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A New Tentacles-based Technique
for Avoiding Obstacles during Visual Navigation

Andrea Cherubini, Fabien Spindler and François Chaumette

Abstract— In this paper, we design and validate a
new tentacle-based approach, for avoiding obstacles during
appearance-based navigation with a wheeled mobile robot.
In the past, we have developed a framework for safe visual
navigation. The robot follows a path represented as a set of
key images, and during obstacle circumnavigation, the on-board
camera is actuated to maintain scene visibility. In those works,
the model used for obstacle avoidance was obtained using a
potential vector field. Here, a more sophisticated and efficient
method, that exploits the robot kinematic model, and predicts
collision at look-ahead distances, is designed and integrated
in that framework. Outdoor experiments comparing the two
models show that the new approach presents many advantages.
Higher speeds and precision can be attained, very cluttered
scenarios involving large obstacles can be successfully dealt
with, and the control inputs are smoother.

Index Terms— Visual Navigation, Visual Servoing, Collision
Avoidance.

I. INTRODUCTION

One of the main objectives of robotics research is the
development of vehicles capable of autonomously navigating
in unknown environments [1], [2]. In this field, an important
task is obstacle avoidance: if possible, a collision-free trajec-
tory to the goal should be generated; otherwise, the vehicle
must brake to prevent collision [3].

The task that we focus on is outdoor visual navigation: a
wheeled vehicle, equipped with an actuated pinhole camera
and with a forward-looking range scanner, must follow a
path represented by key images, without colliding with the
ground obstacles. The camera detects the features required
for navigating, while the scanner senses the obstacles (in
contrast with other works, such as [4], only one sensor is
used to detect the obstacles). In the past, obstacle avoidance
has been integrated in visual navigation [5], [6] and path
following [7], [8], by using the path geometry or the envi-
ronment 3D model (including, for example, walls and doors).
However, since our task is defined in the image space, we
seek a merely sensor-based solution, which does not need a
global model of the environment and trajectory.

In our recent work [9] we adopted a method based on
potential fields [10] built on an occupancy grid. This method,
however, suffered from its simplicity, which led to very con-
servative collision avoidance, and strongly varying control
inputs. Alternative reactive strategies include: the vector field
histogram [11], dynamic window [12], obstacle-restriction
method [13], and closest gap [14]. The first two methods
rely on a candidate set of commands; however, trap situations
and oscillations may arise. In [13], these issues are solved,
but, since the robot is assumed holonomic and a 3D subgoal
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Fig. 1. General definitions. (a) Top view of the robot (orange), with actuated
camera (blue). (b) Current and next key images, and key image database.

is required, the approach is not suitable for our problem.
Similarly, [14] uses the robot pose, which is noisy in our
framework. Instead, we take inspiration from [15] and [16],
where a set of trajectories (arcs of circles) is evaluated for
navigating. However, in [15], a sophisticated probabilistic
elevation map is used, and the selection of the optimal arc
of circle is based on its risk and interest, which both require
accurate pose estimation. Similarly, in [16] the candidate
trajectories (’tentacles’) are also used for free navigation,
which relies on GPS way points, hence - once more - on the
robot pose. A deeper comparison with this work is carried
out in Sect. IV.

The main contribution of our work is the development
of a novel, reactive, pose-independent, tentacle-inspired ob-
stacle avoidance technique, which is perfectly suitable for
appearance-based tasks, such as visual navigation. The main
strengths of this approach are that it is reactive and sensor-
based (it does not require any model of the environment),
whilst providing useful “look-ahead” information, by ex-
ploiting the robot geometric and kinematic characteristics.
Our method is experimentally validated in the framework de-
signed in [9], and compared with the previous potential field
method. In [9], we guaranteed that obstacle avoidance had
no effect on the visual task, by discerning two contexts (safe
and unsafe), and pursuing the corresponding tasks. Here,
the tentacle-based approach intervenes both in assessing the
context, and in designing the task in case of danger.

The article is organized as follows. In Sect. II, the control
law from [9] is recalled. Then, two alternative obstacle
models are presented: vortex potential fields (Sect. III) and
tentacles (Sect. IV). Experimental results are reported in
Section V, and summarized in the conclusion.

II. CONTROL SCHEME

A. General Definitions

The reader is referred to Fig. 1. We define the robot frame
FR (R,X, Y ) (R is the robot center of rotation) and image
frame FI(O, x, y) (O is the image center); C is the camera
optical center. The robot control inputs are:

u = (v, ω, ϕ̇) .

These are the translational and angular velocities of the
vehicle, and the camera pan angular velocity. We use the
normalized perspective camera model, and we assume that
the sequence of images that defines the path can be tracked



Fig. 2. Obstacle models with 4 occupied cells c1, . . . , c4 (purple). (a) Singular cell (blue vectors) and total (red vector) vortex potential fields. (b - e)
Tentacles (dashed black), with classification areas (collision in pink, dangerous central in cyan, dangerous external in green), corresponding boxes and
delimiting arcs of circle (red, blue and dark green), and cell risk and collision distances (∆ij , δij ); ray of cell c1 with respect to the third tentacle, Γ13

(dashed red).

with continuous v (t) > 0. This ensures safety, since only
obstacles in front of the robot can be detected by our scanner.

The path that the robot must follow is represented as a
database of ordered key images, such that successive pairs
contain some common static visual features (points). First,
the vehicle is manually driven along a taught path, with
the camera pointing forward (ϕ = 0), and all the images
are saved. Afterwards, a subset (database) of N key images
I1, . . . , IN representing the path (Fig. 1(b)) is selected. Then,
during autonomous navigation, the current image, noted I ,
is compared with the next key image Id ∈ {I1, . . . , IN},
and a relative pose estimation between I and Id is used
to check when the robot passes the pose where Id was
acquired. For key image selection, and visual point detection
and tracking, we use the algorithm in [17]. The output of this
algorithm, which is used by our controller, is the set of points
visible both in I and Id. Then, navigation consists of driving
the robot forward, while I is driven to Id. We maximize
similarity between I and Id using only the abscissa x of the
centroid of the points matched on I and Id. When Id has
been passed, the next image in the set becomes the desired
one, and so on, until IN is reached.

Along with the visual path following problem, we consider
obstacles which are on the path, but not in the database,
and sensed by the range scanner in a plane parallel to the
ground. For obstacle modeling, we use the occupancy grid
in Fig. 2(a): it is linked to FR, with cell sides parallel to
X and Y . Its extension is limited (Xm ≤ X ≤ XM and
Ym ≤ Y ≤ YM ), to ignore obstacles that are too far to
jeopardize the robot. Any grid cell c centered at (X,Y ) is
considered occupied if an obstacle has been sensed in c.
For cells entirely lying in the scanner area, only the current
scanner reading is considered. For all other cells, we use past
readings, which are progressively displaced using odometry.

B. Control Design

The desired behaviour of the robot is related to the
surrounding obstacles. When the environment is safe, the
vehicle should progress forward while remaining near the
taught path, with camera pointing forward (ϕ = 0). If
avoidable obstacles are present, we apply a robot rotation
for circumnavigation with an opposite camera rotation to
maintain visibility. Finally, if collision is inevitable, the
vehicle should simply stop. To select the behaviour, we
assess the danger at time t with a situation risk function
H : IR∗+ 7→ [0, 1].

Stability of these tasks has been guaranteed in [9] by:














v = (1−H) vs +Hvu

ω = (1−H)
λx(xd−x)−jvvs+λϕjϕ̇ϕ

jω
+Hωu

ϕ̇ = H
λx(xd−x)−jvvu−jωωu

jϕ̇
− (1−H)λϕϕ

(1)

In the above equations:

• H ∈ [0, 1] is the situation risk function introduced
above; two alternative definitions, depending on the
obstacle model, will be given in Sect. III and IV.

• vs is the translational velocity in the safe context (i.e.,
when H = 0). It must be reduced when the features are
moving quickly in the image, making tracking difficult.
This is typically the case at sharp robot turns, and when
the camera pan angle ϕ is strong. We define vs as:

vs (ω, ϕ) = vm +
vM − vm

4
σ (2)

with function σ defined as:

σ : IR×
[

−π
2 ,

π
2

]

→ [0, 4]

(ω, ϕ) 7→ [1+tanh (π−kω|ω|)] [1+tanh (π−kϕ|ϕ|)] .

Function (2) has an upper bound vM > 0 (for ϕ =
ω = 0), and smoothly decreases to the lower bound
vm, as either |ϕ| or |ω| grow. The decreasing trend of vs
is determined by empirically tuned positive parameters
vM , vm, kω and kϕ. This definition of vs yields better
results than the one in [9], which was only characterized
by the image x variation.

• vu ∈ [0, vs] is the translational velocity in the unsafe
context (H = 1). It guarantees that the vehicle slows
down (and eventually stops) in dangerous situations.

• x and xd are abscissas of the feature centroid respec-
tively in the current and next key image.

• λx > 0 and λϕ > 0 are empirical gains determining the
convergence trend of x to xd and of ϕ to 0.

• jv , jω and jϕ̇ are the components of the Jacobian
relating ẋ and the control inputs u:

jv = − sinϕ+x cosϕ
ζ

jω = RC(cosϕ+x sinϕ)
ζ + 1 + x2

jϕ̇ = 1 + x2,

with RC and ζ (the centroid depth, hand-tuned ac-
cording to the environment characteristics) depicted in
Fig. 1(a).

• ωu is the angular velocity that makes the robot avoid
collisions while advancing.

In [9], we proved that (1) is well defined by setting ζ >
RC/2, and that ∀H ∈ [0, 1] obstacle avoidance has no effect
on the visual task. Our main contribution here will be in the
obstacle model, i.e., in the definition of the variables H , vu
and ωu according to the danger. Two alternative models will
be presented and confronted experimentally. To carry out the
comparison, the vortex potentials [9] are briefly recalled in
Sect. III. Then, our novel tentacle-based approach is designed
and presented in Sect. IV.



III. VORTEX POTENTIAL FIELDS

This approach is illustrated in Fig. 2(a). Given an arbitrary
integer K, obstacles are modeled using the latest 2K + 1
scans. For each cell c = (X,Y ), we define the 2K + 1
occupancies r at the j-th oldest iteration as:

rj (c) = {0, 1}, j = 0, . . . , 2K + 1.

We set rj = 1 if an obstacle has been sensed in c at the j-th
iteration prior to the current one, and 0 otherwise. Then, we
associate to each cell a coefficient µ (c), obtained by linear
combination of the occupancies, weighted with a normalized
Gaussian filter that smoothens the cell effect over time:

µ (c) =

2K+1
∑

j=0

e−(j−K)2/K

√
Kπ

rj (c) .

The maximum weight is at the K-th latest scan, to avoid
overshoot at a new obstacle detection. If the robot velocity
is negligible with respect to the scanner frequency, and
K is small, the effect of motion on the occupancies can
be ignored. In [9], we showed that these assumptions are
appropriate in our setup.

The potential associated to each cell c 6= R, is defined as:

Uc =
µ (c)

‖c‖ ,

where ‖c‖ is the distance from R to c. We define the vortex
field for each cell as the rotor of Uc:

fc =

[

fc,X

fc,Y

]

=







±∂Uc

∂Y

∓∂Uc

∂X






= µ (c)











∓ Y

‖c‖3

± X

‖c‖3











.

The signs of fc,X and fc,Y depend on X , so that the field
always points forward, and the fields fc,i generated by all
cells are superimposed to obtain the total field:

f =
∑

i

fc,i.

We then use the magnitude and phase of f (denoted |f |
and ∠f ), and two tuned thresholds ∆d and ∆s such that
0 < ∆d < ∆s, to design the situation risk function as:

H=



























0 if |f |=0

kf |∠f | if 1
|f | ≥∆s

1 if 1
|f | ≤∆d

1+kf|∠f |
2 +

1−kf|∠f |
2 tanh

(

∆d

1−|f |∆d
+ ∆s

1−|f |∆s

)

otherwise.

Note that H = 0 if no obstacle is detected, and it is bounded
by 1. For small |f |, H is determined by ∠f : the obstacles
are far enough to be circumnavigated, and parameter kf ∈
]

0, 2
π

]

weighs the danger provoked by the field orientation.
Instead, for large |f |, the obstacles are ’too near’, thus H = 1.
A hyperbolic function is used to interpolate in between.

In the presence of dangerous obstacles (i.e., for large H),
the robot should slow down, and eventually stop. Imposing
v = 0 when H = 1 in (1), yields:

vu = 0.

Hence, in the general case, the first equation in (1) becomes:

v = (1−H) vs.

The velocity is reduced from vs to 0, as the risk increases.
To ensure that to circumnavigate the obstacles in danger-

ous contexts, the robot aligns its heading with f , we use a
gain λf > 0, and set the desired unsafe angular velocity to:

ωu = λf∠f .

IV. TENTACLES

A. Related work

Our new technique is mainly inspired from [16], although
some differences, listed below, have been introduced, to deal
with the specific constraints of appearance-based navigation.

The design in [16], although strengthened by a dynamic
analysis, is justified only empirically. For example, the
danger of the cells is associated to their orthogonal projection
on the arc of circle, without measuring the actual distance
to collision. Instead, in the case of two cells with same
orthogonal projection (e.g., c1 and c3 in Fig. 2(e)), the
internal cell should be considered more dangerous. Besides,
in [16], the requested trajectory is defined by GPS way
points. Hence, in the absence of GPS, the approach in [16]
becomes purely reactive, while our approach can still follow
a path, defined by the image database.

In contrast with that work, our approach does not require
a 3D notion of the goal. It must be purely reactive, since
the visual task and the obstacle avoidance task are defined
in different state spaces (respectively in the image and in the
local planar surroundings). As in [16], our grid is built locally
at each new scanner acquisition, without accumulating past
data, and each tentacle is associated to some classification
areas overestimating the vehicle encumbrance. However,
these areas are defined and used differently. Their definition
is associated to the rigid body kinematics of the boxes
representing the vehicle encumbrances, to consider distances
to collision. Then, with the largest areas we select the safest
tentacle and its risk, and with the thinnest one, the eventual
deceleration. Finally, since our vehicle navigates at slightly
varying speeds, we do not relate the tentacle sets to v (as
in [16]), so that a reduced number of candidate paths is
sufficient. Our approach operates locally and instantaneously,
without planning nor deriving the robot pose, to determine
the values of H , vu and ωu in (1).

B. Classification areas and metrics

We use, along with the set of all occupied grid cells:

O = {c1, . . . , cn} ,
a set of drivable paths (tentacles). Each tentacle j is a semi-
circle that starts in R, is tangent to X , and is characterized
by its curvature (i.e., inverse radius) κj , which belongs to K,
a uniformly sampled set:

κj ∈ K = {−κM , . . . , κM} .
The maximum desired curvature κM > 0, must be feasible
considering the robot kinematics. We consider an odd num-
ber of tentacles, so that a straight tentacle (with κ = 0) also
exists. To illustrate our method, in Fig. 2(b-e), the straight
and the sharpest counterclockwise (κ = κM ) tentacle are
shown in dashed black. When a total of 3 tentacles is used,
these correspond respectively to j = 2 and j = 3.



Each tentacle j is characterized by three classification
areas (collision, dangerous central, and dangerous external),
obtained by rigidly displacing, along the tentacle, three
rectangular boxes (red, blue, and dark green in Fig. 2), with
increasing width. The boxes, with same height and differ-
ent widths, are all overestimated with respect to the robot
dimensions, to ensure that, in the presence of disturbances,
the actual path is included in the classification area. All three
areas are delimited by the box and by three arcs of circle
(or lines, in the particular case κ = 0) concentric with the
tentacle, and starting from three points (denoted A, B and C)
on the box perimeter. In all cases, these points are: the two
corners on one side of the box (the outer side must be used
if κ 6= 0), and the intersection between the other side (intern
if κ 6= 0) and the rear wheel axis. For the collision areas, A,
B and C are shown in Fig. 2. We then associate each area
to the set of all cells (pink, cyan and light green in Fig. 2)
whose center lies within the area. For tentacle j, the three
sets of cells are noted Cj , Dj and Ej . The only exception is
with cells belonging to the dangerous central set, which are
not considered in the external set as well: Dj

⋂ Ej = ∅.

During navigation, O is used, along with the sets just
defined, to calculate a candidate risk function Hj ∈ [0, 1]
for each tentacle j, and select the best tentacle accordingly.
Then, the unsafe translational velocity on the best tentacle,
vu, is calculated to adapt the speed to the potential danger,
and to finally derive ωu. All these steps are detailed below.

C. Tentacle risk function

The tentacle risk function Hj is derived from the risk
distance of all occupied cells in the dangerous areas. This
distance is denoted ∆ij ≥ 0 for each ci ∈ O⋂

(Dj

⋃ Ej).
For occupied cells in the central set Dj , ∆ij is the distance

that the middle boundary box (blue) would cover along
tentacle j before touching the cell center.

For the external set, we consider only the subset Ēj ⊆
O⋂ Ej of cells which reduce the clearance in the tentacle
normal direction. For each external occupied cell, we denote
Γij the ray starting at the tentacle center and passing through
ci. Cell ci is added to Ēj if and only if, in Dj

⋃ Ej , there is at
least an occupied cell crossed by Γij on the other side of the
tentacle. In the example of Fig. 2(e), O⋂ E3 = {c1, c3, c4},
whereas Ē3 = {c1, c3}. Then, for cells in Ēj , ∆ij is the sum
of two terms: the distance from the center of ci to its normal
projection on the perimeter of the dangerous central area,
and the distance that the middle boundary box would cover
along tentacle j before reaching the normal projection. The
derivation of ∆ij is illustrated, in Fig. 2, for 4 cells. Note
that for a given cell, ∆ij may have different values (or even
be undefined) according to the tentacle.

When all risk distances on the tentacle are calculated, we
compute ∆j as their minimum:

∆j = inf
ci∈(O∩Dj)∪Ēj

∆ij .

If (O⋂Dj)
⋃ Ēj ≡ ∅, ∆j = ∞. In the example of Fig. 2,

∆2 = ∆12 and ∆3 = ∆33. Obviously, overestimating the
bounding box sizes leads to more conservative ∆j .

We then use ∆j and two tuned thresholds ∆d and ∆s

(0 < ∆d < ∆s), to design the tentacle risk function:

Hj=















0 if ∆j≥∆s

1
2

[

1 + tanh
(

1
∆j−∆d

+ 1
∆j−∆s

)]

if ∆d<∆j<∆s

1 if ∆j≤∆d.
(3)

Note that Hj smoothly varies from 0, when the dangerous
cells on the tentacle (if any) are far, to 1, when they are near.
If Hj = 0, the tentacle is tagged as clear. All the Hjs are
compared (with the strategy explained below), to determine
H in (1) and select the best tentacle for navigation.

D. Situation risk function and best tentacle

Here we detail our strategy for determining the best
tentacle curvature κb for navigation, and therefore u in (1).

Initially, we calculate the path curvature κ = ω/v ∈ IR
that the robot would follow if there were no obstacles.
Replacing H = 0 in (1), it is:

κ =
[

λx

(

xd − x
)

− jvvs + λϕjϕ̇ϕ
]

/jωvs,

which is always well-defined, since jω 6= 0 and we have
set vs > vm > 0. We obviously constrain κ to the interval
of feasible curvatures [−κM , κM ]. Then, we derive the two
neighbors of κ among all the existing tentacle curvatures:

κn, κnn ∈ K such that κ ∈ [κn, κnn) .

Let κn be the nearest one, i.e., the curvature of the tentacle
that best approximates the safe path1. We denote it as the
visual task tentacle. The situation risk function Hv of that
tentacle, which measures the risk on the visual path, is
obtained by linear interpolation of its neighbours:

Hv =
(Hnn −Hn)κ+Hnκnn −Hnnκn

κnn − κn
. (4)

If Hv = 0, the visual task tentacle can be followed: we set
κb = κn, and we apply (1) with H = 0. Instead, if Hv 6= 0,
we seek a clear tentacle (Hj = 0). First, to avoid abrupt
control changes, we only search among the tentacles between
the visual task one and the best one at the previous iteration2,
noted κpb. If many clear ones are present, the closest to the
visual task tentacle is chosen. If none of the tentacles with
curvature in [κn, κpb] is clear, we search among the others.
Again, the best tentacle will be the clear one that is closest
to κn and, in case of ambiguity, the one closest to κnn. If
a clear tentacle has been found, we select it and set H = 0.
Instead, if no tentacle in K is clear, the one with minimum
Hj calculated using (3) is chosen, and H is set equal to that
Hj . Ambiguities are again solved first with the distance from
κn, then from κnn.

In all cases, the unsafe translational velocity vu is derived
from the obstacles on the best tentacle, as explained below.

E. Unsafe translational velocity

The unsafe translational velocity is derived from the colli-
sion distance on the best tentacle, δb, which is a conservative
approximation of the maximum distance that the robot can
travel along the best tentacle without colliding. Since the
thinner (red) box contains the robot, if R follows the best
tentacle, collisions can only occur in occupied cells in Cb.

1We consider that intervals are defined even when the first endpoint is
greater than the second: [κn, κnn) must be read (κnn, κn] if κn > κnn.

2At the first iteration, we set κpb = κn.



In fact, the collision with cell ci will occur at the distance,
denoted δib ≥ 0, that the red box would cover along the best
tentacle, before touching the center of ci. The derivation of
δib is illustrated in Fig. 2 for four occupied cells.

Then, we define δb as the minimum among the collision
distances of all occupied cells in Cb:

δb = inf
ci∈O∩Cb

δib.

If all cells in Cb are free, δb = ∞. In the example of Fig. 2,
assuming the best tentacle is the straight one (b = 2), δb =
δ12. Again, oversizing the box leads to more conservative δb.

The translational velocity must be designed accord-
ingly. Let δd and δs be two tuned thresholds such that
0 < δd < δs. If the probable collision is far enough
(δb ≥ δs), v can be maintained at the safe value defined
in (2). Instead, if it is near (δb ≤ δd), the robot should stop.
To comply with the boundary conditions vu (δd) = 0 and
vu (δs) = vs, in between we apply a constant deceleration:

a = v2s/2(δd − δs) < 0.

Since the distance required for braking at velocity vu (δb) is:

δb − δd = −v2u/2a,

the expression of the unsafe translational velocity becomes:

vu (δb) =







vs if δb ≥ δs
vs
√

δb − δd/δs − δd if δd < δb < δs
0 if δb ≤ δd,

(5)

in order to decelerate as the collision distance decreases.

F. Unsafe angular velocity

Once the best tentacle (with curvature κb) is chosen, and
the corresponding vu is obtained with (5), we set:

ωu = vuκb. (6)

Setting this value of unsafe angular velocity in (1) guarantees
that when H = 1, the robot precisely follows the best
tentacle, with translational velocity vu.

G. Discussion

The values of H , vu and ωu derived as explained above
are inserted in (1) to derive the control inputs u.

When H = 0, the robot tracks at its best the taught path:
the image error is regulated by ω, while v is set to vs to
improve tracking, and the camera is driven forward (ϕ = 0).
This occurs if the 2 neighbour tentacles are clear, while in the
vortex approach, even a single occupied cell would generate
H > 0. Thus, one advantage of the new approach is that only
obstacles on the visual path are taken into account. When
H = 1, ϕ̇ ensures the visual task, and the two other inputs
guarantee that the best tentacle is followed: ω/v = κb. The
applied curvature fluctuates less than with the potential fields,
where it is driven by strongly varying f .

In general, the robot navigates between the taught path,
and the best path considering obstacles. Only the transition,
but not the speed, is driven by H . In fact, note that, for
all H ∈ [0, 1], when δb ≥ δs: v = vs. This is another
advantage of tentacles: a high velocity can be applied if
the path is clear up to δs. With vortex fields, instead, the
vehicle stops frequently (as soon as H = 1). Finally, one
may object that processing can be costly. However, since
∆ij and δij are invariant geometric characteristics related to
the cell positions, their values at each cell can be computed
and stored offline, for use when the cell becomes occupied.

5 m5 m 5 m5 m

barrierbarrier
llarge

2 obstaclesobstacle 2 obstaclesobstacle

A 2A 1 A.2A.1

Fig. 3. Two obstacle scenarios with taught (white) and replayed (red: using
tentacles, black: using potentials) paths.

Fig. 4. Control inputs using tentacles in scenario A.1 (top) and A.2
(bottom): v (black, in ms−1), ω (green, in rads−1), and ϕ̇ (red, in rads−1).
The iterations with strong H are highlighted in yellow.

V. EXPERIMENTS

Here, we report the experiments (also shown in the video
attached to this paper) that we performed to validate our
approach. All experiments have been carried out on our
CyCab robot, equipped with a 70◦ field of view, B&W
Marlin (F-131B) camera mounted on a TRACLabs Biclops
Pan/Tilt head, and with a 2-layer, 110◦ scanning angle,
laser SICK LD-MRS. The grid is built by projecting the
readings from the 2 layers on the ground, and by using:
XM = YM = 10 m, Xm = −2 m, Ym = −10 m. The cells
have size 20× 20 cm. We use 21 tentacles, with κM = 0.35
m−1 (the Cycab maximum applicable curvature).

First, we have compared the two obstacle avoidance meth-
ods (vortex potential fields and tentacles) in the experiments
in Fig. 3. The taught path (denoted A, and white in the
figure) is 60 m long. By placing various obstacles, we
design the scenarios A.1 (with a long obstacle perpendicular
to the path) and A.2 (with two avoidable obstacles and a
blocking barrier). Then, we attempt to replay path A in
each scenario, using either technique. The replayed paths,
estimated from odometry and snapshots, are drawn in black
(potentials) and red (tentacles). The control inputs u using
tentacles are plotted in Fig. 4, with dangerous iterations (i.e.,
with strong H) highlighted in yellow. The smooth trend
of u at the beginning and end is due to the acceleration
saturation carried out by the CyCab low-level control. In
Fig. 5, we have plotted the curvatures ω/v that are applied in
the 4 experiments. Since our preliminary tests, it was clear
that tentacles could be implemented at higher speeds than
potentials, since they provide look-ahead information, and a
stabler model. Hence, in (2), we set: vM = 1 ms−1 with
tentacles, vM = 0.4 with potentials, and vm = 0.3 for both.
For vM > 0.4, potentials fail to avoid the obstacles, while
with tentacles, the velocity has been limited to reduce the
motion of features between successive images; the maximum
speed attainable by the CyCab is 1.3 ms−1 anyway.

In scenario A.1, the long obstacle cannot be circum-
navigated using potentials. It induces oscillations on the
orientation ∠f , hence on the applied curvature (solid black
curve in Fig. 5), until the robot is too near to the obstacle,
and eventually stops. Instead, using tentacles, the obstacle
is overtaken on the left, while the camera rotates right to
maintain scene visibility (green and red curves in Fig. 4,
top). The robot successfully reaches the final key image and
completes navigation, although it is driven over 5 meters
away from the taught path. In practice, soon after the obstacle
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Fig. 5. Applied curvature ω/v (in m−1) in scenario A.1 (solid) and A.2
(dashed) using tentacles (red) and potentials (black).

Fig. 6. Map of the four navigation paths B, C, D, E (a), and validation
with: irrelevant obstacles (b), traffic (c) and a moving pedestrian (d). The
visual task tentacle is shown in red, and the best tentacle (when different)
in blue; only cells that can activate H (i.e., cells at distance ∆ < ∆s) have
been drawn, with brightness proportional to ∆.

is detected, tentacles with first positive (5− 16 s), and then
negative (16 − 25 s) curvatures are selected. Since these
tentacles are clear, v is reduced only for visual tracking,
by (2) (black curve in Fig. 4, top). This is an advantage over
the too conservative potential fields, which do not consider
the real collision risk, and force the stop. After 25 s, the
environment returns clear (H = 0), so the visual tentacle
can be followed again, and the robot is driven back to the
path. Then (38 − 52 s) a small bush on the left triggers
H and causes a rotation along with a slight decrease in v.
Then the context returns safe, and the visual path can be
followed until the end. The translational velocity averaged
over the experiment is 0.79 ms−1, which is more than twice
the speed reached in [9].

In scenario A.2, with both methods Cycab navigates
without colliding and stops at the barrier. However, as
aforementioned, the average navigation velocities v are very
different, i.e., 0.83 ms−1 with tentacles, and only 0.35 ms−1

with potentials. Moreover, the applied curvature varies less
in the first case (see dashed curves in Fig. 5). This leads to
smoother and faster navigation than with potentials. When
the barrier is reached, the vortex method behaves as in A.1 to
force the stop. Instead, the new method seeks a feasible path
until all tentacles are occupied. Then, (5) makes v gradually
decrease to zero (black curve in Fig. 4, bottom).

After these results, which confirmed the advantages of the
new over the old method, we have run some experiments,
uniquely with tentacles, on longer and more crowded paths,
shown in Fig. 6(a). The Cycab completed all paths (including
650 m long path E), while dealing with various natural and
unpredictable obstacles, such as parked and driving cars,
pedestrians, and even bicycles. A first result that emerged
from the experiments was that, by assessing the collision
risk only along the visual path, non-dangerous obstacles (e.g.,
walls or cars parked on the sides) are not taken into account.
This is clear from Fig. 6(b): the cars parked on the right
(which were not present during teaching) do not belong to
any of the visual task tentacle classification areas. Hence,
they are irrelevant, and do not deviate the robot from the path.
Another nice behavior is shown in Fig. 6(c): if a stationing
car is unavoidable, the robot decelerates and stops with (5),
but, as soon as the car departs, it gradually accelerates

(again with (5)), to resume navigation. An experiment with a
crossing pedestrian is presented in Fig. 6(d). The pedestrian
is considered irrelevant, until it enters the visual task tentacle.
Then, the clockwise tentacles (blue in the figure) are selected
to pass between the person and the right sidewalk. When the
path is clear again, the robot turns left to recover it.

VI. CONCLUSIONS

We have presented a novel, robust and reactive technique
for avoiding obstacles with a wheeled robot. By exploiting
the robot kinematics, we can predict collisions at look-ahead
distances along candidate circular paths (tentacles). Since our
method is sensor-based and pose-independent, it is perfectly
suited for visual navigation. Extensive experiments show that
it generates smoother control inputs than its predecessor, and
that it can be applied in realistic situations. To our knowl-
edge, this is the first time that outdoor visual navigation with
obstacle avoidance is carried out at approximately 1 ms−1

on over 500 m, using neither GPS nor maps. Perspective
work includes using a more sophisticated obstacle model
(e.g., with shape, dimension and velocity), to design an
optimal/complete rather than a worst case algorithm.
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