
HAL Id: hal-00750870
https://hal.inria.fr/hal-00750870

Submitted on 12 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Type System for the Automatic Distribution of
Higher-order Synchronous Dataflow Programs

Gwenaël Delaval, Alain Girault, Marc Pouzet

To cite this version:
Gwenaël Delaval, Alain Girault, Marc Pouzet. A Type System for the Automatic Distribution of
Higher-order Synchronous Dataflow Programs. LCTES - ACM International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, Jun 2008, Tucson, United States. pp.101-110,
�10.1145/1375657.1375672�. �hal-00750870�

https://hal.inria.fr/hal-00750870
https://hal.archives-ouvertes.fr

A Type System for the Automatic Distribution of Higher-order
Synchronous Dataflow Programs

Gwenaël Delaval

INRIA-IRISA
Rennes
France

Gwenael.Delaval@inria.fr

Alain Girault

INRIA Rhône-Alpes
Grenoble
France

Alain.Girault@inria.fr

Marc Pouzet

LRI, Univ. Paris-Sud
Orsay
France

Marc.Pouzet@lri.fr

Abstract
We address the design of distributed systems with synchronous
dataflow programming languages. As modular design entails han-
dling both architectural and functional modularity, our first contri-
bution is to extend an existing synchronous dataflow programming
language with primitives allowing the description of a distributed
architecture and the localization of some expressions onto some
processors. We also present a distributed semantics to formalize the
distributed execution of synchronous programs. Our second contri-
bution is to provide a type system, in order to infer the localization
of non-annotated values by means of type inference and to ensure,
at compilation time, the consistency of the distribution. Our third
contribution is to provide a type-directed projection operation to
obtain automatically, from a centralized typed program, the local
program to be executed by each computing resource. The type sys-
tem as well as the automatic distribution mechanism has been fully
implemented in the compiler of an existing synchronous data-flow
programming language.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed programming;
D.3.2 [Programming Languages]: Languages Classifications—
Concurrent, distributed, and parallel languages

General Terms Languages

Keywords Synchronous programming, distribution, type systems,
functional programming

1. Motivations
Synchronous programming languages [5] are frequently used in the
industry for the design of real-time embedded systems. Such lan-
guages define deterministic behaviors and lie on formal semantics,
making them suitable for the design and implementation of safety
critical systems. They are used, for example, in critical domains
such as the automotive, avionics, or nuclear industry.

Most of the systems designed with synchronous languages are
centralized systems. The parallelism expressed in these languages
is a functional one, whose purpose is to ease the design process
by providing ideal timing and concurrency constructs to the de-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’08, June 12–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-60558-104-0/08/06. . . $5.00

signers. A synchronous program is then compiled into a sequential
program emulating the parallel execution of the functional parallel
branches. This sequential program is executed on a single comput-
ing resource. Yet, most embedded systems are composed of several
computing resources (named “locations”), for reasons such as per-
formance, dedicated actuators or sensors drivers, or adaptivity of
the locations to the tasks they are assigned to (e.g., pure computing
tasks vs control tasks). We call this the execution parallelism. This
paper addresses the problem of mapping the functional parallelism
onto the execution one, in a modular way. We focus on distributed
systems implemented as networks of deterministic processes com-
municating with FIFOs.

Fragments of a distributed system can be designed separately;
but in complex and multifunctional embedded systems, functional-
ities are frequently independent of the hardware architecture, im-
plying conflicts between architectural and functional modularity.
Thus, one functionality can use several locations and one location
can be involved in several functionalities. As a result, programming
each location separately compromises the modularity and is error-
prone. This situation occurs within several industrial areas, such as
automotive embedded systems, and software-defined radio [15].

Our paper is organized as follows: Section 2 gives an overview
of the context, and motivates our method through some examples
and one application. Section 3 presents the semantics and the for-
malization of the spatial type system. Section 4 presents the projec-
tion operation, which is our third contribution. Finally, related work
and discussion about the solution will be exposed in Section 5.

2. Overview
2.1 Distribution of Synchronous Dataflow Programs

Synchronous dataflow languages, such as Lustre, Signal, or Lucid
Synchrone [5], manipulate infinite streams of values as primitive
values: the notation 1 represents the infinite stream 1, 1, ..., while
int stands for the type of infinite streams of integers. For any
stream x, we note xi its ith value. In this context, functions (called
nodes hereafter) are stream functions: e.g., int → int is the type
of functions from integer streams to integer streams. Combinatorial
functions are implicitly lifted to apply pointwise to their arguments:
e.g., if x = (xi)i∈IN and y = (yi)i∈IN are two integer streams, then
(x+ y) = (xi + yi)i∈IN . Moreover, we use a unitary delay, noted
fby, such that (x fby y)i = x0 if i = 0 and yi−1 otherwise.

Such a program is classically compiled into a single function f ,
which computes the values of outputs and updates the system’s
state, from the values of inputs and the current state. This function
f is then embedded inside a periodic execution loop. Our contribu-
tion is to extend this classical compilation scheme to a distributed
framework: the result of the compilation of a distributed system
will consist of n functions fi, one for each location i, which will
compute the values of outputs, communication channels, and lo-

cal state, from the values of inputs, other incoming communication
channels, and the current local state.

2.2 Language-based Distribution

We address functional distribution, not achieved for the sake of per-
formance but because the system is intrinsically distributed. Distri-
bution is driven by the fact that some functions have a meaning only
at some specific locations and not at others. We can think, e.g., of
a function returning the value of a physical sensor and which has
to be executed where the sensor is. Therefore, locations will be de-
fined by the functionalities they provide.

Designing such distributed systems is non-trivial, because of
problems such as the scheduling of communications or the type
consistency of the communicated data. The usual method, using
architecture languages like AADL [2], involves describing the sys-
tem’s architecture by partitioning it in subsystems. Each subsystem
can then be defined separately, possibly with different languages.
However, in the case of tightly dependent subsystems, where con-
flicts between architectural and functional modularity can occur,
it is less error-prone and more efficient to define the system as a
whole, together with architectural annotations. Our first contribu-
tion is to provide language primitives to allow the programmer to
describe the architecture, and to express where some values are lo-
cated, i.e., on which location some computations are performed.

The architecture is described by the explicit declaration of the
set of existing locations and the links between them. At this point,
locations are symbolic: a location declaration introduces a sym-
bolic name, which will then be used to express the fact that a stream
is computed or available at this symbolic location. We define in
Section 4.3 a projection operation which produces, for each sym-
bolic name, a single non-distributed synchronous program to be ex-
ecuted at the physical location represented by this symbolic name.

The syntax for declaring the physical location A is loc A. The
existence of a communication link from A to B is declared by
link A to B. Note that we distinguish communication links from
communication channels, introduced in Section 3.4: communica-
tion links, specified by the primitive link, state the ability to com-
municate from one location to another. In contrast, actual channels
used by the distributed system are inferred by the type system.

The statement e atA means that every value used in the expres-
sion e (streams and nodes composing its subterms) will be located
at A. The programmer does not need to express the localization of
every value. Our second contribution is to provide a type and ef-
fects system [19] whose double function is to check the validity of
the localization expressed w.r.t. the architecture, and to infer the lo-
calization of non-explicitly located values. For instance, the node
f given below consists of two computations g and h, respectively
located by the programmer on locations A and B, thanks to the at A
and at B annotations.

node f(x) = z with
y = g(x) at A

and z = h(y) at B;

Communications are abstracted, and thus not expressed by the
programmer, neither technically, nor concerning their place inside
the code. The technical expression of communications is left to
the further phase of integration on actual architecture: our method
only deals with inferring the localization of these communications,
and their coherence throughout the distributed code. We assume
for now that communications can occur at any localization, and
can concern any value entirely concealed within a location (i.e.,
not the distributed data structures, like distributed pairs). From a
programmer’s point of view, this choice is a compromise between
no control at all (communications are possible everywhere) and
absolute control (the programmer expresses every communication).

2.3 A Spatial Type System for Automatic Distribution

We place ourselves in a functional framework, where for the sake
of modularity, functions can neither be inlined nor analyzed depen-
dently of their calling context. We provide a special type system
dedicated to the distributed execution of the program, as an analy-
sis provided to the programmer to help him ensure the consistency
of the distribution specification. We call it a spatial type system and,
when clear from context, we shall simply refer to it as a type sys-
tem. This spatial type system describes the localization of streams,
and a type-directed approach is followed to achieve code distribu-
tion. This also allows us to preserve higher-order features, hence
allowing the expression of dynamic reconfiguration of nodes by
application of other nodes as inputs.

The other motivation for using a type system is to achieve
type inference: in order not to force the programmer to specify
everything (i.e., the localization of each stream), spatial types will
be inferred from the available spatial annotations in the source. The
spatial type system also checks the consistency of these annotations
with the given architecture. Spatial consistency means, e.g., that
applying a node located on a location to a stream located elsewhere
is not correct. As we are in a functional context, spatial types will
be inferred for each defined node modularly.

A typed program is then automatically distributed by the com-
piler, by extracting, for each declared location, one program strictly
composed of computations to be performed on this location, as well
as added communications from and to other locations in the form
of added inputs and outputs.

The spatial type of a stream is the location where this stream
is located. In the case of a stream whose values are communicated
via a channel from one location to another, its spatial type is a set:
it is the set of locations where the stream will be available. The
spatial type of a node f is written ti −〈S〉→ to, where ti and to
are respectively the spatial types of f ’s inputs and outputs, and S
is the set of locations involved in the computation of f . This set of
locations can be larger than the union of ti and to’s sets of locations,
since the computation of f can involve intermediary locations.

2.4 Examples

All the examples below assume the architecture declaration:

loc A; loc B; link A to B;

The first example is a sequence of three nodes f1, f2 and f3,
each assumed to be of spatial type ∀δ.c at δ −〈{δ}〉→ c at δ. f1
and f3 are localized by the programmer, respectively on A and B.
f2 is not explicitly localized.

node g(x) = y3 with
y1 = f1(x) at A

and y2 = f2(y1)
and y3 = f3(y2) at B

This node will be given the spatial type c atA −〈{A,B}〉→ c atB.
As the localization of computations has to be done modularly, a
spatial type for f2 will be given once, among the two possibili-
ties c at A −〈{A}〉→ c at A and c at B −〈{B}〉→ c at B. In
contrast, since there is no communication link from B to A, the
following node will be rejected by the type system:

node g’(x) = y3 with
y1 = f1(x) at B

and y2 = f2(y1)
and y3 = f3(y2) at A

Furthermore, it can be noted here that node g cannot be used within
a located declaration. The following node will be rejected by our
type system:

node g’(m,x) = y with
y = g(m,x) at A

The second example involves a higher-order node: the node h
takes as input two nodes f and g, and an input x, and applies f to
x at one location, and then g to the result of the first application
at another location. This example shows also how a node can
be defined with local locations for more modularity. These new
locations are introduced as a list between [. . .], can then be used
within the node. This higher-order node uses two location variables
δ1 and δ2:

node h [δ1, δ2] (f,g,x) = z with
y = f(x) at δ1

and z = g(y) at δ2
h receives then the spatial type:

∀α, β, γ.∀δ1, δ2 : {δ1 ⊲ δ2}.
(

(α at δ1 −〈{δ1}〉→ β at δ1)

×(β at δ2 −〈{δ2}〉→ γ at δ2)

×(α at δ1)
)

−〈{δ1, δ2}〉→ γ at δ2

The set of constraints ({δ1 ⊲δ2}) is inferred from the links required
by the node. These constraints are resolved, with the actual archi-
tecture, when this node is instantiated. A constraint δ ⊲ δ′ is re-
solved, either by stating δ = δ′ = s, or with two locations s and
s′ such that there exists a communication link from s to s′ in the
local architecture. Thus, the node h can be instantiated in these two
ways (assuming the existence of two nodes f and g, both of spatial
type ∀δ.c at δ −〈{δ}〉→ c at δ):

y1 = h (f at A,g at A,x1)
and y2 = h (f at A,g at B,x2)

We can observe than an arrow type appearing on the left of
another arrow type cannot comprise more than one location. This
is caused by the form taken by the distribution: since the projection
operation on one node is performed on locations, and not sets of
locations, we cannot handle effect variables, unlike other type and
effect systems.

2.5 Application

As a concrete example, we consider the definition of a reception
channel of a software radio. A software radio, or software-defined
radio, is a radio in which components usually defined as hard-
ware, e.g., demodulation or filter components, are defined as soft-
ware [15]. This allows in particular the reconfiguration, possibly
dynamic, of these components.

Consider a reception channel composed of three main compo-
nents: a pass-band filter allowing the selection of the carrier wave,
a demodulator component, and a component allowing the analy-
sis of the received signal, e.g., an error-correction function. For the
sake of performance, these components are usually implemented
on different architectural elements: the pass-band filter on a FPGA,
the demodulator on a digital signal processor (DSP), and the error
correction on a general-purpose processor (GPP).

Each component of this reception channel could easily be de-
fined separately. But in the case of software-defined radio, the sys-
tem must support several functionalities [10]: each of these func-
tionalities must be engineered separately, and then integrated to-
gether. Then, there is a conflict between distribution and functional
modularity issues.

Let us study the case of a multichannel reception system that
supports the two mobile standards GSM and UMTS: the former
involves a filter for 1800 MHz frequencies, a GMSK demodulator,
and a CRC / convolutional error correction module, while the
latter involves a 2 GHz filter, a QPSK demodulator, and a CRC /
convolutional / turbo codes error correction module.

Figure 1 shows an implementation of this reception channel
on a system composed of three hardware components: a FPGA

dedicated to the execution of the two pass-band filters, a DSP
for the demodulation functions, and a GPP for error-correction
modules and for the control of the whole system, i.e., in this case,
the switch between the two channels. This system has one input
x, the radio signal from the antenna. y denotes the output signal
of the system, i.e., the decoded and corrected information received
by the channel. From this value, a function gsm_or_umts (noted g
on Figure 1 for the sake of brevity), local at GPP, computes what
channel will be used at next instant. In this figure, each location is
graphically represented by a gray box.

CRC/convfilter_1800 dem_GMSK

filter_2000 dem_QPSK CRC/turbo

M
U

Xx y

DSPFPGA GPP

g(y)
g(y)

Figure 1. Functional model of a multichannel software radio.

In a classical context, designing this multichannel software ra-
dio would be performed by separately programming each of the
three hardware components, which raises two problems. Firstly,
there is no guarantee that the components interact as specified: i.e.,
the 1800 filter with the GMSK demodulator, and so on. This re-
quires the MUX function to be duplicated on the three computing
resources, so as to guarantee the correctness of the system. This sit-
uation compromises the modularity of the system. Secondly, each
of the two channels corresponds to an independent software en-
tity. Programming independently each hardware component leads
to the separate design, at least from some point of the design flow,
of closely related software components (e.g., filter and demodulator
of the same channel).

For the sake of modularity, this system would be better designed
by considering the channels independently, and not the hardware
components. This situation suggests adding primitives allowing to
express the localization of streams directly in the language. Such
primitives should allow the programming of software components
independently of the architecture, handled as a separate concern.
Thus, consistency analysis such as data typing could be performed
on the global program: communication channels could be typed
and the data consistency of the whole system could be checked.
This way, inconsistencies due to serialisation could be detected at
compilation time.

The code below implements this multichannel software radio,
with our extended language. The architecture consists of three
locations, FPGA, DSP, and GPP, completely connected:

node channel(filter,demod,crc,x) = y with
f = filter(x) at FPGA

and d = demod(f) at DSP
and y = crc(d) at GPP

node multichannel_sdr(x) = y with
c = gsm_or_umts(y) at GPP in

and
if (true fby c) then
y = channel(filter_1800,gmsk,conv,x)

else
y = channel(filter_2000,qpsk,turbo,x)

This implementation strictly follows the architecture of the system
described in Figure 1. It shows the declaration of three symbolic
locations (FPGA, DSP, and GPP). We assume that all filter, demod-
ulation, and correction functions are local ones, i.e., they are of

spatial type ∀δ.c at δ −〈{δ}〉→ c at δ. Since the conditional con-
struct comprises declarations that have to be executed on the set of
locations {FPGA, DSP, GPP}, c is thus inferred to be communicated
to these locations. The conditional if/then/else is evaluated with
the value of c at the previous instant. The distribution of this exam-
ple will put a copy of this if/then/else on these three locations.
Finally, the expression true fby c will be computed at GPP, since
the result of this expression has to be communicated to the three lo-
cations where the conditional construct will be duplicated.

By the same reasoning, we can infer that the spatial type of x is
FPGA, and the one of y is GPP. As a result, the spatial type of the
node multichannel_sdr is:

(c at FPGA) −〈{FPGA, DSP, GPP}〉→ (c at GPP)

3. Formalization

We first define a synchronous dataflow core language (Section 3.1),
and give its centralized semantics (Section 3.2) and its distributed
semantics (Section 3.3). The centralized semantics is considered
to be the reference semantics and we only consider programs that
react w.r.t. this semantics. Programs that do not react (e.g., for
typing or causality reasons) are assumed to be rejected by other
means [9]. The distributed semantics allows us to give a meaning
to location annotations. A spatial type system is then presented
(Section 3.4). It is used to both reject programs which cannot be
distributed and to annotate every expression from the source code
with explicit locations.

3.1 The Core Language Syntax

P ::= A;d;D
A ::= A;A | loc A | link A to A
s ::= δ | A
d ::= node f [δ1, . . . , δn](p) = e withD | d;d
D ::= p = e | p = x(e) | D andD | if e then D else D
p ::= p, p | x
e ::= i | x | (e, e) | op(e, e) | e fby e | e at s

A program is made of an architecture description (A), a se-
quence of node definitions (d) and a main set of equations (D).
An architecture description is a set of declarations of locations
(loc A) or links (link A to A) which state the existence of a
communication link from one location to another. A location s is
either a location variable δ, or a location constant A. A node defi-
nition is composed of an expression and a set of equations. A set of
local locations {δ1, . . . , δn} can be associated as location param-
eters of a node definition (node f [δ1, . . . , δn](p) = e with D).
Definitions D define patterns of variables p, and are either single
equations (p = e), definitions naming the result of an application
(p = x(e)), parallel declarations (D andD), or alternative declara-
tions (if e thenD elseD). An expression e may be an immediate
value (i), a variable (x), a pair construction (e, e ; pair destruction
can be performed by pattern definitions), a binary combinatorial
operation (op(e, e), where op can be (+), (−),. . .), an initialized
delay (e fby e), or an expression annotated with an explicit location
s (e at s).

3.2 The Centralized Synchronous Semantics

The purpose of the centralized semantics is to serve as a reference
semantics. This semantics does not take into account distribution
primitives. We first introduce auxiliary definitions. A value is either
an immediate constant (i), a pair or a function.

v ::= i | (v, v) | λx.e withD
R ::= [v1/x1, . . . , vn/xn] s.t. ∀i 6= j, xi 6= xj

S ::= R1.R2 . . .

A reaction environment R associates values to names and assumes
that names are pairwise distinct. S denotes a sequence of reaction
environments.

Given a sequence d of node definitions node fi[~δi](xi) =
ei with Di, an initial global environment Rd is defined, holding
λ-values of each fi. This initial environment will be given as input
of the main program.

Rd = [λx1.e1 withD1/f1, . . . , λxn.en withDn/fn]

The synchronous centralized semantics is defined by means of

two reaction predicates. R ⊢ e1
v
−→ e2 states that in the reaction

environment R, the expression e1 emits the value v and rewrites

into the new expression e2. The predicate R ⊢ D1
R′

−→ D2 states
that in the reaction environment R, the declaration D1 defines the
reaction environment R′ and rewrites into D2. The centralized ex-
ecution of a program P is denoted Si ⊢ P : So, meaning that
under a sequence of input environments Si = R1.R2 . . ., the pro-
gram P = A;d;D produces a sequence of output environments
So = R′

1.R
′
2 . . . such that:

Rd, Ri, Ro ⊢ D
Ro−−→ D′ Si ⊢ A;d;D′ : So

Ri.Si ⊢ A;d;D : Ro.So

The rules for the reaction predicates are given in Figure 2.

(IMM) R ⊢ i
i
−→ i (INST) R, [v/x] ⊢ x

v
−→ x

(FBY)
R ⊢ e1

v1−−→ e′1 R ⊢ e2
v2−−→ e′2

R ⊢ e1 fby e2
v1−−→ v2 fby e′2

(OP)
R ⊢ e1

i1−→ e′1 R ⊢ e2
i2−→ e′2 i = op(i1, i2)

R ⊢ op(e1, e2)
i
−→ op(e′1, e

′
2)

(PAIR)
R⊢e1

v1→e′1 R⊢e2
v2→e′2

R ⊢ (e1, e2)
(v1,v2)
−−−−−→ (e′1, e

′
2)

(AT)
R⊢e

v′

→e′

R⊢e at s
v
→e′ at s

(DEF)
R ⊢ e

(v1,...,vn)
−−−−−−−→ e′

R ⊢ (x1, . . . , xn) = e
[vi/xi]
−−−−−→ (x1, . . . , xn) = e′

(APP)
R(f) = λp.e withD R ⊢ p′ = e and p = e′ andD

R′

−−→ D′

R ⊢ p′ = f(e′)
R′

−−→ D′

(AND)
R,R2 ⊢ D1

R1−−→ D′
1 R,R1 ⊢ D2

R2−−→ D′
2

R ⊢ D1 and D2
R1,R2−−−−→ D′

1 andD′
2

(IF-1)
R ⊢ e

true
−−−→ e′ R ⊢ D1

R′

−−→ D′
1

R ⊢ if e thenD1 else D2
R′

−−→ if e′ thenD′
1 else D2

(IF-2)
R ⊢ e

false
−−−→ e′ R ⊢ D2

R′

−−→ D′
2

R ⊢ if e thenD1 else D2
R′

−−→ if e′ thenD1 else D′
2

Figure 2. Centralized synchronous semantics.

An immediate value emits itself and rewrites to itself (rule
IMM). A variable emits its current value as it is present in the reac-
tion environment (rule INST). An initialized delay e1 fby e2 emits
the first value of e1, then the previous value of e2 (rule FBY). An

operation is performed pointwisely on immediate values (rule OP).
Pair construction follow classical rules (rule PAIR). Locations are
not taken into account here (rule AT): annotations added by the pro-
grammer do not alter the centralized semantics of the program (i.e.,
its functionality). An equation p = e emits the reaction environ-
ment defining the variables contained in p (rule DEF). A sequential
function application is replaced by its body and argument definition
(rule APP). Parallel equations are mutually recursive (rule AND). A
conditional statement executes its first branch if its condition is true
(rule IF-1) and its second branch otherwise (rule IF-2).

3.3 The Distributed Synchronous Semantics

The distributed semantics also operates on a program P = A;d;D,
but takes into account the architecture description and the explicit
locations. However, it remains a synchronous semantics in the
sense that the desynchronization due to the insertion of commu-
nications is not accounted for. It defines a spatialized execution:
the values v̂ emitted by expressions are now distributed values,
i.e., they are annotated with location information stating how these
values are distributed on the architecture:

v̂ ::= lv at A | (v̂, v̂) | Λ~δ.λx.e with D
lv ::= i | (lv, lv)
R̂ ::= [v̂1/x1, . . . , v̂n/xn] s.t. ∀i 6= j, xi 6= xj

Ŝ ::= R̂1.R̂2. . . .
G ::= 〈S ,L〉

A distributed value v̂ is either a local value lv, localized on the
site A (lv at A), a distributed pair (v̂, v̂), or a node. A sequence

of location parameters ~δ is associated to nodes. A local value is

either an immediate value i, or a local pair (lv, lv). R̂ denotes a

distributed reaction environment, and Ŝ a sequence of distributed
environments. G denotes an architectural graphs composed of a set
of locations S , and a set of communcation links L ⊆ S × S .

Several values can represent the same distributed value:

(lv1, lv2) at A = (lv1 at A, lv2 at A)

v̂1 = v̂′1 v̂2 = v̂′2
(v̂1, v̂2) = (v̂′1, v̂

′
2)

These equalities mean that a local pair (1, 2), localized on the
site A, can indifferently be denoted by the distributed values
(1, 2) at A or (1 at A, 2 at A). A distributed pair can be, for
example, the pair (1 at A, 2 at B) : the first compound is located
on A, and the second on B.

The operator loc(·) gathers the set of locations from a dis-
tributed value:

loc(i at s) = {s}
loc((v̂1, v̂2) at s) = loc(v̂1) ∪ loc(v̂2)

The operator | · | erases annotations from a distributed value to
get a centralized value, and extends straightforwardly to reaction
environments:

|i at s| = i |(v̂1, v̂2) at s| = (|v̂1|, |v̂2|)

The distributed semantics is defined by means of two predicates

refined from their centralized versions. R̂
ℓ

 e1
v̂
−→ e2 states that

in the distributed reaction environment R̂, the expression e1 emits
the distributed value v̂ and rewrites into e2. ℓ represents the set
of locations involved in the computation of v̂. The predicate for
declarations is defined as well.

We denote by S the set of declared constant locations, and
by L ⊆ S × S the set of declared communication links. The
relation L defines the ability to communicate, and not the actual
existence of communication channels, which will be inferred by
the refined version of the type system. G denotes an architecture

graph, composed of a set of locations S , and a set of links L
between these locations. An architecture description A defines an
architecture graph G: the notation G ⊢ A : G′ means that given
the architecture graph G, A defines the new architecture graph G′.
The rules ARCH, DEF-LOC and DEF-LINK define this predicate:

(ARCH)
〈S,L〉 ⊢ A1 : 〈S1,L1〉 〈S1,L1〉 ⊢ A2 : 〈S2,L2〉

〈S,L〉 ⊢ A1;A2 : 〈S2,L2〉

(DEF-LOC) 〈S,L〉 ⊢ loc A : 〈S ∪ {A},L〉

(DEF-LINK)
A1, A2 ∈ S

〈S,L〉 ⊢ link A1 to A2 : 〈S,L ∪ {A1 7→ A2}〉

For clarity, we assume that the architecture graph G is global for
subsequent semantic rules. The annotated execution of a program

P is Ŝi P : Ŝo, meaning that under a sequence of input envi-

ronments Ŝi = R̂1.R̂2 . . ., the program P = A;d;D produces a

sequence of output environments Ŝo = R̂′
1.R̂

′
2 . . .:

〈∅, ∅〉 ⊢ A : G R̂d, R̂i, R̂o

ℓ

 D
R̂o−−→ D′ Ŝi A;d;D′ : Ŝo

R̂i.Ŝi A;d;D : R̂o.Ŝo

where R̂d is defined from the sequence of node definitions d =

node fi[~δi](xi) = ei withDi as:

R̂d = [Λ~δ1.λx1.e1 withD1/f1, . . . ,Λ~δn.λxn.en with Dn/fn]

The rules for the predicates R̂
ℓ

 e1
v̂
−→ e2 and R̂

ℓ

 D1
R̂′

−→ D2

are given in Figure 3. An immediate value can be emitted anywhere
(rule IMM). Rule INST defines the instantiation. A distributed value
can be communicated from location s to location s′ if there exists a
communication link from s to s′ (rule COMM). A binary operation
can be performed only on immediate values located on the same
location A; the result is located on A as well (rule OP). An an-
notated expression must involve at most the location stated for its
computation (rule AT). An application involves choosing a set of
constant locations, and replacing location parameters by these lo-
cations in the expression and the declaration (rule APP). The other
rules state that the computation of a statement involves the union
of the locations involved for the computation of its compounds.

Lemma 1 states that if a program reacts with the distributed
semantics, then it reacts with the centralized one and produces the
same values.

Lemma 1. For all D,D′, R̂, R̂′, if R̂
ℓ

 D
R̂′

−→ D′, then there

exists R,R′ such that R = |R̂|, R′ = |R̂′| and R ⊢ D
R′

−→ D′.

3.4 Spatial Types

For the sake of clarity, we first present a simplified version of the
type system. For projection, we refine this first version to take
communication channels into account (Section 4).

The syntax of spatial type expressions is:

σ ::= ∀α1, . . . , αn.∀δ1, . . . , δn : C.t
t ::= t −〈ℓ〉→ t | t× t | tc at s
tc ::= c | α | tc → tc | tc× tc
ℓ ::= {s1, . . . , sn}
s ::= δ | A
H ::= H at A | [x1 : σ1, . . . , xn : σn]
C ::= {s1 ⊲ s

′
1, . . . , sn ⊲ s′n}

H is the spatial typing environments. H at A denotes a located
environment, i.e., a typing environment from which every spatial
type will be forced to represent a value entirely located on A.

(IMM)

R̂
ℓ
 i

i at s
−−−→ i

(COMM)
R̂

ℓ
 e

dv at s
−−−−−→ e′ (s, s′) ∈ L

R̂
ℓ∪{s′}

 e
dv[s′/s] at s′

−−−−−−−−−→ e′

(INST)

R̂, [v̂/x]
loc(v̂)

 x
v̂
−→ x

(FBY)
R̂

ℓ1
 e1

v̂1−−→ e′1 R̂
ℓ2
 e2

v̂2−−→ e′2

R̂
ℓ1∪ℓ2
 e1 fby e2

v̂1−−→ |v̂2| fby e′2

(OP)

R̂
ℓ1
 e1

i1 at A
−−−−−→ e′1 R̂

ℓ2
 e2

i2 at A
−−−−−→ e′2 i = op(i1, i2)

R̂
ℓ1∪ℓ2
 op(e1, e2)

i at A
−−−−→ op(e′1, e

′
2)

(PAIR)
R̂

ℓ1
 e1

dv1 at s1−−−−−−→ e′1 R̂
ℓ2
 e2

dv2 at s2−−−−−−→ e′2

R̂
ℓ1∪ℓ2
 (e1, e2)

(dv1 at s1,dv2 at s2) at s1⊔s2
−−−−−−−−−−−−−−−−−−−−→ (e′1, e

′
2)

(AT)
R̂

{s}

 e
v̂
−→ e′

R̂
{s}

 e at s
v̂
−→ e′ at s

(DEF)
R̂

ℓ
 e

(v̂1,...,v̂n)
−−−−−−−→ e′

R̂
ℓ
 (x1, . . . , xn) = e

[v̂i/xi]
−−−−−→ (x1, . . . , xn) = e′

(APP)

R̂(f) = Λδ1, . . . , δn.λp.e with D at s {s1, . . . , sn} ⊆ S

R̂
ℓ
 p′ = e[~s/~δ] and p = e′ andD[~s/~δ]

R̂′

−−→ D′

R̂
ℓ
 p′ = f(e′)

R̂′

−−→ D′

(AND)
R̂, R̂2

ℓ1
 D1

R̂1−−→ D′
1 R̂, R̂1

ℓ2
 D2

R̂2−−→ D′
2

R̂
ℓ1∪ℓ2
 D1 and D2

R̂1,R̂2−−−−→ D′
1 and D′

2

(IF-1)
R̂

ℓ
 e

true at s
−−−−−−→ e′ R̂

ℓ′

 D1
R̂′

−−→ D′
1 ∀s′ ∈ ℓ′, s ⊲ s′

R̂
ℓ∪ℓ′

 if e then D1 elseD2
R̂′

−−→ if e′ then D′
1 else D2

(IF-2)
R̂

ℓ
 e

false at s
−−−−−−→ e′ R̂

ℓ′

 D2
R̂′

−−→ D′
2 ∀s′ ∈ ℓ′, s ⊲ s′

R̂
ℓ∪ℓ′

 if e then D1 elseD2
R̂′

−−→ if e′ then D1 else D′
2

Figure 3. Distributed synchronous semantics.

We distinguish spatial type schemes (σ), which can be quanti-
fied, from simple spatial types (t). A set of constraints C can be as-
sociated to quantification of location variables (∀δ1, . . . , δn : C.t).
We note ∀δ1, . . . , δn.t the scheme ∀δ1, . . . , δn : ∅.t. A simple spa-
tial type can be either a node type (t −〈ℓ〉→ t), a pair type (t × t),
or a located type (tc at s). A located type can be either a stream
type (c, such as boolean, integer, etc.), a type variable (α), a local
function (tc → tc), or a local pair type (tc× tc). ℓ denotes sets of
locations. A location is either a location variable δ, or a location A.

C is a set of constraints between locations. A constraint s1 ⊲ s2
means that either s1 = s2, or there exists a communication link
from s1 to s2. Conversely, a declaration of communications links
L leads to the set of constraints constr(L) = {s ⊲ s′|(s, s′) ∈ L}.

A value of spatial type tc at s is a value located on s. A value of
spatial type t1 −〈ℓ〉→ t2 is a node whose input is of spatial type t1,
whose output is of spatial type t2, and whose computation involves

the set of locations ℓ. The following equalities stand:

(tc1 × tc2) at s = (tc1 at s)× (tc2 at s)
(tc1 → tc2) at s = (tc1 at s) −〈{s}〉→ (tc2 at s)

t1 = t′1 t2 = t′2
(t1 × t2) = (t′1 × t′2)

t1 = t′1 t2 = t′2
t1 −〈ℓ〉→ t2 = t′1 −〈ℓ〉→ t′2

The instantiation mechanism ensures the localization of a type
instantiated from a located environment:

(t[tc1/α1, . . . , tcn/αn, s/δ], C[s1/δ1, . . . , sm/δm])

≤ ∀α1 . . . αn∀δ1 . . . δm : C.t

(tc at s, C) ≤ (H at s)(x) ⇔ (tc at s, C) ≤ H(x)

We note respectively FLV(t) and FTV(t) the set of free loca-
tion variables and free type variables of the type t. FLV and FTV
are straightforwardly extended to typing environments.

A set of constraints C is compatible with a set of communica-
tion links L, noted L |= C, iff s ⊲ s′ ∈ C ∧ s 6= s′ ⇒ (s, s′) ∈ L.

Before presenting our spatial type system, we introduce the
following notations:

• For a program P , the notation ⊢ P : t means that the program
P is of spatial type t.

• For declarations (resp. expressions), the notation H |G ⊢ D :
H ′/ℓ (resp. H |G ⊢ e : t/ℓ) means that, in the spatial type
environment H and the architecture graph G, the declaration
D (resp. the expression e) defines a new environment H ′

(resp. is of spatial type t), and its computation involves the
set of locations ℓ.

The function locations(·) gives the set of locations involved in
the spatial type given as argument. It is defined as:

locations(t1 × t2) = locations(t1) ∪ locations(t2)
locations(t1 −〈ℓ〉→ t2) = ℓ
locations(tc at s) = {s}

The top-level declaration of a program is typed from the initial
environment H0, defined as:

H0 =

[

· fby · : ∀α.∀δ.α at δ × α at δ −〈{δ}〉→ α at δ,
(+) : ∀δ.c at δ × c at δ −〈{δ}〉→ c at δ, . . .

]

Our spatial type system is formally defined by the inference
rules shown in Figure 4. Typing a program involves building an
architecture graph from the architecture description, and then using
it to type the nodes and the main declarations (rule PROG).

An immediate value can be used on any location (rule IMM).
Type schemes can be instantiated (rule INST). Typing a pair in-
volves stating that this pair has to be evaluated on the union of the
sets of locations on which each member of the pair has to be eval-
uated (rule PAIR). Typing a located expression (e at A) involves
building a located typing environment (rule AT). Communications
are expressed as subtyping (rule COMM).

The spatial type of a node consists of the spatial types of its
inputs, the computed expression, and the set of locations involved
in this computation (rule NODE). The type of a node is generalized
w.r.t. the set of locations and links introduced by this architecture.

Typing an equation x = e involves building a singleton typing
environment (rule DEF). Rule APP states that an application must
be evaluated on the union of the set of locations where the node
f and its argument e must be evaluated, and the set of locations
ℓ1 involved in the computation of the node f . Parallel declarations
involve, for their computations, the union of the sets and of loca-
tions involved in the computation of their compounds (rule AND).
Finally, typing an if/then/else declaration involves locating the
condition expression on a location s, and adding constraints that ev-
ery location involved in declarations D1 and D2 must be accessible
from s (rule IF).

(PROG)
〈∅, ∅〉 ⊢ A : G H0|G ⊢ d : H/ℓ H,H1|G ⊢ D : H1/ℓ

′

⊢ A;d;D : H1

(IMM)
H|G ⊢ i : c at s/{s}

(INST)
(t, C) ≤ (H(x)) L |= C

H|〈S,L〉 ⊢ x : t/ locations(t)

(PAIR)
H|G ⊢ e1 : t1/ℓ1 H|G ⊢ e2 : t2/ℓ2

H|G ⊢ (e1, e2) : t1 × t2/ℓ1 ∪ ℓ2

(DEF)
H|G ⊢ e : t1 × . . .× tn/ℓ

H|G ⊢ (x1, . . . , xn) = e : [t1/x1, . . . , tn/xn]/ℓ

(AT)
H at s|〈S,L〉 ⊢ e : t/ℓ s ∈ S

H|〈S,L〉 ⊢ e at s : t/ℓ

(COMM)
H|〈S,L〉 ⊢ e : tc at s/ℓ L |= s ⊲ s′

H|〈S,L〉 ⊢ e : tc at s′/ℓ ∪ {s′}

(NODE)

H, xi : ti, H1|〈S
′,L′〉 ⊢ D : H1/ℓ1

H,xi : ti,H1|〈S
′,L′〉 ⊢ e : t/ℓ2 S′ = S ∪ {δ1, . . . , δp}

L′ ⊆ L ∪ ({δ1, . . . , δp} × S) ∪ (S × {δ1, . . . , δp})
{α1, . . . , αm} = FTV(t) − FTV(H) C = constr(L′ \ L)
σ = ∀α1, . . . , αm.∀δ1, . . . , δp : C.(t1 × . . .× tn) −〈ℓ1 ∪ ℓ2〉→ t

H|G ⊢ node f [δ1, . . . , δp](x1, . . . , xn) = e withD : [σ/f]/ℓ1 ∪ ℓ2

(APP)
H|G ⊢ f : t −〈ℓ1〉→ (t′1 × . . .× t′n)/ℓ2 H|G ⊢ e : t/ℓ3

H|G ⊢ (x1, . . . , xn) = f(e) : [t′1/x1, . . . , t
′
n/xn]/ℓ1 ∪ ℓ2 ∪ ℓ3

(AND)
H|G ⊢ D1 : H1/ℓ1 H|G ⊢ D2 : H2/ℓ2

H|G ⊢ D1 andD2 : H1,H2/ℓ1 ∪ ℓ2

(IF)

H|G ⊢ e : c at s/ℓ H|G ⊢ D1 : H′/ℓ1
H|G ⊢ D2 : H′/ℓ2 L |= {s ⊲ s′|s′ ∈ ℓ1 ∪ ℓ2}

H|G ⊢ if e then D1 else D2 : H′/ℓ ∪ ℓ1 ∪ ℓ2

Figure 4. Spatial type system.

We denote by v̂ : t the fact that the distributed value v̂ has
spatial type t:

lv at s : c at s
v̂1 : t1 v̂2 : t2

(v̂1, v̂2) : t1 × t2

We denote by R̂ : H the type compatibility between R̂ and H :

R̂ : H ⇔ ∀x ∈ dom(R̂), x ∈ dom(H)

∧ ∃(t,C) s.t. (t,C) ≤ H(x) ∧ R̂(x) : t

Theorem 1 states that if a program reacts with the centralized
semantics, and is accepted by our type system, then there exists a
spatialized execution such that the distributed values of this execu-
tion are equal to the centralized ones. The types are preserved by
this spatial execution. The proof is omitted for lack of space.

Theorem 1 (Soundness). For all D,D′,H ,H ′,R,R′,G, if H |G ⊢

D : H ′/ℓ and R ⊢ D
R′

−→ D′, then there exists R̂, R̂′ such that

R̂
ℓ

 D
R̂′

−→ D′, R̂ : H , R̂′ : H ′, |R̂| = R and |R̂′| = R′.

4. Distribution
4.1 Principle

Once programs have been typed, every expression is annotated with
a location that specifies where it has to be computed. Communica-

tions are inserted when a value is produced at a location and used
at another. From this typed program, the compiler produces several
new programs — one for every location s — erasing the code that
is not necessary at this location s. The run-time we have chosen
is a classical one for globally asynchronous locally synchronous
(GALS) systems: communications are done through FIFOs.

We show below the result of the projection of the node f of
Section 2.2 on A and B, noted respectively f_A and f_B. The distri-
bution of this node will involve adding a communication between
these two computations. This communication will take the form of
an additional output on f_A (named here c_y, holding the value y
computed on A and used on B), together with an additional input on
f_B. Original inputs and outputs are not suppressed: ⊥denotes an
irrelevant value which will not be used on the current location. It is
used here to replace the output z, whose computation is suppressed
at A.

node f_A(x) = (⊥,c_y) with
c_y = g(x)

node f_B(x,c_y) = z with
z = h(c_y)

The semantically equivalent distributed system is then obtained by
connecting the input and output c_y, holding the communicated
value y. The program below shows the distributed execution, using
a FIFO materialized by send/receive primitives, of the result of
the projection of the program y = f(x).

(y_A,c_y) = f_A(x); receive(c_y);
send(c_y) y_B = f_B(⊥,c_y)

4.2 Example

The result of the projection of the two nodes of the Section 2.5
on the location DSP is given on Figure 5. The projection of the
channel node shows that the node applications of filter and crc
have been removed, and that a new input c1 (holding the value of f)
and a new output c2 (holding the value of d) have been added. This
implies the addition, on the projection of the multichannel_sdr
node, of two new inputs (c2 and c3) and two new outputs (c4
and c5), one for each channel instance. The new input c1 of the
projected multichannel_sdr node holds the value c.

node channel(filter,demod,crc,x,c1) = (⊥,c2) with
d = demod(c1)

and c2 = d

node multichannel_sdr(x,s,c1,c2,c3) = (⊥,c4,c5)
if c1 then

(y,c4) = channel(⊥,gmsk,⊥,⊥,c2)
else

(y,c5) = channel(⊥,qpsk,⊥,⊥,c3)

Figure 5. Result of the projection on DSP

4.3 Projection

We will now define a type-directed operation of projection of an
expression on a location A. This operation is defined separately, as
it has to be performed on an already annotated program: links be-
tween values of each projected program are defined by the channels
inferred by the type system. The projection will use a refined ver-
sion of the type system, allowing the inference of communication
channels.

A channel is a location pair associated with a name, noted

A1
c
7→ A2: c is the name of the channel, A1 its source location, and

A2 its destination location. The set of channel names is ordered by
<, so as to keep consistency of inputs and outputs added, from the

node definition to node instances. T denotes sequences of channels.
The concatenation of two sequences of channels, noted T1, T2, is
defined iff channel names in T1 and T2 are disjoint. We denote by
ǫ the empty sequence.

We note dom(T) the set of channel names of T . T ′ ∼= T
means that the sequences T and T ′ are equal, modulo channel
renaming. This renaming allows the multiple instanciations of node
comprising communications.

T ′ ∼= T ⇔ T ′ = T [c′1/c1,...,c
′
n/cn] where {c1,...,cn} = dom(T)

The projection of a declaration D on a location A is noted

H |G ⊢ D : H ′/ℓ/T
A

=⇒ D′, and results in a new declaration D′,
containing only the computations to be performed on A. The pro-
jection of an expression e, of spatial type t, on a location A, is noted

H |G ⊢ e : t/ℓ/T
A

=⇒ e′/D, and results in a new expression e′, as
well as a declaration D, containing channels outputs to be defined.
A channel named c in an environment channel will be introduced
as the variable c as input or output of the target program, c assumed
to be of different name space than other variables of the source pro-
gram.

We denote by ǫ the empty declaration, and by ⊥ a value which
will never be used (i.e., void). For any declaration D, D and ǫ =
ǫ andD = D. For any expression e, we have (⊥ e) = (e⊥) = ⊥.

Also, we note T ↑ A (resp. T ↓ A) the set of channels with
origin (resp. destination) A:

∅ ↑ A = ∅

([A1
c
7→ A2], T) ↑ A =

{

[A1
c
7→ A2], (T ↑ A) if A1 = A

(T ↑ A) else,

∅ ↓ A = ∅

([A1
c
7→ A2], T) ↓ A =

{

[A1
c
7→ A], (T ↓ A) if A2 = A

(T ↓ A) else.

The projection rules are given in Figures 6 and 7. Channels are
used at communication points. If an expression e is sent from A to

A′ through the channel A
c
7→ A′, then:

• for the projection on A, the communication involves sending
a value: the resulting expression is void, and we add the
definition of the channel c as the result of the projection of
e on A (rule COMM-P-FROM);

• for the projection on A′, the communication involves receiv-
ing a value: the resulting expression is the channel holding
this value (rule COMM-P-TO).

Finally, if A does not appear in the set of locations involved in
its computation, then the expression can be suppressed on A (rule
SUPPR-P). Projections of a pair consist in the projection of its
compounds (rule PAIR-P).

The projection of a located declaration and parallel declarations
involves the projection of its compound (rules AT-P and AND-P).
The projections of applications and node definitions involve adding
to the inputs and outputs of the node, the channels used by this
node (rules APP-P and NODE-P). Nodes with local architecture
are assumed to be inlined. The relevance of the name order appears
here, as the order of the added inputs and outputs must be consistent
with every instances of these nodes, and for every projection.

Projection of a conditional is divided in two rules: one for
the projection on a location where the conditional expression is
computed: this first rule shows the definition of every channel
needed to send this value to other locations where the conditional
will be evaluated (rule IF-P-FROM); and one for the projection on
a location where the conditional expression has to be received: this
expression is then replaced by the name of the channel holding this
value (rule IF-P-TO).

(IMM-P)

H|G ⊢ i : c at s/{s}/ǫ
A

=⇒ i/ǫ

(INST-P)
(t, C) ≤ (H(x)) L |= C

H|G ⊢ x : t/ℓ/ǫ
A

=⇒ xA/ǫ

(AT-P)

H at A|G ⊢ D : H′/ℓ/T
A

=⇒ D′

H|G ⊢ D at A : H′/ℓ/T
A

=⇒ D′

(SUPPR-P)
A 6∈ ℓ

H|G ⊢ e : t/ℓ/T
A

=⇒ ⊥/ǫ

(COMM-P-FROM)

H|〈S,L〉 ⊢ e : tc at A/ℓ/T
A

=⇒ e′/D L |= A ⊲ s′

H|〈S,L〉 ⊢ e : tc at s′/ℓ ∪ {s′}/T, [A
n
7→ s′]

A
=⇒ ⊥/D and cn = e′

(COMM-P-TO)

H|〈S,L〉 ⊢ e : tc at s/ℓ/T
A′

=⇒ e′/D L |= s ⊲ A′

H|〈S,L〉 ⊢ e : tc at A′/ℓ ∪ {A′}/T, [s
n
7→ A′]

A′

=⇒ cn/D

(PAIR-P)

H|G ⊢ e1 : t1/ℓ1/T1
A

=⇒ e′1/D1 H|G ⊢ e2 : t2/ℓ2/T2
A
=⇒ e′2/D2

H|G ⊢ e1, e2 : t1 × t2/ℓ1 ∪ ℓ2/T1, T2
A

=⇒ e′1, e
′
2/D1 andD2

(DEF-P)
H|G ⊢ e : t1 × . . .× tn/ℓ/T

A
=⇒ e′/D

H|G ⊢ (x1, . . . , xn) = e : [t1/x1, . . . , tn/xn]/ℓ/T
A

=⇒ (x1A, . . . , xnA) = e′ andD

(APP-P)

H|G ⊢ f : t −〈ℓ1/T1〉→ (t′1 × . . .× t′n)/ℓ2/T2
A

=⇒ f ′/D1

H|G ⊢ e : t/ℓ3/T3
A
=⇒ e′/D2 T ′

1
∼= T1

T ′
1 ↑ A = [A

c17→ A1, . . . , A
cm7→ Am]

T ′
1 ↓ A = [A′

1

c′
17→ A, . . . , A′

p

c′p
7→ A]

H|G ⊢ (x1, . . . , xn) = f(e) : [t2/x]/ℓ1 ∪ ℓ2 ∪ ℓ3/T
′
1, T2, T3

A
=⇒ (x1A, . . . , xnA, c1, . . . , cm) = f ′(e′, c′1, . . . , c

′
p) andD1 and D2

(AND-P)

H|G ⊢ D1 : H1/ℓ1/T1
A

=⇒ D′
1 H|G ⊢ D2 : H2/ℓ2/T2

A
=⇒ D′

2

H|G ⊢ D1 andD2 : H1,H2/ℓ1 ∪ ℓ2/T1, T2
A

=⇒ D′
1 andD′

2

Figure 6. Rules for the projection operation (I).

The global meaning of a distributed program is then defined by
the parallelization of its projected declarations.

We note S = {A1, . . . , An} the set of defined constant loca-
tions where the source declarations are projected. The global mean-
ing of a declaration D, projected on the locations S , is defined by:

D1 and . . . andDn where ∀i,H |G ⊢ D : H ′/ℓ/T
Ai=⇒ Di

In order to relate a target program with its source, we define a
relation on values, denoted · 4·

· ·, such that v′ 4A
t v means that the

value v′, emitted from an expression of type t, represents the value
v at the location A. We have:

v′ = v

v′ 4A
t at A v

A 6= A′

⊥ 4
A
t at A′ v

v′1 4
A
t1 v1 v′2 4

A
t2 v2

(v′1, v
′
2) 4

A
t1×t2 (v1, v2)

We can then relate two reaction environments R and Rp w.r.t. a
typing environment H :

R 4H Rp iff ∀x ∈ dom(R),∀A ∈ S ,R(x) 4A
H(x) Rp(xA)

Theorem 2 states that the projection operation is correct, i.e.,
the projection of a source program D into Di (for every location
Ai) defines a new target program D1 and . . . and Dn, which is
semantically equivalent, taking into account spatial types’ values,
with the source declaration D. The proof is omitted for lack of
space.

Theorem 2 (Soundness of the declarations projection). For all H ,

H ′, D, D′, ℓ, T , Di, R, R′, if R ⊢ D
R′

−→ D′, H |G ⊢ D :

H ′/ℓ/T and ∀i, H |G ⊢ D : H ′/ℓ/T
Ai=⇒ Di, then there exists

Rp, R
′
p, Dp, D

′
p such that Dp = D1 and . . . andDn, R 4H Rp,

Rp ⊢ Dp

R′

p
−−→ D′

p, and R′
4H′ R′

p.

5. Discussion

5.1 Implementation

The spatial type system presented in Section 3.4 relies on a subtyp-
ing mechanism. It corresponds to the case where communications
can occur anywhere in the code. This situation raises two prob-
lems. Firstly, the implementation of type systems with subtyping
mechanism is costly: usual algorithms rely on the systematic ap-
plication of the subtyping rule. Secondly, this choice leads to a sit-
uation where the programmer has no control over where the com-
munications can occur. These problems, though orthogonal, can be
addressed together: giving some control to the programmer means
restricting the points where subtyping can be applied. We refine our
type system in order to address these two problems.

We restrain communicated values to be variables introduced by
equations (x = e). Thus, in the program of Section 2.2, only y
and z can be communicated from one location to another. Then, we
can use a generalization mechanism to infer communication con-
straints, instead of inferring them by subtyping. This corresponds
to restricting the subtyping mechanism to instantiation points.

This refined type system, as well as the projection operation
presented in Section 4, have been implemented in the Lucid Syn-
chrone compiler [1]. The independence of the method w.r.t. other
analysis allowed this implementation to be quite modular, implying
very few modifications within the rest of the compiler. The imple-
mentation consists to generate distribution constraints, which are
resolved modularly for each node. We implemented a naive resolu-
tion algorithm, which can easily be replaced by any existing distri-
bution algorithm, taking into account efficiency issues (for exam-
ple, the AAA method of SynDex [18]). This implementation has
been tested on the software-defined radio example, which is in its
actual size composed of 150 lines of code, spread out into 25 Lucid
Synchrone nodes. We have tested our automatic distribution algo-
rithm on a benchmark suite composed of programs of few hundred
of lines from the current Lucid Synchrone release. This point is
a good indication of the flexibility of the extension proposed, al-
lowing the distribution of programs not primarily designed with
distribution in mind. The scalability of this method is a direct out-
come of the use of a type system aiming at modular distribution; it
has been also applied on an ad hoc example composed of 10 Lucid
Synchrone nodes, comprising each 60 equations.

5.2 Related Work

Various solutions have emerged in order to use synchronous lan-
guages for the design of distributed systems. Some of them operate
on a compiled model of the program, by “coloring” atomic instruc-
tions with localization information, inferred from input and output
locations [8]. The whole program is first compiled into an interme-
diate sequential format, on which the distribution is then applied.
This format consists of a sequence of atomic instructions, repre-
senting one computation step of new values carried on each stream.
Then, the distribution involves placing each instruction onto one or

several locations, taking into account the consistency of the con-
trol flow on each location. Another approach is to directly annotate
the source program with locations, so as to define the localization
of each variable of the program: the distribution is then performed
with regard to these annotations. This approach has been applied
to Signal [3] as well as Lustre [7]. In both cases, the soundness of
the distribution algorithm has been proved [6, 14], meaning that the
combined behavior of the distributed fragments has the same func-
tional and temporal semantics as the initial centralized program.
The originality of our method resides in the fact that we use a spa-
tial type system to check the consistency of the distribution specifi-
cations inserted by the programmer, and that we perform modular
distribution, allowing the expression of higher-order features, ap-
plied for instance to dynamic reconfiguration of nodes by applica-
tion of other nodes as inputs. Since a Kahn semantics [11] can be
given to our language, the semantic equivalence between the source
program and the synchronous product of the fragments resulting
from the projection is sufficient to describe an asynchronous dis-
tribution. While the language presented has higher-order features,
this method can easily be applied to other language with compara-
ble semantics such as Lustre. In contrast, more general frameworks
such as Signal cannot be addressed here for this reason.

Several approaches have been considered to solve the problem
of data consistency of distributed programs. A translation operation
is presented in [16], as well as an effect type system, in order to au-
tomatically obtain a multi-tier application from an annotated source
program. Our proposition differs by the fact that our type system
is not only a specification, but also consists in what the authors
called “location analysis”, thus allowing us to perform this analysis
in a modular way, and on a program comprising higher-order fea-
tures. This last approach, as well as our projection operation, can be
compared with slicing methods [20], as they consists in extracting
specific parts of a global program. Type systems have been used
to ensure memory consistency [19], or for pointer analysis within a
distributed architecture [12]. The ACUTE language [17] is an exten-
sion of OCAML with typed marshalling. Communication channels
between two ACUTE programs can also be considered as typed,
as the type of marshalled and unmarshalled data are dynamically
verified, at execution time. The consistency considered is between
separately-built programs, whereas our approach is to consider the
programming of a distributed system as one global program, al-
lowing global static verifications. Our approach can be compared
with automatic partitioning: the J-Orchestra system [13] allows the
user to assign network sites to classes of Java programs. Then, this
automatic partitioning system transform the initial program into
a distributed one, taking into account distant or direct references.
This last approach differs with our by the fact that we integrate
the distribution constructs within our language, which allows rely-
ing distribution on semantical basis. Finally, OZ and its distributed
extension [4] proposes a way to separate the functionality of a dis-
tributed application and its distribution structure, by allowing the
programmer to give a different distributed semantics to every differ-
ent object of a program. These two languages aims at loosely cou-
pled distributed systems without architecture constraints, whereas
our approach concerns strongly coupled architecture, and we aim
to ensure the consistency of the distribution w.r.t. one architecture,
given the communication constraints.

5.3 Conclusion and Future Work

We have proposed a spatial type system to solve the problem of
automatic distribution of dataflow programs. It is based on a core
dataflow language, which we have extended with distribution prim-
itives to allow the programmer to specify, on one hand his/her target
distributed architecture, and on the other hand where some nodes
and/or variables are to be located. The underlying philosophy is

(NODE-P)

H, xi : ti, H1|G ⊢ D : H1/ℓ1/T1
A

=⇒ D′ H, xi : ti, H1|G ⊢ e : t/ℓ2/T2
A
=⇒ e′/De

{α1, . . . , αm} = FTV(t) − FTV(H) σ = ∀α1, . . . , αm.(t1 × . . .× tn) −〈ℓ1 ∪ ℓ2/T1, T2〉→ t

T1, T2 ↑ A = [A
c17→ A1, . . . , A

cp
7→ Ap] T1, T2 ↓ A = [A′

1

c′
17→ A, . . . , A′

q

c′q
7→ A]

H|G ⊢ node f(x1, . . . , xn) = e withD : [σ/f]/ℓ1 ∪ ℓ2/∅
A

=⇒ node fA(x1A, . . . , xnA, c′1, . . . , c
′
q) = (e′, c1, . . . , cp) with D′ andDe

(IF-P-FROM)

H|G ⊢ e : c at s/ℓ/T
A

=⇒ e′/D H|G ⊢ D1 : H′/ℓ1/T1
A

=⇒ D′
1 H|G ⊢ D2 : H′/ℓ2/T2

A
=⇒ D′

2

C = {s ⊲ s′|s′ ∈ ℓ1 ∪ ℓ2} L |= C T ′ = channels(C) T ′ ↑ A = [A
c17→ A1, . . . , A

cn7→ An] x 6∈ dom(H)

H|G ⊢ if e then D1 elseD2 : H′/ℓ ∪ ℓ1 ∪ ℓ2/T, T1, T2, channels(C)
A

=⇒ x = e′ and c1 = x and . . . and cn = x and if x then D′
1 elseD′

2

(IF-P-TO)

H|G ⊢ e : c at s/ℓ/T
A

=⇒ e′/D H|G ⊢ D1 : H′/ℓ1/T1
A

=⇒ D′
1

H|G ⊢ D2 : H′/ℓ2/T2
A

=⇒ D′
2 C = {s ⊲ s′|s′ ∈ ℓ1 ∪ ℓ2} L |= C T ′ = channels(C) T ′ ↓ A = [A′ c

7→ A]

H|G ⊢ if e thenD1 else D2 : H′/ℓ ∪ ℓ1 ∪ ℓ2/T, T1, T2, channels(C)
A

=⇒ if c thenD′
1 else D′

2

Figure 7. Rules for the projection operation (II).

the functional distribution, meaning that some functionalities of
the program must be computed at some precise location because
they require some specific sensors, actuators, and/or computing
resources that are available only at this location. In this context,
we use type inference to decide at which location each node must
be computed, and at which points in the program communication
primitives must be inserted. The compilation of a correctly spatially
typed program produces one program for each computing location
specified by the programmer. We use abstract communication chan-
nels to exchange a value between two locations and to synchronize
them. Compiling each program and linking with a dedicated library
implementing those communication channels then gives one binary
code for each location. The refined version of the type system, as
well as the operation projection, has been implemented in a syn-
chronous dataflow compiler [1].

Future work mainly involves allowing the description of more
complex architectures, with hierarchical locations or communica-
tion masking (e.g., MPSoCs): our proposal of architecture con-
straints is not sufficient to catch the complexity of actual architec-
ture of distributed embedded systems. Yet, our current constraints
show the interest of a type system for checking the consistency of
a distributed program w.r.t. such constraints.

References
[1] Lucid synchrone v3. www.lri.fr/~pouzet/lucid-synchrone .
[2] Architecture analysis & design language (AADL). SAE Standard

(AS5506), Nov. 2004.
[3] P. Aubry and P. Le Guernic. On the desynchronization of synchronous

applications. In 11th International Conference on Systems Engineer-

ing, ICSE’96, Las Vegas, USA, June 1996.
[4] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming

languages for distributed computing systems. ACM Computing

Surveys, 21(3):261–322, 1989.
[5] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. L. Guernic,

and R. de Simone. The synchronous languages twelve years later.
Proc. of the IEEE, Special issue on embedded systems, 91(1):64–83,
Jan. 2003.

[6] B. Caillaud, P. Caspi, A. Girault, and C. Jard. Distributing automata
for asynchronous networks of processors. European Journal of

Automated Systems, 31(3):503–524, 1997.
[7] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and

P. Niebert. From Simulink to Scade/Lustre to TTA: A layered
approach for distributed embedded applications. In International

Conference on Languages, Compilers, and Tools for Embedded

Systems, LCTES’03, San Diego, USA, June 2003. ACM.

[8] P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of reactive
systems for asynchronous networks of processors. IEEE Trans. on

Software Engineering, 25(3):416–427, May 1999.
[9] J.-L. Colaço, A. Girault, G. Hamon, and M. Pouzet. Towards a

Higher-order Synchronous Data-flow Language. In ACM Fourth
International Conference on Embedded Software (EMSOFT’04),
Pisa, Italy, september 2004.

[10] F. Jondral. Software-defined radio — basics and evolution to
cognitive radio. EURASIP Journal on Wireless Communications
and Networking, 3:275–283, 2005.

[11] G. Kahn. The semantics of a simple language for parallel pro-
gramming. In J. L. Rosenfeld, editor, Information Processing ’74:
Proceedings of the IFIP Congress, pages 471–475, New York, NY,
1974. North-Holland.

[12] B. Liblit and A. Aiken. Type systems for distributed data structures.
In POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 199–213,
New York, NY, USA, 2000. ACM Press.

[13] N. Liogkas, B. MacIntyre, E. D. Mynatt, Y. Smaragdakis, E. Tilevich,
and S. Voida. Automatic partitioning: A promising approach to
prototyping ubiquitous computing applications. IEEE Pervasive

Computing, 2004.
[14] O. Maffeïs. Ordonnancements de graphes de flots synchrones ;

Application à la mise en œuvre de Signal. Phd thesis, University of
Rennes I, Rennes, France, Jan. 1993.

[15] J. Mitola. The software radio architecture. IEEE Communications
Magazine, 33(5):26–38, May 1995.

[16] M. Neubauer and P. Thiemann. From sequential programs to
multi-tier applications by program transformation. In POPL ’05:

Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 221–232, New York,
NY, USA, 2005. ACM Press.

[17] P. Sewell, J. J. Leifer, K. Wansbrough, F. Z. Nardelli, M. Allen-
Williams, P. Habouzit, and V. Vafeiadis. Acute: High-level
programming language design for distributed computation. In
Proceedings of ICFP 2005: International Conference on Functional

Programming (Tallinn), Sept. 2005.
[18] Y. Sorel. SynDEx: System-level cad software for optimizing

distributed real-time embedded systems. Journal ERCIM News,
59:68–69, Oct. 2004.

[19] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect
inference. Journal of Functional Programming, 2(3), 1992.

[20] M. Ward and H. Zedan. Slicing as a program transformation. ACM

Transactions on Programming Languages and Systems (TOPLAS),
29(2):7, 2007.

www.lri.fr/~pouzet/lucid-synchrone

	Motivations
	Overview
	Distribution of Synchronous Dataflow Programs
	Language-based Distribution
	A Spatial Type System for Automatic Distribution
	Examples
	Application

	Formalization
	The Core Language Syntax
	The Centralized Synchronous Semantics
	The Distributed Synchronous Semantics
	Spatial Types

	Distribution
	Principle
	Example
	Projection

	Discussion
	Implementation
	Related Work
	Conclusion and Future Work

