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Physiologically structured cell population
dynamic models with applications to combined
drug delivery optimisation in oncology

Jean Clairambault and Olivier Fercoq

1 Introduction

Optimising drug delivery in the general circulation targeted towards cancer cell pop-
ulations, but inevitably reaching also proliferating healthy cell populations imposes
to design optimised drug infusion algorithms in a dynamic way, i.e., controlling the
growth of both populations simultaneously by the action of the drugs in use, wanted
for cancer cells, and unwanted for toxic side effects on healthy cells.

Towards this goal, we design models and methods, with optional representation
of circadian clock control on proliferation in both populations, according to three
axes [15, 16]: a) representing the oncologist’s main weapons, drugs, and their fates
in the organism by molecular-based pharmacokinetic-pharmacodynamic equations;
b) representing the cell populations under attack by drugs, and their proliferation
dynamics, including in the models molecular and functional targets for the drugs
at stake, by physiologically structured equations; c) using numerical algorithms,
optimising drug delivery under different constraints at the whole organism level,
representing impacts of multiple drugs with different targets on cell populations.

In the present study, two molecular pharmacological ODE models, one for oxali-
platin, and one for 5-Fluorouracil, have been designed, using law of mass action and
enzyme kinetics, to describe the fate of these two cytotoxic drugs in the organism.
An age-structured PDE cell population model has been designed with drug control
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targets to represent the effects of oxaliplatin and 5-Fluorouracil on the cell cycle in
proliferating cell populations. The models for proliferating cell population dynam-
ics involve possible physiological fixed (i.e., out of reach of therapeutic influence)
circadian clock control, and varying drug control to be optimised, connected with
pharmacological models.

Concentrations of drugs, represented by outputs of ODEs, are assumed to be
homogeneous in the cell populations under attack by cytotoxic drugs. The possi-
bility to describe the effects of other drugs, cytostatic (including in this category
anti-angiogenic drugs, considered as acting on the G1 phase, choking its entries and
slowing it down), is also presented, but not put in pharmacokinetic equations and
actual simulations in this study, that is focused on the combination of 5-FU and
oxaliplatin, a classic therapeutic association in the treatment of colorectal cancer.

We then set conditions to numerically solve drug delivery optimisation problems
(maximisation of cancer cell kill under the constraint of preserving healthy cells
over a tolerability threshold) by considering a trade-off between therapeutic and
toxic effects. The observed effects on proliferation are growth exponents, i.e., first
eigenvalues of the linear PDE systems, in the two populations, healthy and cancer.
The solutions to an optimisation problem taking into account circadian clock control
are presented as best delivery time schedules for the two drugs used in combined
treatments, to be implemented in programmable delivery pumps in the clinic.

2 Molecular pharmacokinetics-pharmacodynamics

We represent drug fate in the organism by physiologically based pharmacokinetic-
pharmacodynamic (PK-PD) ODEs for drug concentrations. Drug effects, outputs of
the PK-PD system, will later be considered as control inputs in a physiologically
structured cell population dynamic model representing cancer or healthy tissue pro-
liferation with prescribed targets (see Section 3). In this Section, we consider two
cytotoxic drugs, oxaliplatin and 5-fluorouracil, that act on cells by killing them un-
less they undergo repair, and a cytostatic drug, assumed to exert a blocking action
at phase transitions of the cell cycle without inducing cell death.

Drugs are described by concentrations, from their infusion in the circulation,
which is represented by infusion flows assumed to be externally controlled by pro-
grammable pumps, until their action at the cell level. Whenever relevant, physio-
logical control of biological mechanisms by circadian clocks is represented here by
cosine-like curves - in the absence of better identified physiological gating functions
- describing gate opening at transitions between cell cycle phases (0: gate closed;
between 0 and 1: gate opening).
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2.1 The oxaliplatin model

2.1.1 Oxaliplatin pharmacodynamics: impact on the cell cycle

Oxaliplatin is an anticancer drug that has been in use for more than 12 years now
in the treatment of colorectal cancer. It exerts its action on cells by creating irre-
versible oxaliplatin-DNA adducts that subsequently yield double-stranded breaks in
the DNA. Although it has been shown to induce apoptosis [26] in a manner that does
not show major dependency on cell cycle phases (with the restriction that of course
the DNA is always more exposed, and thus more sensitive to oxaliplatin insults, in
S-phase), other studies have shown that its main effect on cancer cells was likely
to be mostly active by arresting the cell division cycle at the G2/M, and to a lesser
extent, at the G1/S transitions [65, 66], effects on apoptosis occurring only after a
prolonged exposure time. In the sequel, we shall assess these two main actions, both
induced by DNA damage. The effect on death rates will be assumed to be directly
proportional to the damage induced to the DNA, whereas the effect on phase transi-
tions, physiologically due mainly to p53 (not represented as such in this study), will
be represented by a variable delay due to cells under repair, that will be represented
by a specific subpopulation appended to each one of the main phases G1 and S−G2.

2.1.2 Oxaliplatin PK-PD: from infusion until DNA damage

The PK-PD model for oxaliplatin runs as follows

dR
dt

=−[ξLOHP + cl +λK]R+
i(t)

VLOHP
dK
dt

=−λRK +µK(K0−K)

dC
dt

=−VGST
CG2

K2
GST +G2 − kDNACF +ξLOHPR

dF
dt

=−kDNACF +µF(Fo−F)

dG
dt

=−VGST
CG2

K2
GST +G2 +µG(G0−G)

(1)

with G0(t) = G0 BASE

{
1+δ cos

2π(t−ϕGSH)

24

}
and K0(t) = K0 BASE

{
1+ ε cos

2π(t−ϕPLP)

24

}
, accounting for circadian tuning (if

δ 6= 0,ε 6= 0) of equilibrium values for tissue reduced glutathione (GSH) G0 and
plasma protein (PLP) K0 concentrations.

The variables represented are concentrations, either in blood, or in tissues for:
R : Plasma oxaliplatin, with source term a continuous infusion flow i(t)
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K : Plasma proteins, with equilibrium value K0 (circadian-tuned if ε 6= 0)
C : Active tissue oxaliplatin (Pt4+ ion)
F : Free DNA, with equilibrium value F0: the target of the drug, that establishes

DNA adducts by disulphur bridges with it, later creating double strand breaks
G : Reduced glutathione (GSH), tissue shield against DNA damage induced by

oxaliplatin, with equilibrium value G0 (circadian-tuned if δ 6= 0).
A simulation of the model behaviour under square wave drug infusion flow of

oxaliplatin following a circadian rhythm is shown on Fig. 1.

Fig. 1 Behaviour of the two systems protecting the cells against oxaliplatin. Upper track: oscil-
lations of plasma proteins in the presence of infused plasma oxaliplatin (4 consecutive days of
chemotherapy followed by 10 days of recovery); lower track: oscillations of the concentrations of
cellular reduced glutathione in presence of Pt4+ ion, active intracellular metabolite of oxaliplatin.
Decaying track: modelled apoptosis effect of oxaliplatin; in the absence of repair, the density of
free DNA decreases in the mean, leading cells to death. The parameters used in these simulations
(see Section 4.4 for details) have been chosen to produce expected effects, and have not been
experimentally identified.

The features of the model are: irreversible binding of oxaliplatin to plasma pro-
teins, synthesized in the liver; simultaneous attack in the intracellular medium of
free (unbound) DNA, the drug target, and reduced glutathione, that thus acts as a
competitive target of oxaliplatin, shielding the DNA from oxaliplatin; continuous
synthesis of reduced glutathione; possible return to equilibrium value of DNA ob-
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tained by excision repair enzymes. Apart from blood pharmacokinetic constants that
are easily accessible, other parameters have been evaluated so as to produce likely
behaviour for the drug in tissues.

When circadian rhythms are considered relevant (i.e., among teams who prac-
tice anticancer circadian chronotherapy, cf. [39, 40, 41, 42, 44, 45]), peak phases
ϕPLP and ϕGSH for tuned values K0 and G0 are fixed according to laboratory or
clinical published data [47, 64] adapted to human organisms (when observations
were performed on mice, it was assumed that 0 Hour After Light Onset (HALO)
= 8 h, local time, and that Humans, contrary to mice, are diurnal animals). In the
simulations presented, care was not taken to optimise drug delivery according to a
clinically fixed circadian schedule, since optimisation will be performed freely later,
using numerical algorithms and with no a priori knowledge on optimal delivery time
schedules. Only the parameters of circadian physiological control functions for the
cell division cycle and for the metabolism of the considered drugs will be fixed based
on such laboratory or clinical data. Note that in this physiologically based model,
circadian rhythms are not mandatory and can be neglected by setting δ = ε = 0 if
they are considered as irrelevant.

2.2 The 5-FU model

2.2.1 5-FU pharmacodynamics and the cell division cycle

The pharmacodynamics of 5-FU is complex and multiply-targeted, as shown, e.g.,
in [48], resulting in non viable modifications of the RNA and of the DNA, but most
of all in thymidylate synthase inhibition. We will consider here only its effects on its
main target, thymidylate synthase, an enzyme that is essential in DNA duplication
and S-phase specific. In the same way as direct damage to the DNA was considered
as proportional to added cell death, we will assume here that thymidylate synthase
degradation is proportional to 5-FU-induced cell death.

2.2.2 5-FU PK-PD: from infusion to intracellular damage

As in the previous section (2.1) for oxaliplatin, the PK-PD of the cytotoxic drug 5-
fluorouracil (5-FU) is represented by a system of ODEs, controlled by a continuous
infusion flow j(t), with the help of a continuous flow k(t) of folinic acid, a.k.a. leu-
covorin, a natural compound of the folate family, that stabilises the complex formed
by FdUMP with its target thymidylate synthase (TS) [48]. Also for 5-FU have been
experimentally evidenced circadian variations of the target TS and of the main en-
zyme responsible for drug catabolism, namely dihydropyrimydine dehydrogenase
(DPD), such catabolism being processed mainly (80%) in the liver [48], which has
been considered here as a filter on the general circulation. On entering into a cell, the
active form of 5-FU, FdUMP, may be effluxed out of the cell by an ABC transporter
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[55, 61], before reaching its target, a known mechanism of resistance to 5-FU [55].

dP
dt

=−k0P− aP
b+P

− lDPD
P

mDPD +P
+

j(t)
W

dU
dt

=
a

ξ5FU

P
b+P

− c
AU

d +U
− k1US+ k−1B

dQ
dt

=−k2Q+
k(t)
V

dL
dt

=
k2

ξ 5FU
Q− k3L− k4BL

dN
dt

=
κN(1−S/S0)

n

λ n +(1−S/S0)n −µNN

dA
dt

= µNN−µAA

dS
dt

=−k1US+ k−1B+µT S(S0−S)

dB
dt

= k1US− k−1B− k4BL

dT
dt

= k4BL− vT T

(2)

with S0(t) = S0 BASE

{
1+ζ cos

2π(t−ϕT S)

24

}
and lDPD(t) = lDPD BASE

{
1+η cos

2π(t−ϕDPD)

24

}
, accounting for circadian tun-

ing (if ζ 6= 0,η 6= 0) of equilibrium values for tissue thymidylate synthase (TS)
activity S0 and liver dihydropyrimidine dehydrogenase (DPD) maximal rate lDPD.

The variables represented are concentrations, either in blood, or in tissues, for:
P: plasma 5-FU, with source term a continuous infusion flow j(t), detoxicated at

80% in the liver by DPD
U : intracellular FdUMP (main intracellular active metabolite of 5-FU)
Q: plasma leucovorin, also known as folinic acid, with source term a continuous

infusion flow k(t)
L: intracellular methylene tetrahydrofolate, active metabolite of leucovorin
N: nuclear activation factor of the ABC transporter MRP8 (ABCC11), assumed

to be sensitive to damage to the FdUMP target thymidilate synthase (TS)
A: ABC transporter activity (MRP8, or ABCC11, for 5-FU)
S: free thymidylate synthase (TS), with equilibrium value S0 (including circadian

modulation if ζ 6= 0)
B: reversibly FdUMP-bound TS (binary complex U∼T S)
T : irreversibly FdUMP-bound TS (stable ternary complex U∼L∼T S)
(B+T )/S: ratio of bound to unbound TS
The main features of this molecular PK-PD model are: active degradation of

plasma 5-FU by dihydropyrimydine dehydrogenase (DPD) in the liver, considered
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Fig. 2 Behaviour of the variables (concentrations in molecules) under a joint infusion in the gen-
eral circulation of 5-FU (P) and folinic acid (a. k. a. leucovorin, Q), mimicking a repeated se-
quence of 4 consecutive days of chemotherapy followed by 10 days of recovery. The respec-
tive intracellular metabolites, U for FdUMP and L for methylene tetrahydrofolate (MTHF), act
synergistically, binding free thymidylate synthase, abbreviated in the sequel as TS (S), to form
firstly a reversible binary complex FdUMP∼T S (B) and secondly an irreversible ternary complex
FdUMP∼MT HF∼T S (T ). The ABC transporter MRP8 activity (A) is stimulated by a nuclear
factor (N), itself triggered by bound TS. The last track shows the ratio of bound-to-unbound TS, a
measure of damages to TS. The parameters used in these simulations (see Section 4.4 for details)
have been chosen to produce expected effects, and have not been experimentally identified.

as a filter placed in the general circulation; active cellular intake in the target tissue,
together with active efflux by ABC transporter, of the active metabolite FdUMP of
5-FU; stimulation of ABC transporter activity by nuclear factor, sensor of damage
to drug target TS; reversible binding of intracellular metabolite FdUMP to its target,
forming a binary complex; irreversible binding of the same by fixation of methy-
lene tetrahydrofolate to the binary complex, yielding a stable ternary complex. A
variant of this model, where the nuclear factor inducing cell efflux was assumed to
be directly triggered by the drug, which we think physiologically less likely than by
its intracellular effects on its target TS, has been published in [44]. When circadian
rhythms are considered relevant, peak phases ϕDPD and ϕT S for tuned values lDPD
and S0 are fixed according to laboratory or clinical published data [60, 67], with
adaptation from mice to Humans, as mentioned in the previous Section.

A simulation of the model behaviour under square wave drug infusion flows of
5-FU and folinic acid following a circadian rhythm is shown on Fig. 2.
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2.3 Mutual exclusion from simultaneous infusions

Due to the chemical forms, always prepared for intravenous infusions (oxaliplatin is
prepared as an acid solution whereas 5-FU is usually presented in an alkaline form,
hence a risk of precipitate in the infusion line), in which the two drugs are available
in the clinic, it is not advisable to deliver them simultaneously. This has led us to
add mutual exclusion terms for their infusion flows in the combined delivery to be
optimised, as will be mentioned in Section 4. Rather than adding constraints on drug
delivery schedules that are actually in use in the clic, we preferred, for computing
convenience, to represent the risk of precipitate formation by an added artificial
“precipitate” variable in the plasma, with supposed catastrophic consequences for
toxicity to a healthy cell population:

dz
dt

(t) =−k6.z(t)+ k5FULOHP.i(t). j(t),

resulting in a term dprec.z(t) to be added to the irrecoverable death rates di(t) and
dκτi(t) in the cell population dynamic model (9) in Section 3.2, see below. This
precipitation risk is systematically taken into account and avoided at the infusion
line level in chronotherapy delivery schedules [43, 54] and in the FOLFOX protocol
[23].

2.4 Cytostatic drugs: control on cell cycle phase transitions

As regards cytostatic drugs, that have been named so because they slow down tis-
sue proliferation but, contrasting with cytotoxic drugs, do not - at least at low or
medium doses - kill cells by damaging them and thus do not need trigger repair
mechanisms, we can represent their action as firstly proposed in [11] by inhibiting
cell cycle phase transition rates at G1/S and G2/M checkpoints. This representation
is in particular adapted to cyclin-dependent kinase inhibitors (CDKIs) that control
these checkpoints. It may also be used to represent the action of growth factor re-
ceptor antagonists, that may be thought of as decreasing the boundary terms at the
beginning of each cell cycle phase, and also of anti-angiogenic drugs, that choke
a solid tumour population, resulting in proliferating cell population models for the
division cycle in decreased boundary terms at the beginning of phases G1 and S.
This point will be made more precise in Section 3. We have already mentioned that
oxaliplatin, a certainly cytotoxic drug, can also be considered as having effects on
phase transitions, as though it were additionally also a cytostatic drug.

A way to represent control on the cell cycle by cytostatic drugs, for instance
tyrosine kinase inhibitors (TKIs), with introduction of a quiescent cell compartment,
has been proposed in [29], using proliferative and quiescent cell compartments. The
equations are written as
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∂

∂ t
p(t,x)+

∂

∂x
p(t,x)+{µ(x)+β (x)} p(t,x) = 0 ,

p(t,x = 0) = 2(1− f )
∫

ξ≥0
β (ξ ) p(t,ξ ) dξ ,

p(0,x) = p0(x) ,

d
dt

Q(t) = 2 f
∫

ξ≥0
β (ξ ) p(t,ξ ) dξ −νQ(t) ,

Q(0) = Q0,

(3)

where p(t,x) is the density of proliferating cells of age x at time t, and Q(t) is the
density of quiescent (i.e., non-proliferating, out of the division cycle) cells at time t,
and the drug target here is f , rate of escape at mitosis towards the siding phase G0
(quiescent cell compartment), this f to be enhanced by a cytostatic drug. The model
was identified on the human Non Small Cell Lung Cancer (NSCLC) cell line PC-9
submitted to the TKI drug erlotinib.

In fact, the equation for the quiescent phase is just a linear equation and, rewriting
the system for the proliferating phase as


∂

∂ t
p(t,x)+

∂

∂x
p(t,x)+(1− f )β (x)p(t,x)+{ f β (x)+µ(x)}p(t,x) = 0 ,

p(t,x = 0) = 2(1− f )
∫

ξ≥0
β (ξ ) p(t,ξ ) dξ ,

p(0,x) = p0(x) ,

(4)

we can see that it is nothing but the classical McKendrick transport equation ([52],
see also [11], recalled in Section (3.1)) for one proliferating phase with a balanced
control between mitosis ((1− f )β ) and enhanced “cell disappearance” ( f β + µ),
i.e., way out of the proliferating phase towards either quiescence or death. In other
cell cycle models with phases G1,S,G2 and M [11], this representation of a tar-
get for cytostatic drugs should be placed between phases G1 and S, resulting in a
modification of the McKendrick equation :


∂

∂ t
n1(t,x)+

∂

∂x
n1(t,x)+(1− f )K1→2(t,x)n1(t,x)+{ f K1→2(t,x)+d1(x)}n1(t,x) = 0 ,

n2(t,x = 0) = (1− f )
∫

ξ≥0
K1→2(t,ξ ) n1(t,ξ ) dξ ,

n2(0,x) = n2,0(x),
(5)

with the adjunction of a quiescent phase G0 represented by
d
dt

Q(t) = f
∫

ξ≥0
K1→2(t,ξ ) n1(t,ξ ) dξ −νQ(t) ,

Q(0) = Q0 ,

(6)
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which is thus fed only by cells escaping from G1 instead of processing into S-phase.
In the sequel, we will focus only on the action of cytotoxic drugs oxaliplatin and

5-fluorouracil; nevertheless it is also obviously possible to use this local representa-
tion of the dynamics of cytostatic drugs to study and optimise combinations of both
types of anticancer drugs, for instance oxaliplatin, 5-fluorouracil and cetuximab, as
it is now frequently the case in the clinic of metastatic colorectal cancer [13, 43].

3 Cell cycle model with drug damage and repair phases

3.1 Age-structured models of the cell cycle in cell populations

Various models of the cell division cycle at the single cell level exist, some of them
with remarkable descriptions of their molecular mechanisms, allowing to study en-
trainment of the cell cycle by the circadian clock based on up-to-date physiological
knowledge [32, 33, 34, 36], but they are not adapted to describe proliferation in cell
populations, except by considering cellular automata, as in [1, 2, 3, 4]. To the aim
of describing proliferation in tissues, we rather advocate age-structured partial dif-
ferential equations (PDEs), that take into account the main source of variability in
such proliferating cell populations, i.e., age in the division cycle. We recall here the
McKendrick [52] (or Von Foerster-McKendrick) model for the cell division cycle in
proliferating cell populations [11, 17, 19, 18, 20, 21, 22, 57], where ni(x, t) is the
density of cells in cell cycle phase i of age x at time t:

∂ni(t,x)
∂ t

+
∂ni(t,x)

∂x
+di(t,x)ni(t,x)+Ki→i+1(t,x)ni(t,x) = 0,

ni+1(t,0) =
∫

∞

0
Ki→i+1(t,x)ni(t,x)dx,

n1(t,0) = 2
∫

∞

0
KI→1(t,x)nI(t,x)dx.

(7)

together with an initial condition (ni(t = 0, .))1≤i≤I . It may be shown [57] that
for constant or time-periodic control on the di and Ki→i+1, solutions to (7) satisfy
ni(t,x) ∼C0Ni(t,x)eλ t , where C0 is a real positive number and Ni are eigenvectors
of the eigenvalue problem

∂Ni(t,x)
∂ t

+
∂Ni(t,x)

∂x
+
(
λ +di(t,x)+Ki→i+1(t,x)

)
Ni(t,x) = 0,

Ni+1(t,0) =
∫

∞

0
Ki→i+1(t,x)Ni(t,x)dx,

N1(t,0) = 2
∫

∞

0
KI→1(t,x)NI(t,x)dx,

Ni > 0, ∑
i

∫ T

0

∫
∞

0
Ni(t,x)dxdt = 1.

(8)
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The importance of the first eigenvalue λ , which, provided that the system is growing,
is positive and simple [57], and obviously governs (since the positive eigenvectors
Ni are bounded) the time-asymptotic behaviour of the cell populations ni(t,x) in
each phase i, is thus fundamental, and it may be studied as a resulting observable, a
function of the theoretical drug control conditions exerted onto the system. This has
been done in [8, 9, 10, 11].

In this system of transport equations, one for each phase i of the cell division cy-
cle, the control on phase transition rates Ki→i+1(t,x)(i = 1,2) may be decomposed
in κi(x).ψi(t), using an experimentally identified step-like function κi of age x [11]
and, in the circadian setting, a theoretical 24-hour periodic function ψi of time t.The
phase difference between ψ1 and ψ2 is set to a half-period (12 hours) because of
the known phase opposition between the clock-controlled proteins Wee1 and p21
[35, 51], which themselves control Cdk1 (that determines the G2/M transition) and
Cdk2 (that determines the G1/S transition), respectively. Another (numerical) rea-
son is that, as mentioned in [11], this phase difference has been found to maximise
the growth coefficient, first eigenvalue of the periodically controlled McKendrick
system; otherwise said, this value of a half-period for the phase difference between
ψ1 and ψ2 yields the lowest population doubling time.

3.2 A new cell cycle model with repair

In the sequel, we propose a more elaborate model, starting from the previous ones,
for the cell population model under insult by drugs, taking into account various
modes of action of cytotoxic drugs on the cell cycle, and knowing that the pa-
rameters of this model are many and will take many efforts to be experimentally
identified. Nevertheless, we present it as a possible proof of concept for therapeu-
tic optimisation procedures, based on representations that are partly molecular (for
intracellular drug effects) and partly phenomenological (for the cell cycle), but al-
ways physiologically based, after our knowledge of the mechanisms that govern
progression in the cell division cycle.

The proposed model, a variation of the previous McKendrick-like models for the
division cycle in cell populations mentioned above, runs as follows
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• ∂

∂ t
n1(t,x)+

∂

∂x
n1(t,x)+

{
K1(t,x)+L1(t)+dκτ1(t)

}
n1(t,x)− ε1r1(t,x) = 0 ,

∂

∂ t
r1(t,x)+

{
dκτ1(t)+ ε1

}
r1(t,x)−L1(t)n1(t,x) = 0 ,

n1(t,x = 0) = 2n3(xM, t) ,n1(0,x) = ν1(x), r1(0,x) = ρ1(x) ,

with L1(t) =C1
F0−F(t)

F0
, dκτ1(t) = D1

(
F0−F(t)

F0

)2

,

and K1(t,x) = κ1(x).ψ1(t,x) ,

• ∂

∂ t
n2(t,x)+

∂

∂x
n2(t,x)+

{
K2(t,x)+L2(t)+dκτ2(t)

}
n2(t,x)− ε2r2(t,x) = 0 ,

∂

∂ t
r2(t,x)+

{
dκτ2(t) + ε2

}
r2(t,x)−{L2(t)+L′2(t)}n2(t,x) = 0 ,

n2(t,x = 0) =
∫

ξ≥0
K1(t,ξ )n1(ξ , t) dξ , n2(0,x) = ν2(x) , r2(0,x) = ρ2(x) ,

with L2(t) =C2
F0−F(t)

F0
, L′2(t) =C′2

S0−S(t)
S0

,

dκτ2(t) = D2

(
F0−F(t)

F0

)2

+D′2

(
S0−S(t)

S0

)2

,

andK2(t,x) = κ2(x).ψ2(t) ,

• ∂

∂ t
n3(t,x)+

∂

∂x
n3(t,x)+M.1l[xM ,+∞[(x) n3(t,x) = 0 ,

n3(t,x = 0) =
∫

ξ≥0
K2(t,ξ )n2(t,ξ ) dξ , n3(0,x) = ν3(x) .

(9)
In this cell cycle model, 5 cell subpopulations are represented by their density

variables: ni(i = 1,2,3) for age-structured phases G1, S−G2 and M, respectively,
plus ri(i = 1,2) for supplementary repair phases R1 and R2 (in which age is un-
changed) corresponding to cells subject to DNA damage occurring in phases G1 and
S−G2 respectively. The durations of phases G1, S−G2, R1 and R2 are not fixed (no
upper bound in age, although in fact, they will never last infinitely long), whereas
M-phase is assumed to have fixed duration (e.g., xM =1 hour) and to always (just by
setting high the value of the constant M in the last equation, sending all cells to divi-
sion at age xM in M-phase) lead in such fixed time each cell in mitosis into 2 intact
daughter cells in G1. We assume that cells in M-phase are endowed with a super-
coiled DNA, which make them unreachable by DNA-targeted drug insults, and we
have not considered here the effects of M-phase-specific drugs (vinca alkaloids or
taxanes); it is certainly possible to represent them by targets at the M/G1 transition
(i.e., by blocking mitosis), but thus far, the M-phase is free from pharmacodynamic
effects in this model.

As regards the two cytotoxic drugs at stake in this study, apart from this last point
about M-phase, oxaliplatin is a non phase-specific cytotoxic drug, whereas 5-FU is
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Fig. 3 Sketched linear model of the cell division cycle in proliferating cell populations. Variables
ni(t,x) are densities of cells at time t and age in phase x in subpopulations, i.e., cell cycle phases G1
(i = 1), S−G2 (i = 2) and M (i = 3). Moreover, two additional subpopulations have been added,
R1 and R2, with age-independent variables r1(t) and r2(t), respectively, to describe the fate of those
cells that have been hit by drug-induced DNA damage and are waiting to be repaired - or sent to
apoptosis - before being able to join next phase at G1/S and G2/M checkpoints, respectively.

S-phase specific. Functions Li(t) quantify the effect of oxaliplatin (and of 5-FU for
S−G2) on the cell subpopulation under attack in G1 (i = 1) and S−G2 (i = 2) that
can be coped with by repair, whereas dκτi(t) functions stand for the cytotoxic effects
of oxaliplatin that cannot be repaired (one can think of them as double-stranded
breaks in the DNA [26]), be they occurring in G1, R1, S−G2 or R2. Note that we
have not considered in our simulations (see Sections 3.2 and 4.4, where D′2 = 0)
irrecoverable effects of 5-FU in our cell population model for the division cycle,
assuming that its main target is apoptosis induced in S-phase, probably due to lack of
thymine [28], but that these effects are amenable to repair. We do not consider in this
model the intra-S checkpoint. Thus functions Li(t) and dκτi(t) together represent
the ultimate pharmacodynamics of cytotoxic drugs on their actual targets: the cell
division cycle.

In each repair phase Ri, fed from either G1 or S−G2 by the corresponding “leak”
function Li, damaged cells with density ri(t,x), keeping their age x unchanged, un-
dergo a repair mechanism represented by a time constant ε

−1
i . Those cells that have

been successfully repaired move back to the corresponding normal cycle phase, G1
or S−G2, and having become normal cells (ni) again, are candidates to proceed
to next phase at the corresponding checkpoint, which is controlled by functions
κ(x).ψi(t) (multiplied or not by cytostatic drug pharmacodynamics (1− gκσ i(t)),
see below). At the same time, a more destructive cytotoxic death process repre-
sented by functions dκτi(t) goes on, and is enhanced by more extended DNA dam-
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age, which is represented by a nonlinear effect as a function of DNA damage for
functions dκτi(t), that are tuned according to the cytotoxic drug at stake.

We consider here that repair in phase Ri consists only in a loss of time ε
−1
i , that

does not depend on the drug dose ; however, the drug dose does influence the in-
stantaneous rate Li(t) of cells sent to repair. A simplifying assumption made is that
repair is always performed ad integrum, i.e., we have not considered here the pos-
sibility to represent errors in repair that may contribute, together with inefficient
control of DNA at cell cycle checkpoints, to the known genomic diversity and insta-
bility, let alone aneuploidy, of cancer cell populations. Moreover, the checkpoints
in this model represent cell cycle arrest by cumulative effects of oxaliplatin seen
as sending cells to the repair phase, this drug having been reported to act more by
arrest at transitions than by induction of apoptosis [65, 66].

Normal transition rates (in the absence of damage to the cell), K1(t,x) at G1/S
and K2(t,x) at G2/M are described in a multiplicative way by κi(x), the physiologi-
cal transition rate in the absence of circadian control (determined by the distribution
of cell cycle phase durations in the cell population, as shown in [11]), multiplied
by ψi(t), which represents circadian gating by p21 at G1/S and by Wee1 at G2/M
[35, 51]. Thus physiologically, as already mentioned in Section (3.1),

Ki(t,x) = κi(x).ψi(t) .

Additional cytostatic drugs, e.g. growth factor inhibitors, cyclin-dependent ki-
nase inhibitors (CDKIs), or even antiangiogenic drugs, may be represented in this
model for a cancer cell population by an inhibitory effect on G1-phase by choking
boundary terms at cell cycle transitions M/G1 or G1/S. Indeed, since these drugs
are assumed to be non-cytotoxic, taking into account their effect should be done not
on death terms, but only on the boundary terms, either n1(t,x = 0) or n2(t,x = 0),
i.e., in the latter case on κ1(x).ψ1(t) by a multiplication by (1− gκσ1(t)), where
gκσ1(t) stands for the pharmacodynamics of such cytostatic drugs (of maximum
value 1). This may be achieved by the adjunction of a quiescent phase, as in equa-
tion (3), that has been studied in detail with parameter identification on cell cultures
in [29], using in our case the suggested modifications (5, 6) of the system. Note that
another possible way of representing the action of cytostatics is by slowing down a
non constant velocity factor dx

dt of cell progression in G1 introduced in the argument
of the ∂

∂x operator, as proposed in [37].

3.3 Discretisation scheme for the cell population dynamics model

To perform numerical simulations, we discretised the PDE model (9). We adapted
the discretisation scheme presented in [11], Section 3.3 by adding repair phases,
transitions from the physiological phases towards these new phases and permanent
transitions from these new phases towards the physiological phases. The number of
cells in the discretised model is represented by nk, j

i = ni(k∆ t, j∆x) and the dynamics
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of this discretized variable is given for the time step k by nk+1 =Mknk, where nk is
the concatenation according to ages j and phases i of the nk, j

i s. The matrix Mk is a
block matrix, where each block represents transitions from one phase to the other.
The size of each block is related to the duration of the corresponding phase. For
instance, we fixed the duration of mitosis to one hour, so that we do not need to
consider ages larger than one hour in M-phase. We give in Figure 4 the position of
the nonzero elements for a given matrix Mk.

Fig. 4 Pattern of the nonzero elements of the transition matrix of the discretised dynamics. Each
block represents the transitions from one phase to the other. The block G1/G1 is a subdiagonal
matrix representing the fact that at each time step, the cells that have stayed in G1 get older. The
block R1/R1 is a diagonal matrix that represents cell proliferation arrest until cells go back to
G1-phase .

The coefficients of the PDE model depend on the drug infusion schemes. The
coefficients of the transition matrices Mk will also depend on them accordingly.

4 Therapeutic optimisation

4.1 Optimal long term viable chemotherapy infusion schedules

Focusing on cancer chemotherapy, we propose to minimise the growth rate of the
cancer cell population while maintaining the growth rate of the healthy cell popula-
tion above a given toxicity threshold Λ (we chose in the application presented below
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Λ = 0.021). Infusions here should be thought of as referring to the drugs Leucov-
orin, 5-FluoroUracil (5-FU) and oxaliplatin (lOHP) as explained in Section 2.

We consider two cell populations with their respective dynamics. We model both
of them using the same age-structured cell population dynamics model (9) but with
different parameters. In fact, we assume that the transition and death rates are the
same when there is no circadian control, but that cancer cell populations show a
looser response to physiological circadian control. More precisely, we model this
phenomenon by different time-dependencies for gating at transitions in (10). For
healthy cells, we set KH

i (t,x) = κi(x).ψH
i (t) and for cancer cells, we set KC

i (t,x) =
κi(x).ψC

i (t) where ψH
i (t) and ψC

i (t) are given, similarly to the ones in [11], by

ψ
H
1 (t) = cos2(2π(t−10)/12)1l[7;13](t)+ ε,

ψ
H
2 (t) = cos2(2π(t−22)/12)1l[19;24[∪[0;1](t)+ ε,

ψ
H
3 (t) = 1,

ψ
C
1 (t) =

5
8

cos2(2π(t−10)/12)1l[7;10](t)+
5
8

cos2(2π(t−10)/3)1l[10;22](t)+ ε,

ψ
C
2 (t) =

5
8

cos2(2π(t−22)/12)1l[19;22](t)+
5
8

cos2(2π(t−22)/3)1l[22;24[∪[0;10](t)+ ε,

ψ
C
3 (t) = 1,

recalling from [11] that ε is here a very small positive number (typically 10−10)
put in the equations only to ensure ψH

i > 0 and ψC
i > 0, which may be shown

as sufficient to imply irreducibility of the matrix M in numerical simulations (see
below) and thus applicability of the Perron-Frobenius theory.

Fig. 5 Gating at cell cycle phase transitions due to circadian clock control. Functions ψH
i (left,

healthy) and ψC
i (right, cancerous) define the hours at which the cells of each population (healthy

and cancerous) can change phase: when ψ(t) = 0, transition gates are closed. The dash-dotted lines
correspond to the transition from G1 to S−G2 and the solid lines correspond to the transition from
S−G2 to M. In the model presented here, healthy and cancerous cells differ only by their responses
to circadian clock control, represented by functions ψH

i and ψC
i .
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We assume that the drug has the same effect on both populations, i.e. L1(t), L2(t)
and that death rates are the same. This modelling choice couples the behaviours of
the populations through the drug infusions.

Then we represent the growth rates of both populations by the Floquet eigen-
value of the corresponding model (λC for cancer cells and λH for healthy cells). We
shall search for an optimal drug infusion schedule among the set of measurable and
bounded (classical assumptions in control theory [59] for instance) and T -periodic
functions. We obtain the following Floquet eigenvalue optimisation problem with
constraints:

min
g(·)

λC(g)

λH(g)≥Λ (10)

g T -periodic, mesurable and bounded

4.2 24h-periodic drug infusions

The McKendrick population dynamics yields a cell population described by the
number of cells ni(t,x), where i is the phase, t is the time and x is the age in the
phase. As seen in Section 3.1, if the death and transition rates di and Ki→i+1 are
T -periodic, then the solutions ni(t,x) to (7) are asymptotically - i.e., for large time
t - equivalent (in a L1 sense that can be made very precise [57]) to C0Ni(t,x)eλ t ,
where the eigenvector Ni is T -periodic in the time variable.

Hence, searching for infusion strategies that optimise the Floquet eigenvalue of
a biological system is a way to study its long term behaviour under drug infusion.
Indeed, most of chemotherapy schedules are repeated until the patient responds to
the treatment, and conversely stopped if the patient does not respond after a given
number of chemotherapy courses. In this model, we take into account this periodic
behaviour directly in the model and in our objective function.

Classically, chemotherapy schedules consist of several days of severe treatment
followed by a longer duration of rest (2 days of treatment every other week for FOL-
FOX therapy [23], 4 days of treatment every other week or even 5 days of treatment
every third week for chronotherapy [54]). We chose, instead of imposing a rest pe-
riod, to add a toxicity constraint that imposes in a dynamic way that the growth rate
of the healthy cell population always remains high enough for the patient to live
with a reasonable quality of life, even though he may experience drug-induced di-
minished physiological functions. In order to be compatible with the periodicity of
physiological circadian control, the periodicity of the treatment should be a multiple
of 24h. Numerical tests that we have performed on our model show that a period of
one day seems to be a good choice, because other locally optimal solutions that we
found assuming longer periods finally proved to be all 24h-periodic.

But since we have coupled the population dynamics with the PK-PD model de-
scribed in Section 2, we have to take care that periodic infusion of drugs in the same
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way results (asymptotically) in periodic transition and death rates in the population
dynamics model. In the case of linear systems, the Floquet-Lyapunov theory (see
[53] for instance) gives the following condition: if the eigenvalues of the so called
monodromy matrix (also called Floquet multipliers) all have modulus smaller than
1, then the system is asymptotically stable, and a periodic input asymptotically re-
sults in a periodic output.

One can generalise this result to a T -periodic nonlinear system. For a given T -
periodic control u let Φ be the map that to an initial state y0 associates the state yT
of the system at time T . If Φ is a contraction in the sense that there exists c < 1 such
that for all initial states y0 and z0, ‖Φ(y0)−Φ(z0)‖= ‖yT − zT‖ ≤ c‖y0− z0‖, then
a periodic input asymptotically results in a periodic output. We numerically checked
this fact during computations.

4.3 Optimisation procedure

To obtain the numerical resolution of problem (10), we firstly discretise the PK-PD
models (2) and (1) and the population dynamics model (9). This is the so-called
direct method, which consists of a total discretisation of the control problem and
then of solving the finite dimensional optimisation problem obtained.

In our setting, at each time, the control gl(t) is the flow of drug l (1≤ l ≤ ndrugs)
infused at time t. Here, ndrugs = 3 for 5-FluoroUracil, leucovorin and oxaliplatin.
The discretised control (gk

l )l,k will be the array of the infusion time step by time
step and drug by drug. As we search for 24h-periodic controls with one drug, we
only need to define g on one day, i.e. g∈Rndrugs×NT , where NT = T/∆ t is the number
of time steps.

We need to bound the flow of each drug to avoid evident toxicity. We bounded the
flow of 5-FU and leucovorin to ḡ1 = ḡ2 = 500 mg/m2/h and the flow of oxaliplatin
to ḡ3 = 50 mg/m2/h. Hence, g ∈ G = [0; ḡ1]

NT × [0; ḡ2]
NT × [0; ḡ3]

NT .
Given a discretised infusion strategy g, we build the matrices MC(g) and MH(g),

that are the nonnegative matrices modelling the discretised dynamics of each cell
population under drug infusion g when drug concentrations represented by the PK-
PD models have reached their day-periodic asymptotic behaviour.

Thus, we study the optimisation of the growth rate in the discretised model, rep-
resented by the principal eigenvalue ρ of the nonnegative matrices MC for cancer
cells and MH for healthy cells where MH =MNT

H . . .M1
H is given in Section 3.3 (see

also [11], Section 3.3) and MC is defined accordingly.

min
g∈G

1
T

log
(
ρ(MC(g))

)
(11)

1
T

log
(
ρ(MH(g))

)
≥Λ
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We chose a discretisation step of 10 minutes because it may be considered as a
lower limit to the half-life time of 5-FU and oxaliplatin in the plasma [12, 24, 58],
which is most likely even lower than the half-time of its downstream molecular
effects at the cell level, our concern here. The oldest ages represented in the dis-
cretisation scheme are 10 days for each phase except for mitosis (M-phase) where
we choose 2h.

By the Perron-Frobenius theorem [6], we know that if M is nonnegative and irre-
ducible, its principal eigenvalue ρ(M) is positive and is a simple eigenvalue. More-
over, the principal eigenvector is unique up to normalisation and can be chosen such
that u(M)≥ 0. In our setting (irreducibility of the matrix and the Perron-Frobenius
theorem), one can naturally define a function ρ from the set of nonnegative and
irreducible real matrices in Rn into R+, that to a matrix associates its principal
eigenvalue.

General eigenvalue optimisation of non symmetric matrices is a difficult (non
convex, non differentiable) problem: see [46] and [56] for two algorithms dealing
with this problem. However, for nonnegative irreducible matrices, as the principal
eigenvalue is simple, this implies that ρ is differentiable. Indeed, denoting by v and
u the left and right eigenvectors of a matrix M associated with a simple eigenvalue
ρ , the derivative of ρ at M can be written as [38]:

∂ρ

∂Mi j
= viu j (12)

Thus, as the objective function is differentiable, differentiable optimisation the-
ory applies. We then get the complete gradient of the objective by the chain rule. We
have a composite objective of the type

f (g) =
1
T

log◦ρ ◦MH ◦L(g) ,

where ρ is the principal eigenvalue, MH is the discretised population dynamics,
L is the output of the discretised PK-PD and g is the discrete periodic control. To
compute the gradient of the objective function, we thus compute the derivatives
of all these functions, either in closed form (for log and MH ) or by an iterative
algorithm (for ρ and L(g)) and we multiply them all up.

To solve the non convex problem (11), we use the method of multipliers [7],
which solves a sequence of non constrained optimisation problems whose solutions
converge to a local optimum of the constrained problem (11).

4.4 Simulations

We coded the discretised versions of the PK-PD models (Section 2) and of the pop-
ulation dynamics model (Section 3.2), and the method of multipliers [7] in Scilab
[62].
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We chose the following constants in our model. Recall that most of them were
not experimentally identified.

• Oxaliplatin PK-PD model: ξLOHP = 5, cl = 4, λ = 0.5, VLOHP = 100, µK = 0.01,
K0,BASE = 4, ϕPLP = 8h, ε = 0.1, VGST = 200, KGST = 1, kDNA = 1, µF = 0.25,
Fo = 10, µG = 0.01, G0,BASE = 0.8, δ = 0.1, ϕGSH = 20h.

• 5-FU and Leucovorin PK-PD model: k0 = 0.1, a = 5, b = 1, lDPD,BASE = 5,
ϕDPD = 23h, η = 0.5, mDPD = 0.5, W = 100, ξ5FU = 4.4, c = 0.01, d = 1, k1 = 0.2,
k−1 = 0.04, k2 = 0.5, V = 450, k3 = 0.1, k4 = 1, κN = 0.01, S0,BASE = 1, ζ = 0, ϕT S
= 11h, n = 2, λ = 1, µN = 0.1, µA = 0.1, µT S = 0.5, vT = 0.025.

• Exclusion constraint: k6 = 2, k5FULOHP = 0.0001, dprec = 100.
• Population dynamics model: ε1 = 0.01h−1, C1 = 0.1, D1 = 10, ε2 = 0.01h−1,

C2 = 1, C′2 = 1, D2 = 10, D′2 = 0, M = 1000, xM = 1h.
ψ1(t,x) and ψ2(t) are given in Subsection 4.1 for healthy and cancerous cell
populations. For κ1(x) and κ2(x), we took the functions identified in [11], i.e.

κi(x) =
ϕi(x)

1−
∫ x

0 ϕi(ξ )dξ

where ϕi is the probability density function of a Gamma law given by

ϕi(x) =
1

Γ (αi)
(x− γi)

αi−1
β

αi
i e−βi(x−γi)1l[γi;+∞[(x) i = 1,2,

Γ is the Gamma function, α1 = 8.28, β1 = 1.052h−1, γ1 = 0h, α2 = 3.42, β2 =
1.47h−1, γ2 = 6.75h (we substracted the fixed duration of mitosis from the dura-
tion of S−G2−M identified in [11]).

At the end of the optimisation algorithm, we obtained a locally optimal solution
for the discretised optimisation problem (11) and we reported it in Figure 6.

It consists of infusing the three drugs in the following order: leucovorin between
10 h 30 and 21 h 20 (stopping the infusion at 19 h in oder to avoid mixing medicines
has a marginal impact on the performances), 5-FU between 19 and 20 h and finally
oxaliplatin between 20 and 22 h at maximal flow. Then, these infusions are repeated
every day until the situation justifies to stop the treatment.

Without drug infusion, the growth rate of cancer cells (0.0265h−1) is larger that
the one of healthy cells (0.0234h−1), this difference being due to different responses
to circadian clock control. This gives an evolution of the respective populations, can-
cer cells becoming more and more present: see Figure 7. By following the infusion
strategy numerically determined by the optimisation algorithm, we obtained that the
asymptotic growth rate in the healthy cell population was actually above the chosen
toxicity threshold (λhealthy ≥Λ = 0.021h−1) and that the asymptotic growth rate of
cancer cells was weakened to (0.0229h−1). Thus by this optimal infusion strategy,
the asymptotic growth rate for cancer cells was reduced by 13.3 % while the growth
rate for healthy cells was reduced by only 10.0 %, so that the toxicity constraint is
satisfied. This gave us a description of the evolution of the respective populations,
which is illustrated on Figure 8.
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Fig. 6 Locally optimal infusion strategy with a combination of leucovorin (dash-dotted line), 5-
FU (dotted line) and oxaliplatin (solid line). These infusions are repeated every day in order to
minimise the growth rate of the cancer cell population while maintaining the growth rate of the
healthy cell population above the toxicity threshold of 0.021.

Fig. 7 Evolution of the population of cancer (blue, above) and healthy (green, beneath) cells with-
out drug infusion during 12 days. We can see that the populations have different exponential growth
rates (λcancer = 0.0265 and λhealthy = 0.0234). Cancer cells proliferate faster than healthy cells.
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Fig. 8 Evolution of the population of cancer (blue, above) and healthy (green, beneath) cells
with the drug infusion, starting at time 0, given by the algorithm. Healthy cells keep multiply-
ing (λhealthy = 0.021) while the cancer cell population is weakened (λcancer = 0.0229).

These infusions cause possibly recoverable damage to the cells (be they healthy
or cancerous), sending them to repair, at a rate L1(t) in G1-phase and at a rate L2(t)
in phase S−G2 (see Figure 9).

If we compare L2(t) (Figure 9) and the fraction of the cell populations in phase
S−G2 (Figure 10), we can see that the best time to cause damage in phase S−G2
is when the proportion of cancer cells is significantly larger than the proportion of
healthy cells in this phase, i.e., between 22 and 24 h. The strategy takes into account
the delay between the infusion and the effective action of the drug at the cell level
due to the pharmacokinetics and the pharmacodynamics (diffusion, metabolism and
elimination) of the drugs. We may also remark that although the infusion strategy
stops infusions for 13 hours per day, the drugs remain active all day long.

In our cell population dynamics model, the fraction of cancer cells in G1-phase is
never significantly higher than the fraction of healthy cells in G1-phase, so that we
cannot tune a significant difference between the two populations in G1, and L1(t)
should remain small to limit the toxicity of the treatment. Hence, 5-FU, that causes
little damage to cells in G1-phase, is the main drug in this infusion strategy.

Simulating the transition from the stationary state without drug to the sta-
tionary state with periodic drug infusion (Figure 11), we see that after a transi-
tion of around 10 days, the treatment performs as expected (λcancer = 0.0229 and
λhealthy = 0.021). As mentioned above, by this optimal infusion strategy, the asymp-
totic growth rate for cancer cells was reduced by 13.3 %, whereas the asymptotic
growth rate for healthy cells was reduced by only 10.0 %, and the toxicity constraint
λhealthy ≥Λ = 0.021 was satisfied. Note also that the growth rate in the healthy cell



Combined anticancer drug delivery optimisation 23

Fig. 9 Transition rate to repair phases R1 and R2 under the locally optimal infusion strategy pre-
sented in Figure 6. The L1(t) and L2(t) entries in the population dynamics model (9) represent the
(recoverable) damage on cells induced by the drug infusions.

Fig. 10 Fraction of the cancer cell population in phase S−G2 (solid line) among all cancer cells
and fraction of healthy cell population in phase S−G2 (dotted line) among all healthy cells.
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population always remains positive, which means that the healthy cell population
production never decreases. This does not mean that there is no negative drug effect
on this healthy cell population: one should have in mind that we have represented
here only the rate of production of healthy cells, e.g., in the gut or in the bone mar-
row, while for obvious homeostatic reasons, constant consumption (elimination in
the intestinal lumen, or release in the general blood circulation) must be consid-
ered and should result here, together with this decrease of production, in a decay
in physiologically functional healthy cell population (in our example, mature villi
enterocytes or mature blood cells). However, since the growth rate in the healthy
cell population never becomes negative, the source of healthy cell production is
preserved by the optimisation procedure.

Fig. 11 Daily mean growth rates for cancer (solid line) and healthy cells (dashed line) when start-
ing drug infusions at time 0. After a 10-day transitional phase, the biological system stabilises
towards the expected asymptotic growth rate.

The proposed infusion strategy combines the three drugs. This means that we
obtain better results in terms of the trade-off between damage to cancer cells and
toxicity to healthy cells by infusing smaller doses of each drug than a larger dose
of one single dose. This confirms (once more) that the use of this combination is
efficient for the fight against cancer. We shall remark however that the proposed
strategy is different from the ones used today in the clinic.

Firstly, the optimisation algorithm yields a daily schedule consisting of infusions
during 11 hours and rest periods of 13 hours whereas one usually infuses larger
doses and then gives longer rest periods to the patient. As discussed in Subsec-
tion 4.2, the schedules that seem to take the best advantage from the influence of
circadian clocks on the proliferation of cells have a period of one day. However in
this work, we did not study the emergence of drug resistances among the cancer cell
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population, although resistance is one of the main causes of the failure of chemother-
apies in the long term. One may wonder here whether resistances are more or less
likely to appear when performing short, rather than long, rest periods.

Secondly, the locally optimal strategy returned by the optimisation algorithm
suggests infusing oxaliplatin after 5-FU. In the FOLFOX schedule for instance [23],
it is advised to infuse oxaliplatin before 5-FU. However, in [27], the authors show
that infusing oxaliplatin before, during or after the exposure to 5-FU does not pro-
duce significant differences. The results of the optimisation procedure performed on
our preliminary model (in which parameters have not been experimentally identi-
fied) suggest that infusing oxaliplatin after 5-FU may have some advantages.

5 Conclusion and future prospects

We have presented in this study what is to our best knowledge the first physiologi-
cally based model of action of a combination of cytotoxic drugs, commonly used in
the clinic of colorectal cancer, on the division cycle in populations of cells, together
with the use of numerical optimisation algorithms to meet the question of maximis-
ing tumour cell kill under the constraint of preserving healthy cell population from
unwanted toxic side effects.

The molecular PK-PD models are based on physiological knowledge, can evolve
with new findings in this area and their parameters - that are thus far only theo-
retical, tuned to produce observable effects on their molecular targets - should be
identified, at least partly, by biological experiments led in collaboration with teams
of pharmacologists. Obviously enough, these models are quite complex, and some
of their features (e.g., ABC transporters for 5-FU) may be forsaken if they are not
proven to be important, in order to simplify experimental identification of model
parameters. So far, these PK-PD models should be only considered as providing bi-
ological bases for a proof of concept of therapeutic control optimisation on the cell
population dynamic model for proliferation.

This cell population dynamic model is a new version of a system of McKendrick-
like equations, the characteristics of which must be adapted to represent either can-
cer or healthy cell populations. In this setting, we have chosen, as we had done
previously [11], to use the chronotherapeutic paradigm, in which healthy and can-
cer cell populations differ only by good or bad circadian clock control on cycle
phase transitions. This should indicate new tracks to optimise cancer chronothera-
peutic schedules, when classic oxaliplatin and 5-FU are combined with other drugs,
in particular with irinotecan and cetuximab [43].

Also of note, since the model relies on physiological principles, it is possible,
when chronotherapeutics has not proved useful (which may be due to persistence
of good circadian clock control in tumours, or to bad and unrecoverable control by
the central circadian pacemaker of the suprachiasmatic nuclei on the whole organ-
ism, impinging also healthy cell populations) to use other pathological differences
in cancer cell populations, compared with healthy tissues. For instance, adding to
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this model a physiological representation of the control by the p53 protein of phase
transitions, DNA repair or apoptosis launching, based on triggering of the ATM pro-
tein by DNA damage and subsequent launching of p53 oscillations (as sketched in
[25, 50]) will prove useful. Indeed, it is known that p53 is mutated and inefficient in
about 50% of solid tumours [63], and thus instead of circadian control, it is possible
to use impaired - or not - p53 control to account for differences between the two cell
populations.

Another expected benefit of the adjunction of a DNA damage-ATM-p53 model
should be to assess the respective roles in cell death and in cell cycle phase transition
blockade of the drug oxaliplatin, assumed to act by enhancing cell death but also,
and primarily, according to [65, 66], by blocking G1/S and G2/M phase transitions.

Obviously also, to theoretically investigate optimisation of therapeutic proce-
dures using new drugs that are known by their action on physiological targets to hit
cancer cell, and not, or less, healthy cell populations, is another possible application
of this way of representing pharmacodynamic effects of anticancer drugs. It requires
a PK-PD model for each drug, but the target cell population dynamic model of pro-
liferation can be based on the same principles, and the optimisation procedure can
be strictly the same. Note also that we have chosen to optimise eigenvalues, since
the population model is linear. If a linear model proves inadequate, it is also pos-
sible to dynamically optimise therapeutics using cell population numbers, as done
in [5, 14], using the same optimisation principles, but not Perron-Frobenius-Floquet
theory.

Finally, one must note that in the present representation, healthy and cancer cell
populations are considered as evolving separately, without any population coupling
effect between them, except by drugs. The question of evolution toward drug re-
sistance, in particular, and optimisation of therapeutics to circumvent it, has led
to rather different models of evolution, related to cell Darwinism, advocated, e.g.,
in [30, 31] and recently studied from a deterministic point of view by integro-
differential equations in [49], where some coupling is present, representing in an
additive way the global cell population. Whether it is possible and relevant to ad-
dress in the same model, dedicated to therapeutic optimisation, the main two pitfalls
of cancer therapeutics in the clinic, that usually do not present themselves at the
same time scale, namely unwanted toxicity to healthy cell populations and evolu-
tion toward drug resistance, is still an open question.
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