to obtain a value for f̂P (t), C(i) should be determined for every i ∈ {0, . . . , n}.

Then, because Γ̂n,C(λ) is the C(i) that maximizes n + 1 linear functions, it only changes for a finite

number kn of λ, with kn ≤ n. Let
{

λ(i)
}

i∈{1,...,kn} be the set of this ordered change points and take

λ(0) = 0. When λ ≥ λ(kn), Γ̂n,C(λ) = C(0) and µ(C(0)) = 0, and we can set Γ̂n,C(λ) = C(0) = ∅.

Hence, another expression for f̂P is given by

∀t ∈ R, f̂P (t) =

kn−1
∑

i=0

[

(

λ(i+1) − λ(i)
)

1Γ̂n,C(λ(i))
(t)

]

,

which can be used to computed f̂P (t).

3. Simulation study

In this simulation study, we compare four density estimators: f̂K,hcrit
based on the bandwidth hcrit

with both Gaussian and uniform kernels, f̂K,hSJ
based on the Sheather and Jones’ bandwidth with the

Gaussian kernel, and Polonik’s estimator f̂P . We specifically show numerical convergences of f̂K,hcrit

with the Gaussian kernel and illustrate consequences of the unsatisfied requirement of the uniform

kernel.
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3.1. Simulated data and quality assessment of the estimates. To generate simulated datasets,

we use both a beta and a Gaussian mixture. The beta mixture model is defined by:

(4) X ∼











B(α1, β1) with probability p1,

B(α2, β2) with probability p2 = 1− p1.

Note that the corresponding density of X is:

f1(t) = p1
Γ(α1 + β1)

Γ(α1)Γ(β1)
tα1−1(1− t)β1−1 + p2

Γ(α2 + β2)

Γ(α2)Γ(β2)
tα2−1(1− t)β2−1.

In this section, we used the parameters α1 = 2, β1 = 5, α2 = 10, β2 = 2, p1 = 2
3 . Graphically, we

observe that N(f1) = 2, which is theoretically confirmed in Section 4.

The Gaussian mixture we chose is the asymmetric claw density introduced by Marron and Wand

(1992) :

(5) X ∼











N (0, 1) with probability 1
2 ,

N
(

l + 1
2 ,
(

2−l

10

)2
)

with probability 21−l

31 , for l ∈ {−2,−1, 0, 1, 2} .

Despite the fact that this mixture has 6 components, the underlying density has 5 modes (see Minnotte

et al. (1998)). Its expression is:

f2(t) =
1

2
√
2π
e−

1
2 t

2

+

2
∑

l=−2

20

31
√
2π
e
−50

(

t−l− 1
2

2−l

)2

.

Because most of theoretical results we present in this paper concern the L1 distance between an

estimator f̂ and the true density f , it makes sense to use the following criterion, often called integrated

absolute error (IAE), defined as:

IAE =
∥

∥

∥f̂ − f
∥

∥

∥

L1

=

ˆ

R

∣

∣

∣f̂(t)− f(t)
∣

∣

∣ dt.

We are also interested in another criterion which is the absolute error committed by the estimator

ẑ of

z := arg min
zi∈{z2j}j∈{1,...,N(f)−1}

f(zi),

with z2j defined in (H3). The estimator ẑ is chosen to verify

ẑ := arg min
zi∈Ẑ

f̂(zi),
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where Ẑ is made of the points z̃ such that,

∃ε > 0, ∀ε̃ < ε, f̂(z̃ − ε̃) > f̂(z̃) and f̂(z̃ + ε̃) > f̂(z̃).

3.2. Simulation results. In Figure 1, we first draw an example of density estimation with the four

considered estimators, using a sample of size n = 1600 generated from model (4). Apart from f̂K,hcrit

with the uniform kernel, estimates of the density seem to be close to f , considering the shape. We

observe a lot of peaks for f̂P . This feature is directly related to the estimation method as it has been

already noticed by Müller and Sawitzki (1991). Polonik (1995a) wrote that N(f̂P ) can be different

from N(f̂). In Figure 1(b), the estimation of z related to f̂P is close to 0 and far from z ≈ 0.6219.

For a given estimation f̂ of f , finding ẑ in ]−∞, z1[∪]z2N(f)−1,∞[ only happens if there is a mode of

f̂ in this interval that is sufficiently far from z1 and from z2N(f)−1. This event is especially likely to

arise when N(f̂) > N(f) but it can also happen when N(f̂) = N(f) if the modes of f are not clearly

separated. In addition, when K is the Gaussian kernel, estimations of z for f̂K,hcrit
(Figure 1(a)) and

for f̂K,hSJ
(Figure 1(b)) are close to z.

Then, we generate 100 replicates from model (4) for various sample sizes n ∈
{

100× 2i
}

i∈{0,...,9}.

For each sample and each density estimation procedure, IAE is computed. The corresponding values

are represented in Figure 2 with boxplots. Not surprisingly, for f̂K,hcrit with the uniform kernel, we

observe in Figure 2(a) that IAE increases with n, which is compatible with Theorem 2. Performances

of f̂K,hcrit for the Gaussian kernel, shown in Figure 2(b), are better. In this case, boxplots exhibit the

L1 convergence of Theorem 1. They reach a similar precision to those obtained for f̂K,hSJ
which are

drawn in Figure 2(c). Polonik’s method (Figure 2(d)) needs extensive computational time. That is

why we are not able to draw boxplots for the greatest sample sizes, but we still observe convergence

of this procedure despite of the many peaks of the estimates. Values of IAE appear to be slightly

greater for this estimator than those for f̂K,hSJ
and f̂K,hcrit

with the Gaussian kernel.

For each replicate we made, we also compute estimations of z. In Figure 3 we draw various values of

ẑ for the four previously considered estimators. For f̂K,hcrit
with the uniform kernel, in Figure 3(a), ẑ

values move away from the position of the local minimum of f1 (which is equal to 0.6219) when sample

size increases. This is not surprising because of the poor quality of this estimator which, according

to Figure 1, provides two modes close to each other, but far from the true ones. In Figure 3(b), we

notice a convergence of the boxplots toward the aimed location for f̂K,hcrit
with the Gaussian kernel.

For f̂K,hSJ
with the Gaussian kernel, in Figure 3(c), a similar convergence can be observed. For f̂P , in
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Figure 3(d), values of ẑ seem to tend toward 0 or 1 when sample size increases. A possible explanation

of this phenomenon is that a spurious mode close to 0 or 1 is sometimes created by the procedure.

Because this mode is located in an interval of t where f1(t) is small, the local minimum near the mode

is the minimum over all local minima. This occurs in Figure 1(b), for example.

These simulation results lead us to focus only on the estimators f̂K,hSJ
and f̂K,hcrit

with the Gaussian

kernel because both exhibit IAE convergence toward 0 and convergence of ẑ toward z. To study

them lengthier, we use the model (5). Moreover, this selection is also made because of the costs

in computational time of the different methods. For example, for a given sample of size n = 1600,

we measured computational time of the methods we consider in this study, with our Intel Core 2

Quad Q9505 processor. To obtain hcrit with a Gaussian kernel we need about 1.6 seconds using the

density() R function. Finding hSJ requires 0.004 seconds, with the KernSmooth R package while our

R implementation of f̂P needs 425 seconds to be computed. Our R algorithm finds hcrit in 4 seconds

for the uniform kernel.

In Figure 4, we draw another example of density estimation using the estimators f̂K,hSJ
and f̂K,hcrit ,

and a sample of size n = 1600 generated from model (5). We observe very similar results for both

procedures even if f̂K,hcrit seems to produce an estimate slightly more precise than f̂K,hSJ
for the

estimation of z.

Boxplots presenting IAE values for these methods are drawn in Figure 5. The dispersion of the

IAE values does not seem to decrease with n in Figure 5(a). This result could come from the fact

that for the asymmetric claw density, (H2) does not hold and Theorem 1 cannot be applied, but IAE

values of Figure 5(a) globally decrease. Thus, another practical explanation is that the bandwidth

hcrit cannot adapt to the various sharpness of the modes of f2, while f̂K,hSJ
may compensate this

phenomenon by creating a new mode such that N(f̂K,hSJ
) > N(f2). Indeed, in Figure 5(b), IAE

values converge toward 0 like those in Figure 2(c).

To conclude this simulation study, we notice that for the asymmetric claw density, estimates of z

can be located at the extrema of the sample, for both f̂K,hcrit
and f̂K,hSJ

, in Figure 6. This previously

occurs for f̂P and model (4) in Figure 3(d). For f̂K,hcrit
, in Figure 6(a), samples that produce this kind

of estimate are not sufficiently frequent for the estimates to be considered as outliers. In Figure 6(b),

for f̂K,hSJ
and when n ≥ 6400, every ẑ is in the tails of the estimated distribution. Thus, for the

estimation of z, hcrit seems to perform better than hSJ despite of the fact that (H2) does not hold for

f2.
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4. Assuming the number of modes of a mixture density

Estimation of a density of a mixture model with a known maximum number of components is the

main task that f̂K,hcrit,k
can realize. Indeed, if each component of the mixture model is an unimodal

density, there are various cases where the number of modes of the density of the mixture is at most

equal to the number of components. However, it is not true for every mixture model. For instance,

densities made from components fµ,θ that verify fµ,θ(x) = Cθ(1 − (x − µ)2)θ1[−µ,µ](x), where µ and

θ should be chosen for each component, can have a number of modes greater than its number of

components (see Remark 3 and Hall et al. (2004)).

Notice that a function which is convex on an open interval does not have any mode on this interval

and that the density of a mixture of densities which are convex on an interval is convex on this interval

too. Thus, let f be a density of a mixture model with m components. For i ∈ {1, . . . ,m}, let gi be the

density of the component i. If it exists µi ∈ R such that gi is convex on ]−∞, µi[ and on ]µi,∞[, then

N(f) ≤ m and ∀j ∈ {1, . . . , N(f)} , z2j−1 ∈ ∪m
i=1 {µi}. For example one can take for gi the standard

two-sided power distribution of van Dorp and Kotz (2002):

gi(t) :=











γi

(

t
θi

)γi−1

for t ∈ [0, θi[,

γi

(

1−t
1−θi

)γi−1

for t ∈ [θi, 1],

with θi ∈ [0, 1] and γi > 2 If we allow ourselves not to respect (H2), the Laplace distribution is another

valid choice for gi.

Mixture model densities with N(f) ≤ m are not restricted to those that verify the previous condition

of convexity. Considering the beta mixture model of Section 3 with α1 = 2 and β2 = 2, the density f3

of (4) can be written

f3(t) := p1g1(t) + (1− p1)g2(t),

with g1(t) :=
Γ(α1+β1)
Γ(α1)Γ(β1)

t(1− t)β1−1 and g2(t) :=
Γ(α1+β1)
Γ(α1)Γ(β1)

tα2−1(1− t). When β1 > 2, for q ∈ {1, 2, 3},

the qth derivative of g1 verifies:

g
(q)
1 ≥ 0 ⇔ (−1)q−1x ≤ (−1)q−1q

β1
,

and we also have for q ∈ {1, 2, 3}:

g
(q)
2 ≥ 0 ⇔ x ≤ 1− q

α2
.
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These relations hold for strict inequalities and imply that f3 has no mode in [0, 1
β1
[ and in ]1− 1

α2
, 1]

because g
(1)
1 and g

(1)
2 have the same sign on these intervals on which this sign is constant. Assume now

that 3
β1
< 1− 2

α2
and that 2

β1
< 1− 3

α2
, which is true for the values of β1 and α2 chosen in Section 3

for f1. Then, f3 has at most one mode on
[

1
β1
,min

{

3
β1
, 1− 3

α2

}[

. This can be proven by assuming

that f3 has two modes located in z1 and z3 and an antimode located in z2 with 1
β1

≤ z1 < z2 <

z3 < min
{

3
β1
, 1− 3

α2

}

. This implies that f
(2)
3 (z2) = p1g

(2)
1 (z2) + (1 − p1)g

(2)
2 (z2) ≥ 0, and because

g
(3)
1 (t) > 0 and g

(3)
2 (t) > 0 for t ∈

]

z2,min
{

3
β1
, 1− 3

α2

}[

, p1g
(2)
1 (t) + (1− p1)g

(2)
2 (t) > 0 which negates

the fact that f
(2)
3 (z3) = p1g

(2)
1 (z3) + (1− p1)g

(2)
2 (z3) ≤ 0. A demonstration of the same type leads to

the property that f3 has at most one mode on
]

max
{

3
β1
, 1− 3

α2

}

, 1− 1
α2

]

.

Thus, in order to demonstrate that N(f3) ≤ 2, we have to show that f3 has no mode on ∆, with:

∆ :=

[

max

{

3

β1
, 1− 3

α2

}

,min

{

3

β1
, 1− 3

α2

}]

.

Because of assumptions we made on β1 and α2, ∆ is included in
]

2
β1
, 1− 2

α2

[

on which both g
(2)
1 and

g
(2)
2 are positive. This implies that f3 is convex on this interval and then has no mode on it. Thus f3

has no mode on ∆ and N(f3) ≤ 2. Although we anticipate that generalizing this result to a wider set

of mixtures is feasible, the demonstration would probably be tedious.

5. Oyster opening amplitudes modeled with a bimodal density

In this section we describe a real data application. We apply the estimator f̂K,hcrit,k
to open-

ing amplitudes of oysters. These animals are studied by a laboratory called Environnements et

Paléoenvironnements Océaniques et Continentaux (http://molluscan-eye.epoc.u-bordeaux1.fr,

EPOC) in order to derive water quality indicators. Their approach is based on the assumption that

a water of poor quality leads to perturbations in the oysters’ behavior. It consists in measurements

of the distance between the two parts of the shell of the oysters with a frequency of 0.625 Hz. The

procedure carried out to obtain the dataset is non invasive. It relies on electrodes stuck on the shell

of the oysters and on the GSM/GPRS service to transfer the data. The animals studied in this article

are immersed in the Bay of Arcachon, in France.

We aim at estimating the density f of the distances of the parts of the shell of these animals. During

a day, following the tide, an oyster is either open or closed (see for instance Sow et al. (2011)). For each

of this state, the density of the opening amplitudes is assumed to be unimodal. If we also assume that

http://molluscan-eye.epoc.u-bordeaux1.fr


14 RAPHAËL COUDRET, GILLES DURRIEU, AND JÉRÔME SARACCO

these densities behave similarly to the two-sided power distribution or to the beta mixture detailed in

Section 4, we have N(f) ≤ 2.

Because of these assumptions, we estimate f with f̂K,hcrit,2 with the Gaussian kernel and a sample

of size n ≈ 50000. This leads to Figure 7. In Figure 7(a), the data come from an oyster that does not

exhibit any feature of sickness. In Figure 7(b), the oyster analyzed died one week after these measures

were recorded. Generally, when they are in the open state, dying oysters produce opening amplitudes

with a wide variability which implies a larger mode for the corresponding density. Thus, the local

minimum z2 of f located between its two modes comes close to the location z1 of the mode related

to the close state, when oysters’ health becomes poor. This feature can also be observed for f̂K,hcrit,2

in Figure 7. Indeed, let ẑ1 and ẑ3 be the local maxima of f̂K,hcrit,2
and let ẑ2 be its local minimum

such that ẑ1 < ẑ2 < ẑ3. Then, ẑ2−ẑ1
ẑ3−ẑ1

is greater in Figure 7(a) than in Figure 7(b) with respective

values 0.3073 and 0.1566. This observation could lead to a detection of oysters in poor health. Notice

that the choice of the estimator f̂K,hcrit,2
is important here in order for the estimate to have exactly

two modes which allows ẑ2−ẑ1
ẑ3−ẑ1

to make sense. Maximum amplitude of the openings of the animal is

also linked to its health and we can see that it is approximately 4 times greater in Figure 7(a) than in

Figure 7(b). However, this quantity may also vary with the size of the animal, and with the position

of the electrodes on it. That is why we prefer not to rely on it.

6. Concluding remarks

The estimator f̂K,hcrit,k
, when K is a Gaussian kernel, is able to estimate a density f that has a

known number of modes because when sample size is large enough, f̂K,hcrit,k
is close to f from both

L1 and L∞ points of view. This is not the case when K is the uniform kernel in our simulation study

and theoretical reasons were explored (Theorem 2).

An interesting feature of f̂K,hcrit,k
is that it has a deterministic number of modes and can have as

many modes as f . In real data analysis, this allows to seek the positions of the various modes and

antimodes of the estimate of a density and to derive indicators from them in order to compare densities

(see Section 5). This is not possible with Polonik’s estimator f̂P or with f̂K,hSJ
because both N(f̂P )

and N(f̂K,hSJ
) are random variables.

When K is the Gaussian kernel, the constraint N(f̂K,hcrit,k
) = k does not imply a great loss of

convergence rate for f̂K,hcrit
in simulation, compared with results of f̂K,hSJ

. Actually, f̂K,hcrit
exhibits

slightly better results than f̂P and appears to produce the most precise estimate of the location of the
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minimum of the local minima of a density, among the four studied estimators. From a practical point

of view, note that the bandwidth hcrit required more time to compute than hSJ but less than f̂P .

To conclude, asymptotic properties of f̂K,hcrit with the Gaussian kernel, together with its behavior in

simulation, and its deterministic number of modes allow this estimator to be applied to real datasets

that are assumed to come from mixture model densities. For that matter, an implementation of

this work is included in numerical procedures daily performed on the environmental data of EPOC

laboratory.

Appendix A. Proofs

A.1. Proof of Proposition 1. Let (u, v) ∈]ch,(i), ch,(i+1)[×]u, ch,(i+1)[ and
{

X(i)

}

i∈{1,...n} be the

ordered sequence of the elements of X. We will show that f̂K,h(u) is neither greater nor lesser

than f̂K,h(v) with a proof by contradiction. Note that for the uniform kernel we have f̂K,h(u) =

1
nhcard

({

Xk ∈ [u− h
2 , u+ h

2 ]
})

.

If f̂K,h(u) > f̂K,h(v), this implies that it exists at least one k ∈ {1, . . . , n}, for which we have

X(k) ∈ [u− h
2 , v − h

2 [, which means that it exists k′ ∈ {1, . . . , w} which verifies ch,(k′) = bh,(k) ∈ [u, v[.

Because [u, v[⊂]ch,(i), ch,(i+1)[, ch,(k′) ∈]ch,(i), ch,(i+1)[, but this is impossible.

Conversely, f̂K,h(v) > f̂K,h(u) implies that it exists X(k) ∈]u + h
2 , v + h

2 ]. Then it exists k′ ∈

{1, . . . , w} such that ch,(k′) = ah,(k) ∈]u, v] ⊂]ch,(i), ch,(i+1)[ and it is also impossible.

A.2. Proof of Proposition 2. We will show the equivalence between the presence of a mode between

ah,(i) and bh,(j) and the inequality bh,(j−1) < ah,(i) ≤ bh,(j) < ah,(i+1).

At first, we notice that ordered like this, there is no element of Ah or Bh that can be between

ah,(i) and bh,(j). This is why the last inequality is equivalent to ∃k ∈ {1, . . . , w − 1}, ah,(i) =

ch,(k) and bh,(j) = ch,(k+1), in the case where ah,(i) 6= bh,(j).

From Proposition 1, f̂Ku,h is constant on ]ah,(i), bh,(j)[, and thanks to Remark 2, it is equivalent

to: f̂K,h is constant on [ah,(i), bh,(j)] = [ch,(k), ch,(k+1)]. In order for this interval to be a mode, we

must prove that it exists ε > 0 for which f̂K,h is increasing on [ch,(k) − ε, ch,(k)[ and decreasing on

]ch,(k+1), ch,(k+1) + ε], which is also made in Remark 2.

When ah,(i) = bh,(j) = ch,(k), f̂K,h is increasing on [ch,(k)−ε, ch,(k)[ too and decreasing on ]ch,(k), ch,(k)+

ε]. The mode is reduced to a single point.

A.3. Proof of Theorem 1. The main idea of the proof is to apply Theorem A of Section 2.3. WhenK

is the Gaussian kernel, (F1) and (F2) are verified as well as (F3) because K is defined and decreasing
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on [0,∞] and then
´∞
0

sup|x|≥zK(x)dz =
´∞
0
K(x)dx < ∞. It remains to prove that (F4) and (F5)

are also verified. Every convergence written in this proof is for n→ ∞.

Because of Theorem 2 from Mammen et al. (1991), we have

∀A > 0, P(N(f̂K,n−1/4) > A) → 1.

If we set A = N(f̂K,hcrit,k
), we have:

P(N(f̂K,n−1/4) > N(f̂K,hcrit,k
)) → 1.

Because h→ N(f̂K,h) is decreasing and piecewise constant, we can write

P(hcrit,k > n−1/4) → 1, or equivalently P(nhcrit,k > n3/4) → 1.

Then, for all A > 0, there exists an integer ñ ∈ N such that for all n ≥ ñ, we have n3/4 > A and

P(nhcrit,k > n3/4) < P(nhcrit,k > A). Consequently we have

∀A > 0, P(nhcrit,k > A) → 1

and (F5) is verified.

Besides, Corollary 1.2 from Mammen et al. (1991) and (H3) imply that

(6) E

[

N(f̂K,n−1/6)
]

≤ N(f) + o(1).

These authors follow Silverman (1983) and use the fact that, for N(f) > 1, assuming (H3), there is

h0 > 0 such that P(h̃crit > h0) → 1, where h̃crit = minN(f̂K,h)=N(f)−1 h. Then, we have

P(h̃crit > n−1/6) → 1.

Because of the definition of h̃crit, we have

P(N(f̂K,n−1/6) > N(f)− 1) → 1.
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Thus, we have P(N(f̂K,n−1/6) ≤ N(f)− 1) → 0, and

limn→∞ E

[

N(f̂K,n−1/6)
]

= limn→∞
{

N(f)P
(

N(f̂K,n−1/6) = N(f)
)

+
(

1− P(N(f̂K,n−1/6) = N(f))
)

E

[

N(f̂K,n−1/6)|N(f̂K,n−1/6) ≥ N(f) + 1
] }

.

By relation (6), we have

limn→∞
{

N(f)P
(

N(f̂K,n−1/6) = N(f)
)

+
(

1− P(N(f̂K,n−1/6) = N(f))
)

E

[

N(f̂K,n−1/6)|N(f̂K,n−1/6) ≥ N(f) + 1
] }

≤ N(f).

Then we have

limn→∞
{

N(f)P
(

N(f̂K,n−1/6) = N(f)
)

+(N(f) + 1)
(

1− P(N(f̂K,n−1/6) = N(f))
) }

≤ N(f).

and we have

lim
n→∞

(

N(f) + 1− P(N(f̂K,n−1/6) = N(f))
)

≤ N(f).

Finally we derive

P(N(f̂K,n−1/6) = N(f) ≤ k) → 1, and P(hcrit,k ≤ n−1/6) → 1.

For N(f) = 1, (6) and the fact that N(f̂K,n−1/6) ≥ 1 imply that

P

(

N(f̂K,n−1/6) = 1 = N(f) ≤ k
)

→ 1,

and that, again,

P(hcrit,k ≤ n−1/6) → 1.

Thus, for every positive N(f), for all ε > 0, there exists an integer ñ ∈ N such that for all n ≥ ñ,

n−1/6 < ε and P(hcrit,k ≤ n−1/6) < P(hcrit,k < ε). Consequently we have

∀ε > 0, P(hcrit,k < ε) → 1,

and then (F4) is verified.
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A.4. Proof of Theorem 2. First, note that for some h, we can know N(f̂K,h) by counting the number

of variations of sign of the following function

g′K,h,ε(x) :=























1 for x ∈ [ah,(i) − ε, ah,(i)[, ∀i ∈ {1, . . . , card(Ah)} ,

−1 for x ∈ [bh,(i), bh,(i) + ε[, ∀i ∈ {1, . . . , card(Bh)} ,

0 elsewhere,

where ε is chosen in a way that ensure that ∀(i, j) ∈ {1, . . . , card(Ah)} × {1, . . . , card(Bh)} , (ah,(i) −

bh,(j)) ∈] −∞, 0]∪]ε,∞[, in order to obtain a unique value of g′K,h,ε(x) for each x. The aim of g′K,h,ε

is to mimic the derivative of f̂K,h. It seems to be easier to use than dirac functions involved in f̂ ′K,h.

Besides, one can see that N(gK,h,ε) = N(f̂K,h), using the fact that Proposition 2 is valid for gK,h,ε.

That is why the number of variations of sign of g′K,h,ε is equal to 2N(f̂K,h)− 1.

Let Cε,n :=
{

ch,ε,(i)
}

i∈{1,...,w} be the ordered sequence compound of the sets
{

ah,(i) − ε
2

}

i∈{1,...,card(Ah)}

and
{

bh,(i) +
ε
2

}

i∈{1,...,card(Bh)}. Let

dh,ε,(i) := 1
(

ch,ε,(i) ∈
{

ah,(i) − ε
2

}

i∈{1,...,card(Ah)}

)

− 1
(

ch,ε,(i) ∈
{

bh,(i) +
ε
2

}

i∈{1,...,card(Bh)}

)

,

and Dε,n :=
{

dh,ε,(i)
}

i∈{1,...,w}. Every interval where g′K,h,ε(x) 6= 0 is represented by a ch,ε,(i), then

the number of variations of sign is the same for g′K,h,ε and for Dε,n. We write v(Dε,n) the number of

variations of sign of Dε,n like Schoenberg (1950) did in his article.

Now, we prove that v(Dε,n) ≥ v(Dε,n−1), for n > 1. This property is verified if Dε,n−1 = JDε,n

where J is a totally positive matrix, following Schoenberg (1950). To define J , we first focus on the

case where the last point in the sample is different from the others. This means that if Ω is our sample

space, we define Ω1 as:

Ω1 := {ω : ∀i ∈ {1, . . . , n− 1} , Xi(ω) 6= Xn(ω)} .

We remark that, when our sample comes from ω ∈ Ω1, Dε,n−1 is constructed by removing two points

in Dε,n. These points correspond to ch,ε,(γ1) = Xn − h− ε
2 and ch,ε,(γ2) = Xn + h+ ε

2 . This is why we
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have :

J =





















































Iγ1−1

0

...

0

· · ·

· · ·

0

...

0

· · · 0

...

· · · 0

0 · · ·
...

0 · · ·

0

...

0

Iγ2−γ1−1

0

...

0

· · · 0

...

· · · 0

0 · · ·
...

0 · · ·

0

...

0

· · ·

· · ·

0

...

0

In−γ2





















































where Iγ is the γ × γ identity matrix. It is straightforward to show that J is a totally positive matrix

since every minor of J is positive or equal to 0 (the details are left to the reader).

If ω /∈ Ω1, thenDε,n = Dε,n−1, because Ah and Bh stay the same if we build them with (X1, . . . , Xn)

or with (X1, . . . , Xn−1). Then J = Iw and is totally positive.

To conclude, we write ÑK,h : n 7→ ÑK,h(n) = N(f̂K,k). Recall that ÑK,h(n) =
v(g′

k,h,ε)+1

2 =

v(Dε,n)+1
2 . Because n 7→ v(Dε,n) is increasing, ÑK,h is also an increasing function. Let hcrit,k,n be the

critical bandwidth defined in (2) for a sample of size n, then we have:

∀h < hcrit,k,n, ÑK,h(n) > N(f).

Because ÑK,h increases with n, it comes that,

∀h < hcrit,k,n, ∀γ ∈ N, ÑK,h(n+ γ) > N(f),

then,

∀γ ∈ N, ∀h < hcrit,k,n, ÑK,h(n+ γ) > N(f).

Thus, with the definition of hcrit,k,

∀γ ∈ N, hcrit,k,n+γ ≥ hcrit,k,n,

and Theorem 2 is proven.
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(a) Estimations f̂K,hcrit
with Gaussian kernel (dashed line) and

f̂K,hcrit
with uniform kernel (mixed line).

(b) Estimations f̂P (long dashed line) and f̂K,hSJ
(dotted line).

Figure 1. Beta mixture density f1 (solid line), and various estimations; for n = 1600.
Vertical lines: positions of the minimum of local minima of each plotted density. In
Figure (b), vertical axis is broken between 2.2 and 2.8, between 3.5 and 5 and between
5.5 and 12.5 to be able to clearly see the shape of all curves.
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(a) Kernel density estimator with hcrit and the
uniform kernel.

(b) Kernel density estimator with hcrit and the
Gaussian kernel.

(c) Kernel density estimator with hSJ and the
Gaussian kernel. (d) Polonik’s estimator.

Figure 2. IAE for the beta mixture model (4) and various density estimators.
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(a) Estimator related to f̂K,hcrit
with the

uniform kernel
(b) Estimator related to f̂K,hcrit

with the
Gaussian kernel

(c) Estimator related to f̂K,hSJ
with the Gaussian

kernel (d) Estimator related to f̂P

Figure 3. Estimations of the position of the local minimum of the density of the
beta mixture model.



26 RAPHAËL COUDRET, GILLES DURRIEU, AND JÉRÔME SARACCO

Figure 4. Asymmetric claw density f2 (solid line). Estimations f̂K,hcrit
with Gauss-

ian kernel (dashed line) and f̂K,hSJ
(dotted line), for n = 1600. Vertical lines: positions

of the minimum of local minima of each plotted density.

(a) Kernel density estimator with hcrit and the
Gaussian kernel.

(b) Kernel density estimator with hSJ and the
Gaussian kernel.

Figure 5. IAE for the asymmetric claw model (5) and various density estimators.
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(a) Estimator related to f̂K,hcrit
with the

Gaussian kernel.
(b) Estimator related to f̂K,hSJ

with the Gaussian
kernel.

Figure 6. Estimations of the position of the local minimum of the density of the
asymmetric claw model.

(a) Oyster assumed to be healthy.
(b) Oyster that dies the week that follows the day
when measurements were taken.

Figure 7. Density estimations with f̂K,hcrit,2 of opening amplitudes of two oysters.
Crosses indicate local extrema of the estimated densities.


	1. Introduction
	2. Estimating a density with N(f) modes
	2.1.  Assumptions on the density f of X
	2.2. A computable bandwidth
	2.3. Asymptotic results on K,hcrit,k
	2.4. Sheather and Jones' plug-in method to choose a bandwidth
	2.5. Polonik's estimator based on excess mass location

	3. Simulation study
	3.1. Simulated data and quality assessment of the estimates
	3.2. Simulation results

	4. Assuming the number of modes of a mixture density
	5. Oyster opening amplitudes modeled with a bimodal density
	6. Concluding remarks
	Appendix A. Proofs
	A.1. Proof of Proposition 1
	A.2. Proof of Proposition 2
	A.3. Proof of Theorem 1
	A.4. Proof of Theorem 2

	Acknowledgements
	References

